ACSPL+ Commands & Variables

Reference Guide

May 2022

Document Revision: 3.12

~CS

MOTION CONTROL

ACSPL+ Commands & Variables Reference Guide

ACSPL+ Commands & Variables

Release Date: May 2022
COPYRIGHT
© ACS Motion Control Ltd., 2022. All rights reserved.

Changes are periodically made to the information in this document. Changes are published as release notes and later
incorporated into revisions of this document.

No part of this document may be reproduced in any form without prior written permission from ACS Motion Control.
TRADEMARKS

Windows and Intellisense are trademarks of Microsoft Corporation.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Any other companies and product names mentioned herein may be the trademarks of their respective owners.
PATENTS

Israel Patent No. 235022

US Patent Application No. 14/532,023

Europe Patent application N0.15187586.1

Japan Patent Application No.: 2015-193179
Chinese Patent Application No.: 201510639732.X
Taiwan(R.0.C.) Patent Application No. 104132118
Korean Patent Application No. 10-2015-0137612

www.acsmotioncontrol.com

support@acsmotioncontrol.com

sales@acsmotioncontrol.com

NorTIce

The information in this document is deemed to be correct at the time of publishing. ACS Motion Control reserves the right to
change specifications without notice. ACS Motion Control is not responsible for incidental, consequential, or special damages
of any kind in connection with using this document.

Version 3.12 2

http://www.acsmotioncontrol.com/
mailto:support@acsmotioncontrol.com
mailto:sales@acsmotioncontrol.com

Revision History

May 2022

February 2022
February 2022
January 2022

January 2022

December 2021

December 2021

November 2021

September
2021

June 2021

April 2021

December
2020

September
2020

July 2020
June 2020

September
2019

Version 3.12

312

3.11.01.06

3.11.01.05

3.11.01.04

3.11.01.03

3.11.01.02

3.11.01.01

3.11.01

31

3.10.01

3.10

3.03

3.02

3.01

3.00

2.70.10

ACSPL+ Commands & Variables Reference Guide

New Release, Error mapping, FOE, Modulo, other
functions

Corrections to ARCI, ARC2, LINE, switches
Corrections to PRATE

Correction to HOME entry, INTERUPTEX correction
Remove SET/GETCONF(29)

Remove AERR
peg_engine instead of axis in PEG_I, PEG_R, etc.

Document /q switch for XSEG, PTP, other motion
commands

Local Coordinates function explanations
XSEG example

PEG & MARK Improvements, MFLAGSX.#SATPROT,
AIN/AOUT corrections

New and updated functions with ADK Release

Formatting Corrections, ASSIGNPOUTS for XXMsa

SLCRAT, SLVRAT corrections

Note M&S State for MSTIMEA/B/C
Document SET/GETCONF(270)
Changes for V3.10

INSHAPEON example if CTIME<T

Remove reference to obsolete SPiiPlus PCl device

Fix Error Tables

Changes supporting ADK v3.00

Corrections to XCURV, XCURI and related variables

ACSPL+ Commands & Variables Reference Guide

July 2019

June 2019

April 2019

October 2018

July 2018
January 2018
December 2017

September
2017

June 2017

December 2016

October 2016

September
2016

August 2016

September
2014

Version 3.12

2.70.02

2.70.01

2.70

2.60.10

2.60

2.50.01

2.50

2.40.01

2.40

2.30.02

2.30.01

2.30.10

2.30

01

SLCPA is obsolete, removed from documentation

Formatting corrections, examples for functions, fixed
links for system configuration variables, moved
stepper loop variables to servo loop section

GCODE Errors
Many new functions, commands, and variables for
new features. See version 2.70 release notes.

Updated AST bits for laser and SLEC module
Added FOLLOW, UNFOLLOW, EXTFAC, FOLLOWCH

Added error code 5042 to the list of motion
termination errors

Updated for SPiiPlus ADK Suite v2.60
Added laser control commands and functions.

Updated for SPiiPlus ADK Suite v2.50

Updated SETSP function.

Updated for SPiiPlus ADK Suite v2.40
Removed unsupported ServoBoost variables

Added support for Absolute Encoders to SLPROUT,
SLVROUT, SLCROUT Replaced references to acsc_Write
and acsc_Read with acsc_Transaction

Changed LINET to LINE, ARC2 to ARC1, ARC3 to ARC2,
and ARC4 to ARC2

Updated XSEG, LINE, ARC1, and ARC2 for 6 axes support

Updated for SPiiPlus ADK Suite v2.30

First Release

ACSPL+ Commands & Variables Reference Guide

Conventions Used in this Guide

Text Formats

Bold Names of GUI objects or commands
BOLD + UPPERCASE ACSPL+ variables and commands
Monospace + grey background Code example

Italic Names of other documents

Blue Hyperlink

[] In commands indicates optional item(s)

| In commands indicates either/or items
Flagged Text

@)

Version 3.12

Note - includes additional information or programming tips.

Caution - describes a condition that may result in damage to equipment.

Warning - describes a condition that may result in serious bodily injury or
death.

Model - highlights a specification, procedure, condition, or statement that
depends on the product model

Advanced - indicates a topic for advanced users.

ACSPL+ Commands & Variables Reference Guide

Related Documents

Documents listed in the following table provide additional information related to this document.

The most updated version of the documents can be downloaded by authorized users from ACS
Motion Control Resources under "Downloads".

Online versions for all ACS software manuals are available to authorized users at ACS Motion Control

Knowledge Center.

SPiiPlus C Library C++ and Visual Basic® libraries for host PC applications. This guide is
Reference applicable for all the SPiiPlus motion control products.

SPiiPlus COM Library COM Methods, Properties, and Events for Communication with the
Reference C Controller.

SPiiPlus .NET Library .NET Methods, Properties, and Events for Communication with the
Reference Controller.

SPiiPlusMM|
Application Studio User
Guide

A complete guide for using the SPiiPlus MMI Application Studio and
associated monitoring tools.

SPiiPlus Utilities User A guide for using the SPiiPlus User Mode Driver (UMD) for settingup
Guide communication with the SPiiPlus motion controller.

SPiiPlus NT/DC

Hardware Guide Technical description of the SPiiPlus NT/DC product line.

SPiiPlus PDMnt

Hardware Technical description of the SPiiPlus PDMnt Network Interface.
Guide

SPiiPlus SDMnt Technical description of the SPiiPlus SDMnt Step Motor Drive

Hardware Guide

SPiiPlus UDMnt
Hardware

Guide

MC4U-CS Control
Module Hardware
Guide

HSSI Expansion
Modules Guide

Version 3.12

Module.

Technical description of the SPiiPlus UDMnt Universal Drive
Module.

Technical description of the MC4U Control Module integrated
motion control product line.

High-Speed Synchronous Serial Interface (HSSI) for expanded I/0,
distributed axes, and nonstandard devices.

https://acsmotioncontrol.com/engineering-resources-video/
https://acsmotioncontrol.com/engineering-resources-video/
https://www.acsmotioncontrol.com/knowledge-center
https://www.acsmotioncontrol.com/knowledge-center

ACSPL+ Commands & Variables Reference Guide

PEG and MARK
Operations Application Provides details on using the PEG commands in SPiiPlus systems.
Notes

Version 3.12 7

ACSPL+ Commands & Variables Reference Guide

Table of Contents

1 INtroduction ... 39
2. ACSPL+ COMMANGAS ..o 40
2.1 Axis Management COmMMaNdS ... 44
200 BREAK 45
2.0.2 COMMUT L 46
203 CONNECT 47
204 CSCRE AT E 50
205 CSDESTROY o 53
20,6 DEPENDS . 54
2.1.7 DISABLE/DISABLEALL ... 55
2.1.8 ENABLE/ENABLE ALL ... 56
2019 ENCINIT Lo 57
20700 ENCREAD ..o 59
2001 FCLEAR oo 60
2002 FOLLO W 61
2003 GO L 61
2004 GROUP 62
2005 HALT 63
20706 HOME Lo 64
2007 IMM 66
2018 KILL/KILLALL .o 67
2009 SAFETYCONF oo 68
21,20 SAFETYGROUP 70
22T OB 70
2022 SPUIT 71
2.0.23 UNFOLLOW ..o 72

2.2 Predefined Homing Methods ... 72
2.2.1 Homing Method 1: Homing on the negative limit switch and index pulse 72
2.2.2 Homing Method 2: Homing on positive limit switch and index pulse 72
2.2.3 Homing Method 17: Homing on Negative Limit Switch 73
2.2.4 Homing Method 18: Homing on Positive Limit Switch 73
2.2.5 Homing Method 33 and 34: Homing on theindex pulsec........ 73

Version 3.12 8

ACSPL+ Commands & Variables Reference Guide

2.2.6 Homing Method 37: Homing on current position ... 73
2.2.7 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific) 73
2.2.8 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific) 74
2.2.9 Homing Method 52: Negative Hard Stop (ACS Specific) ... 74
2.2.10 Homing Method 53: Positive Hard Stop (ACS Specific) ... 74
2.3 Interactive COMMAENAS ... 74
2.3 ISP 74
2.3 2 INP 79
2.3 3 INTERRUPT L 81
2.3.4 INTERRUPTEX ... oo 83
2.3.5 SEND ool 84
2.3.6 TRIGGER ... 86
2.37 OUTP oo 87
2.4 PEGand MARK COMMANGS 89
240 ASSIGNM ARK L 89
2.4.2 ASSIGNPEG ... 90
2.4.3 ASSIGNPOUTS 92
2.4.4 GETPEGCOUNT .. 94
245 PEG_L o 94
2.4.6 PEG_R ... 95
2.4.7 STARTPEG ... 98
2.4.8 STOPPEG ... 99
2.5 Miscellaneous COMMANAS 99
2,50 AXISDEF ol 100
2.5.2 D 102
2.53 STOPDUC ..o 104
254 READ ..ol 105
2.5.5 SPDC Lol 106
2.5.6 STOPSPDC ..o 109
2. 5.7 WRITE L 10
2.5.8 SPINJECT m
2.5.9 STOPINJECT ..o 12
2.5710 SPICFG oo 12
257000 SPIWRITE Lo 14

Version 3.12

ACSPL+ Commands & Variables Reference Guide

2.63T SMOVE ... 183
2.6.32 Using ARC1, ARC2 and LINE SWiItChes 184

2.7 Program FIOW COMMBNAS ... 186
2.7.7 Assignment COMMENG ..o 186
2.7.2 BLOCK..END . 188
2.7.3 CALL Lo 189
2.7.4 GOT O L 189
275 IF, ELSEIF, ELSE..END ... 190
2.7.6 INPUT 192
2.7.7 LOOPLLEND o 193
2.7.8 ON.RET L 194
2.7.9 TILL Lo 195
2700 WAIT Lo 196
2700 WHILE.LEND 196

2.8 Program Management COMMANGS ... 197
2.8.1 DISABLEON .o 198
2.8.2 ENABLEON ..o 198
2.8.3 PAUSE 198
2.8.4 RESUME 199
2.8, ST AR 199
2.8.6 STOP/STOPALL ... oo 201

2.9 Ethernet/IP ACSPL+ SUppOort COMMANGAS ... 201
2.9 BIPGET AT TR 201
2.9.2 BIPGETINDT L. 203
2.9.3 EIPGETINDZ ... o 204
2.9.4 EIPGETTAG ..o o 204
2.9.5 EIPSETASM .o 205
2.10 Laser Control COMMBNGAS ... oo 206
2007 LCENABLE ..o 206
2700.2 LCDISABLE . 206

211 Input Shaping COMMENAS ..o . 206
21T INSHAPEON 207
2012 INSHAPEOFF 208

3. ACGSPL+Variables ... 209

Version 3.12 1l

ACSPL+ Commands & Variables Reference Guide

3.1 Axis Configuration Variables ... 222
B0 AFLAGS 224
B2 ENTIME 225
303 BT BT S o 225
B304 B2STBITS o 226
305 EMTBITS Lo 227
306 B2MTBITS 227
37 M F 228
308 MFELAGS o 229
3.9 MELAGSX 236
30700 MODULOMD ..o 238

3001 PEGQUE L 242

BAT2 SETTLE oo 242
B33 S M AKX 243
3004 SLPMIN 244
305 ST P 245
306 STEPW 246
3007 TARGRAD .o 247
3.2 Brake Variables ... 247
320 BOFFTIME oo 248
322 BONTIME ..o 249
3.23 MBRKROUT .. 250
324 VELBRK 251
3.3 Feedback Variables ... 252
33T B AOFFS L 254
332 ELFREQ o 255
3333 B2 AOFFS oo 256
334 E2_FREQ ..o 256
335 E_FLAGS oo 257
336 B2 FLAGS 258
337 B P AR A 259
338 B2 P AR A 260
3309 B PAR B 261
33700 B2 PAR B 261

Version 3.12 12

ACSPL+ Commands & Variables Reference Guide

Version 3.12

330 B PAR L 262
3302 B2 PAR _C 263
3308 B PAR D o 264
3304 B2 PAR D oo 264
3305 B PAR B 265
3306 B2 PAR B 265
3307 ELSCMUL Lo 266
338 E2_SCMUL oo 267
30300 BT PE 267
33,20 B2 TYPE L 269
3.3 2] BFAC L 270
3.3.22 B2FAC L 271
303023 BOFFS L 272
3.3.24 B20F S L 273
33025 BPOS 273
3326 FVFIL Lo 274
303,27 F2ACC o 275
3.3.28 HOMEDEF . 275
3329 HOMEVELL ..o 276
3330 HOMEVELL ..o o 277
3331 RVFIL 278
3.3.32 SCSOF RS 279
3.3.33 SCCOFFS oo e 280
3.3.34 SC2C0FFS o 281
3.3.35 SC2GAIN Lo 281
3.3.36 SC2PHASE 282
3.3.37 SC2S0FFS 282
3.3.38 SLEBIAS A 283

3.3.40 SLEBIASC oo 285
3341 SLEBIASD oo 286
33,42 SLABITS o 286
33,43 S2LABITS L 287
3.3.44 SCGAIN Lo 288

13

ACSPL+ Commands & Variables Reference Guide

3345 SCPHASE oo 288
3.4 Axis State Variables ... 289
B AST 289
BUA.2 IND 292
BUA. 3 ST ol 293
3.4.4 M2ARK Lo 294
34D MARK 295
3.0 M 296
347 RMSM 297
348 RMSD 298
BU4.0 NS T 298
3.5 Safety LIMits Variables 300
35T B R R A 301
352 CERRI 302
3. 5.3 CBRRY 303
354 DLV 303
355 DELl ol 304
356 B ERR 305
357 ERRA L 306
3.5.8 ERRI Lo 307
30509 ERRV 307
3500 SLUMIT Lo 308
35T SLLROUT 309
3502 SRUMIT 310
3503 KA 3N
3574 XCURCDB ... 3N
3505 XCURI Lo 312
3576 XCURK ..o 313
3507 XCURV 314
3508 XRIMS 315
3509 XRMS D 315
35,20 XRM S 316
3521 XRMST 317
3.5.22 XRMSTD oo 318

Version 3.12 14

ACSPL+ Commands & Variables Reference Guide

3523 XRMSTM L 319
3524 XSACC ool 320
3525 XVEL oo 321
3.6 Data Collection Variables ... 321
Bi0.0 DN 322
3062 DOP 323
3.6.3 S DN L 323
30,4 S D P 324
3065 S ST 325
3.7 Input and OutpuUt Variables ... 325
370 AIN 326
37,2 AINOF S 327
373 AINSCALE oo 328
374 AOUT 328
375 DOUT 329
37,6 EXTIN 330
377 EXTOUT Lo 330
378 IN 331
30700 DU 332
3700 SPIRXN 333
3700 SIS 333
3.8 MONItOriNg Variables ... 334
380 BCODECEG ..o 335
3.8.2 BCODEUSG ... 335
3.83 BGLOBCFG ..o 336
3.8.4 BGLOBUSG ..o 337
3.8.5 BSRCUSG ..o 338
3.8.6 BSRCCFG ..o 338
3.8.7 BVARUSG ..o 339
3.8.8 BVARCEG Lo 340
3.8 JITTER 341
3800 MSOSYN C 341
3801 USGBUF 341
3802 USGTRACE ..o 342

Version 3.12 15

ACSPL+ Commands & Variables Reference Guide

Version 3.12

3003 PERL Lo 390
30,4 PERR 390
3005 PEX L o 391
3700.6 PELAGS .o 391
3007 PUINES 393
30,8 PRATE 394
30,0 PO 395
311 Safety Control Variables ... 395
3L B BRR 397
3712 ECALERR L. 397
3013 BCERR o 398
3014 BECEXTERR .o 398
31 BCEXT ST 399
3008 BOST 400
307 FAULT 402
3008 FAULT SIM 405
31O FDF 409
3100 FM ASK 414
3T HULROUT 417
31102 HRUROUT e 420
3103 MERR 422
304 SAFIN 422
305 SAFIND 424
3106 S BRR 425
BI07 S_FAULT 425
3108 S DB 429
3100 S M A K 432
30120 S S AFIN 433
BT 2T S S AFIND 434
30,22 SSONITIME 435
300,23 SSI2TIME 435

18

ACSPL+ Commands & Variables Reference Guide

3.13.10 SLVKIDCF
3.14 Servo-Loop Variables

3.14.1 DCOM

3.14.2 Servo-Loop Current Variables
3.14.2.1 SLBIASA
3.14.2.2 SLBIASB
3.14.2.3 SLBIASC
3.14.2.4 SUKI
3.14.2.5 SUKP
3.14.2.7 SUOFFS
3.14.2.8 SLILI

3.14.3 Servo-Loop Velocity Variables
3.14.3.1 SLCRAT
3.14.3.2 SLVKI

Version 3.12

ACSPL+ Commands & Variables Reference Guide

Version 3.12

304300 SLVUL Lo 463
304301 SLVRAT L 464
3.14.4 Servo-Loop Velocity Notch Filter Variables ... 465
31440 SLVYNFRQ .o 465
314.4.2 SLUNWID ..o 466
30443 SLVNATT 466
3.14.5 Servo-Loop Velocity Low Pass Filter Variables ... 467
30450 SLVSOF 467
30452 SLVSOFD oo 468
3.14.6 Servo-Loop Velocity Bi-Quad Filter Variables ... 468
374.6.1 SLVBODD ... 469
314.6.2 SLVBODF ... o 470
374.6.3 SLVBOND ..o 470
304.6.4 SLVBONF L 471
3.14.7 Servo-Loop Position Variables ... 472
30470 SUD R A 472
304.7.2 SLDRAIF L 473
30473 SLDRX oo 474
304.7.4 SUPKI Lo 475
30475 SUPKIIF oo 476
304.7.6 SLPKISE o 476
30477 SLPKITE 477
304.7.8 SLPLL L 477
304.7.9 SLPKP 478
3047100 SLPKPIF Lo 479
304701 SLPKPSF Lo 480
304702 SUPKP T 480
3.14.8 Servo-Loop Compensations Variables ... 481
30480 SLAFRF Lo 481
314.8.2 SLERCD .o 482
3.14.9 Servo Loop Stepper Variables ... 483
30490 MELAGS X 483
30492 SUSDZ oo 485
34.9.3 SUSKI oo 486

20

ACSPL+ Commands & Variables Reference Guide

3.16

Version 3.12

3494 SLSKP oo 486
30495 SUSMU oo 487
304.9.6 SLSOUT oo 488
374.9.7 SUSRLU ..o 489
3.14.10 Servo-Loop Miscellaneous Variables ... 489
314001 SLCROUT Lo 490
304.10.2 SLGCAXN L. 491
31400.3 SLPROUT L. 492
3.04.70.4 SLP2ROUT ..o 494
304905 SLTEWID oo 496
31400.6 SLVROUT .o 496
3.14.11 Non-Linear ControlVariables ... 498
BT S P AP 498
3412 SUPDP 499
304013 SUP AL L 499
3404 SUP D 500
3401 SLV AP 501
314016 SLVDP o 501
BA4AT1LT7 SLVAL L 502
304718 SLVDI Lo 503
Commutation Variables 503
35T SLCHALL 504
3052 SLON P 504
3053 SLCOFFS 505
3054 SLCORG ..o 506
355 SLCPRD .o 507
305.6 SLHROUT oo 507
305.7 SUSTHALL oo 508
System Configuration Variables 509
36 CFG L 510
3062 CTIME L 510
3063 EXTEAC L 5N
3064 FOLLOWGH e 51
3165 G_OTWCS..G_12WES ... oo 513

21

ACSPL+ Commands & Variables Reference Guide

306.6 GPEXL ..o 513
306.7 GSPEXL oo 514
3068 GUFAC L 514
3069 LENA 515
3600 IMASK 516
3BT SN A 517
30602 S FLAGS 518
30603 S SETUP 520
30614 XSEGAMAX o oo 522
30615 XSEGAMIN Lo 522
3616 XSEGRMAX .o o 522
30607 XSEGRMIN e 523
317 Communication Variables 523
3070 BAUD 524
307.2 COMMUOH Lo 525
3073 COMMEL o 526
374 CONID oo 527
375 BCHO oo 528
3076 DISPCH oo 529
3077 GATEWAY 531
307.8 SUBNET .o 532
3070 TP 533
30700 TOPIP 2 534
30700 TOP PO RT L 535
30702 UDPPORT o 536
38 MISCellaN@OUS ... 537
B8 PR 537
3082 ST AT 537
3083 XARRSIZE .. oo 538

4. ACSPL+ FUNCHIONS L. 539
4.1 Arithmetical FUNCHIONS ... 544
AT ABS 545
A2 ACOS 545
403 ASIN L 546

Version 3.12

22

ACSPL+ Commands & Variables Reference Guide

A A AT AN 546
405 ATANZ Lo 547
A6 CEIL Lo 547
407 COS o 548
408 EXP o 548
419 FLOOR L 549
A0 HY PO 549
AT LD X P 550
4002 LOG Lol 550
A0T3 LOGTO oo 551
AT POW 551
A5 SIGN 552
A0T6 SIN 552
A7 SORT 553
A08 TAN 553
A0709 ROUND 554
4.2 MatriXx FUNCHIONS L. 554
A 2T Mt Ty D 555
4.2.1.1 Matrix Initialization in Compilation Time ... 555
422 MATRIXADD .. 556
423 MATRIXSUB .o 556
4.2.4 MATRIXMUL Lo 557
425 MATRIXMULSCA 558
4.2.6 MATRIXMULEW 559
427 MATRIXDIV .o 559
4.2.8 MATRIXIDENT ... 560
429 MATRIXTRANS 561
4270 MATRIXINVERT L 561
4.3 Miscellaneous FUNCHIONS ... 562
A3 GETCONFE 562
43,2 SYSINFO 569
433 GETV AR 570
434 SETCONF 570
435 SETVAR Lo 583

Version 3.12

23

ACSPL+ Commands & Variables Reference Guide

4.8.5 SETSPV 656
4.9 Signal Processing FUNCLIONS ... 656
4,971 DEADZONE ..o 658
4.9.2 DSIGN oo 660
.93 DT R o 661
A.9.4 EDGE 662
495 INTGR 663
A.9.6 LAG oo 664
4.9.7 Interpolation FUNCHIONS 666
4.9.7.1 Linearinterpolation ... 666
4.9.7.2 Spline interpolation ... 666
4973 MAP ol 672
4974 MAPB ... o 674
4975 MAPN 676
4.9.7.6 MAPNB 678
4.9.7.7 MAPNS 680
4.9.7.8 MAPS 682
4.9.7.9 MAPZ L 684
49700 MAPZBo 686
49701 MAPZ2N .o 688
49702 MAP2NB ... o 691
49713 MAPZ2NS . 693
49704 MAPZDS 696
4.9.7.05 MATCH o 699
497706 RAND 700
49707 ROLL ..o 701
49708 SAT ool 702
4.0 Laser Control FUNCHIONS ... 703
4701 LAMODULATION .o 705
4.10.1.1 Duty cycle or frequency Update ... 708
4.10.1.2 Duty cycle or Frequency MONItOrNG ..o 708
400.2 LCRIXedDist ... 708
4103 LCRIXedINt ... 72
410.4 LCRaNAOMDISt ... 714

Version 3.12

26

ACSPL+ Commands & Variables Reference Guide

4005 LCTICKI oo 7
A70.6 LCZONG L. 718
4.700.6.1 LEZONBS Y oo 720
4.70.6.2 LCZONEGRT oo 720
A0, 7 LCS O oo 721
400.8 LCSIgNalSet L. 721
400.9 LCSIgnalGet ... 724
4.70.10 LCS conditioNing @XamIPle ..o 724
4.10.11 Physical outputs configuration 725
400010 LCOUIPUTS Bt 725
400712 LCOUTPUL G 727
41072 LCDelaySet ... 728
41013 LCDelayGet ... 728
40004 AXUISTASMASK . 728
471 Dynamic Error ComMPenSationN oo 729
4111 ERRORMAPTID o 730
4712 ERRORMAPNID .o 731
471.3 ERRORMAPATD ..o 732
4714 ERRORMAPZD ... 733
4015 ERRORMAPNRZD ..o 735
A71.6 ERRORMAPAZD e 737
4017 ERRORM AP S D A 738
471.8 ERRORMAPSDZ 741
4719 ERRORMAP S 3 746
47110 ERRORMAPNSBDZ ..o 750
47101 ERRORMAPNSD3 L 754
47102 ERRORMAPSDS oo 758
47113 ERRORMAPNISDS oo 761
47114 ERRORMAPNSBDA .. 764
47105 ERRORMAP O 767
47116 ERRORMAPON 767
41107 #ERRORMARPREP 767
47118 ERRORUNMAP 768
5. ACSPL+ Standard Structures ... 769

Version 3.12 27

ACSPL+ Commands & Variables Reference Guide

Version 3.12

51 LA Standard STTUCTUTE .. 769
S0 L FUNCHIONS 769
5107 POWerPWMOUL ... 769
5112 PowerAnalogOUT ..o 770
5113 PowerDigitalOut ... 771
5114 FixedDistPUlSe ... 772
5115 DistanceArrPuUlSe ... 773
51.1.6 CoordinateArrPulse ... 774
507 TicKle oo 775
5118 LaserEnable ... 776
5119 LaserDisable ... 776
51170 DistanCeArrGate ... 776
51101 CoordinateArrGate ... 777
51102 AdAZONE ..o 778
508 SO 0N 778
510104 SetCONGITION ... 779
51015 GetCondition ... 781
51106 SegmentGate . o 782
17 SegmMentPUISe . 782
5108 SetEXTCIOCKSYNC o 782
51119 POWETPWMBUIST ... o 783
5120 SetSaf ety MaSKS o 784
2T S O o 784
51.1.22 SetMechPlatformAXes ... 784
511.23 SetMOtiONAXES ... 785
511,24 SetSystemDelay ... 786
51125 GetSystemMDelaY ..o 786
511,26 SetConfigluUt .o 786
5.11.27 AssignChannels . 788
5.11.28 SetCustomPOSCaIC ... 788
51129 SetCustomVelCalC ... 789
51130 SetCustomVelVar ... 789
512 LCIStructure Flelds . 790
51270 MOUONAXES .. 791

28

ACSPL+ Commands & Variables Reference Guide

5.1.2.2 PosSResOlUtiON ... 792
5.1.2.3 InternalPosResolution ... 792
5124 PWMDULYCYCIE o 792
5125 PWMFTEQUENCY ..o 792
5.1.2.6 PWMPUlseWIdth . 792
52,7 TICKIEF T QUENCY o 792
5.1.2.8 TicklePulseWidth 793
5129 PWMACHIVE L 793
512100 TickleACtive 793
DL 20T IR 793
51202 Laserenabled ... 793
51213 0perationNMOAe ..o 793
51204 POSITIONS ..o 793
51205 USEIPOS ..o 794
51216 MUlAXWINSIZE ... 794
50207 EXIraPUISeSQtY o 794
5.1.218 ExtraPulsesPeriod 794
5.1.219 PiercePulsesNUM ... 795
5.1.2.20 PiercePulsesWidth ... 795
51221 GateONDIBY ..o 795
5.1.2.22 GateOffDeIBY ..o 795
512,23 PUISED Y .o 796
5.1.2.24 PowerAOULVal ... 796
51225 FaUIS L 797
5.1.2.26 PWMBUISTREAAYo 797
5.2 Diagnostics and Preventive Maintenance (DPM) 797
5271 DPM_MeasUremMent 798
5.2.11 DPM_Measurement Fields ... 798
5.2.1.2 DPM_Measurement FUNCLIONS ... 801
522 DPM_Motion_Status ... 803
5.2.21 DPM_Motion_Status Fields 803
5.2.2.2 DPM_Motion_Status Functions ... 804
5.2.3 DPM Example - Adding current measurement during acceleration phase to an
eXiStING AP Pl At ON o 805

Version 3.12

29

ACSPL+ Commands & Variables Reference Guide

5.3 Motion DUration ... 806
5.3.1 MotionDuration Struct ... 806

6. Terminal COMMANAS 8M
6.1 Entering Terminal COMMENGAS ..o 811
6.2 QUETY COMMIBNGAS .o 811
6.2.1 Default QUery FOMmMatS ..o 813
6.2.2 Predefined Query Output FOrmMats ... 813
6.2.3 User-Defined Query Output FOrmat o, 815

6.3 Program Management COMMAENASo 815
6.3.1 Program Management Command Arguments ... 815
6.3.2 Program Buffer COmmMands ... 817
6.3.2.1 0pen/Close BUffer (#)o 817

B.3.2.2 D 818

B.3.2.3 F/IF 819

B.3. 2.4 L 820

B.3.3 RESET 822
6.3.4 Listing Program Variables ... 822
63471 VGR ... 822

B.3.4.2 VD 823

6.3.4.3 VS/VSG ..o 823

B.3.4.4 VSF/VSGF L. 824

B.3.4.5 VG/VGF 825

B.3.4.6 VL/VLF L 825

B.3. 4.7 VNV 826

B.3.4.8 VP 827

6.3.4.9 VST/VSGT ..o 827

6.3.4.10 VSTF/VSGTF/VSDT oo 828

B.3.40T VGV 828

6.3.4.02 VGS/VGSF o 828

6.3.5 Program Handling ComMmMands ... 829

0.3 5T 830

B.3. 5.2 X 831

B.3.5.3 S/ R 832

B.3. 5.4 P 832

Version 3.12

30

ACSPL+ Commands & Variables Reference Guide

6.3.6 Debug COMMENAS ... 833
B.3.6.1 XS 833

6.3.6.2 XD oo 834

B.3.6.3 BS o 834

B.3.6.4 BR 835

6.4 SYStemM COMMIANGAS . 836
B4 Sl 836
B.4.2 SIR 840
6.4.3 MEMORY 852
B.4.4 IR Lol 852
B.4.5 U Lo 854
B.4.6 TD oo 855
B.4.7 SO 855
B.4.8 ETHER CAT 857
B.4.9 ECMAPREP . 866
B.4. 00 GO 867

B ATl PG 868
6.4.12 LOG ..ol 869
B.4.13 LOG HOST _TICKS . 870
B.4.14 LOGP . 871

7. SPIIPIUS Error COABS 873
7.0 ACSPL+ SYNTAX EITOIS oo 873
7.2 ACSPL+ Compilation BrTOrS oo 908
7.3 ACSPL+ RUNTIME BITOTS o 932
T4 BITOTS Lo 964
7.5 BNCOQCT BITOIS .o e 974
7.6 SYS M Bl OIS 976
7.7 EINErCAT BITOIS L. 979
7.8 EtherCAT SIaVe BITOTS ..o o 981
7.9 MODBUS EITOTS .o 987
8. G-C0dE ErrOr COUBS ... e 988
8.1 G-C00E SYNTAX EITOIS .o 988
8.2 G-Code ComPilation EITOTS ..o 992
8.3 G-Code RUNTIME EITOMS .. o 992

Version 3.12 31

ACSPL+ Commands & Variables Reference Guide

Appendix A. PEG And MARK Mapping Tables ... 996
AT ASSIGNPEG MBPPING ..o 996
A.2 ASSIGNPOUTS M@PPING . 1009
A.3 ASSIGNMARK MBPPING ..o 1020

Version 3.12 32

List Of Figures

ACSPL+ Commands & Variables Reference Guide

Figure 2-1. CONNECT Using MAP Function

Figure 2-2. DISABLE and Mechanical Brake Output Process- Positive BONTIME
Figure 2-3. DISABLE and Mechanical Brake Output Process - Negative BONTIME
Figure 2-4. ENABLE and Mechanical Brake Output Process - Positive BOFFTIME
Figure 2-5. ARC1 Coordinate Specification

Figure 2-6. ARC2 Center Point and Rotation Angle Specification

Figure 2-7. SLAVE /pt lllustration

Figure 2-8. Single-Axis Motion Using MPTP

Figure 2-9. Two-Axis Group Motion Using MPTP/v

Figure 2-10. Results of Example MSEG

Figure 2-11. PATH...ENDS Diagram

Figure 2-12. PROJECTION of the XA Plane

Figure 2-13. FPOS - PROJECTION Example

Figure 2-14. PROJECTION Example - Final Result

Figure 2-15. PVSPLINE Motion Diagram

Figure 2-16. Use of STOPPER

Figure 2-17. Corner Processing - Exact Path Option

Figure 2-18. Corner Processing - Permitted Deviation, Permitted Radius and Corner

Smoothing Options

Figure 4-1. lllustration of COPY Function
Figure 4-2. Example Mapping

Figure 4-3. Example Mapping

Figure 4-4. Example Mapping

Figure 4-5. Example Mapping

Figure 4-6. Example Mapping

Figure 4-7. Symmetrical Dead Zone Example
Figure 4-8. Asymmetrical Dead Zone Example
Figure 4-9. DSIGN Function Example

Figure 4-10. EDGE Function Example

Figure 4-11. INTGR Function Example

Figure 4-12. LAG Function Example

Figure 4-13. Spline Definition Range

Version 3.12 33

50
56
56
57
120
125
141
148
149
151
153
157
157
158
162
165
172

173
594
632
636
640
643
646
659
659

661
663
664
666
667

ACSPL+ Commands & Variables Reference Guide

Figure 4-14. Two-Dimensional Spline Definition Range
Figure 4-15. 5-Point Catmull-Rom Spline

Figure 4-16. B-Spline - Approximation of Points
Figure 4-17. Catmull-Ron Spline Beyond the Definition Range
Figure 4-18. B-Spline Map

Figure 4-19. MAP Example on the Scope

Figure 4-20. MAPB Example on the Scope
Figure 4-21. MAPN Example on the Scope

Figure 4-22. MAPNB Example on the Scope
Figure 4-23. MAPNS Example on the Scope
Figure 4-24. MAPS Example on the Scope

Figure 4-25. MAP2 Example on the Scope

Figure 4-26. MAP2B Example on the Scope
Figure 4-27. MAP2N Example on the Scope
Figure 4-28. MAP2NB Example on the Scope
Figure 4-29. MAP2NS Example on the Scope
Figure 4-30. MAP2S Example on the Scope
Figure 4-31. ROLL Example on the Scope

Figure 4-32. SAT Example on the Scope

Figure 4-33. Velocity

Figure 4-34. 2 Pulses with Pulse Width 120 msec.
Figure 4-35. Delays in Gating Mode

Figure 5-1. Communication Terminal Window

Figure 5-2. Interaction of Program Buffer States

Version 3.12 34

668
669
670
671
672
674
676
678
680
682
684
686
688
691
693
696
699
702
703
707
795
795
8T
829

List of Tables

ACSPL+ Commands & Variables Reference Guide

Table 2-1. The ACSPL+ command set

Table 2-2. Homing Methods

Table 2-3. DISP Command Option Escape Sequences
Table 2-4. Type Characters

Table 2-5. Channel Designation for TRIGGER
Table 2-6. PEG Output Signal Configuration
Table 2-7. Commonly Monitored SPDC Variables
Table 2-8. Matrix Values

Table 2-9. IF Control Structures

Table 3-1. Alphabetical Listing of All ACSPL+ Variables
Table 3-2. AFLAG Bit Description

Table 3-3. MFLAGS Bit Designators

Table 3-4. E_FLAGS Bit Description

Table 3-5. Homing Methods

Table 3-6. AST Bit Descriptions

Table 3-7. MST Bit Descriptions.

Table 3-8. NST Bit Description

Table 3-9. PFLAGS Bit Description 1

Table 3-10. PST Bit Description

Table 3-11. ECST Bits

Table 3-12. Axis Fault Bits

Table 3-13. FDEF Bit Description

Table 3-14. FMASK Bit Description

Table 3-15. SAFINI Valid Bits

Table 3-16. S_FAULT Fault Bits

Table 3-17. S_FDEF Bit Description

Table 3-18. S_FMASK Bit Description

Table 3-19. SLCROUT Values

Table 3-20. SLPROUT Values

Table 3-21. SLVROUT Values

Table 3-22. IENA Bit Description

Version 3.12 35

40
65
75
76
87
96

108
157
190
210
224
230
257
276
290
296
299
392
395
400
402
410
M4
424
426
430
432
490
493
497
515

ACSPL+ Commands & Variables Reference Guide

Table 3-23. ISENA Bit Description
Table 3-24. S_FLAGS Bit Description
Table 3-25. S_SETUP Bit Designators
Table 3-26. COMMCH Values

Table 3-27. COMMEFL Bit Descriptions
Table 3-28. ECHO Channel Numbers
Table 3-29. DISPCH Channel Numbers
Table 4-1. GETCONF Return Values
Table 4-2. SYSINFO Return Values
Table 4-3.16-bit Binary value Template
Table 4-4. SETCONF Arguments

Table 4-5. Supported Error Counter Registers

Table 4-6. Modbus Error Codes

Table 4-7. MAP Array

Table 4-8. MAPB Array

Table 4-9. MAPN Array

Table 4-10. MAPNB Array

Table 4-11. MAPNS Array

Table 4-12. MAPS Array

Table 4-13. MAP2

Table 4-14. MAP2B

Table 4-15. MAP2B

Table 4-16. MAP2NB

Table 4-17. MAP2NS

Table 4-18. MAP2S

Table 4-19. Condition Mask for Register 0
Table 4-20. Condition Mask for Register 1
Table 4-21. Condition Mask for Register 2
Table 5-1. Line Designation

Table 6-1. ACSPL+ Syntax Errors

Table 6-2. ACSPL+ Compilation Errors
Table 6-3. ACSPL+ Runtime Errors

Table 6-4. ACSPL+ Motion Termination Errors

Table 6-5. Encoder Errors

Version 3.12

36

518
519
520
525
526
528
530
563
569

571
572
609
651
673
675
677
679
681
683
686
688
690
693
696
698
779
780
780
816
873
909
932
964
974

ACSPL+ Commands & Variables Reference Guide

Table 6-6. ACSPL+ System Errors 976
Table 6-7. ACSPL+ EtherCAT Errors 979
Table 6-8. EtherCAT Slave Errors 982
Table 6-9. Modbus Errors 987

Table A-1. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlusNT/DC-LT/HP/LD 996
Table A-2. Mapping PEG Engines to Encoders (Servo Processor 1) for SPiiPlusNT/DC-LT/HP/LD 997

Table A-3. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlus
CMnt/CMhv/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/UDMhv/UDMnt/UDMpa/UDMpm/U 99

DMpc/UDMcb 8
Table A-4. Mapping PEG Engines to Encoders (Servo Processor 0) for
UDMIc/UDIIt/UDIhp/UDMmc/PDlcl 999
Table A-5. Mapping PEG Engines to Encoders (Servo Processor 0) for NPMpm/NPMpc- 1000
Table A-6. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo

Processor 0) for SPiiPlusNT/DC-LT/HP/LD 1003
Table A-7. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo

Processor 1) for SPiiPlusNT/DC-LT/HP/LD 1003
Table A-8. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo

Processor 0) for SPiiPlus CMnt/UDMpm/CMhv/UDMhv- 1004
Table A-9. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo

Processor 0) for UDMnt/UDMpa/UDMcb 1005
Table A-10. Engine to Encoder Assignment for IDMxx, ECMxx, and UDMsm/sa/ma 1006
Table A-11. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
SPiiPlusNT/DC-LT/HP/LD 1009
Table A-12. SPiiPlusNT/DC-LT/HP/LD Mapping of Engine Outputs to Physical Outputs (Servo
Processor 1) 1010

Table A-13. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0O) for
CMnt/UDMpm/UDMpc/CMhv/UDMhv 1010

Table A-14. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0, OUT 0-4) for
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa 10Mm

Table A-15. Mapping of Engine Outputs to Physical Outputs (Servo Processor O, OUT_5-9) for
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa 1012

Table A-16. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
UDMnt/UDMpa/UDMcb 1013

Table A-17. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
UDMIc/UDMmc/UDIIt/UDIhp/PDlcl 1014

Table A-18. NPMpm/NPMpc Mapping of Engine Outputs to Physical Outputs (Servo Processor
0) 1015

Version 3.12 37

ACSPL+ Commands & Variables Reference Guide

Table A-19. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Mapping of Engine Outputs to Physical

Outputs (Servo Processor 0) 1017
Table A-20. Mark-1Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD 1020
Table A-21. Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD 1022
Table A-22. Mark-1Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm-
x/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv 1024
Table A-23. Mark-2 Inputs to Encoders Mapping for with SPiiPlus
CMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv 1025
Table A-24. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping 1026

Version 3.12 38

ACSPL+ Commands & Variables Reference Guide
1. Introduction

1. Introduction

This document details all of the elements making up the SPiiPlus ACSPL+ Programming Language as
well as the command set that may be entered through the SPiiPlus MMI Application Studio
Communication Terminal for use in a SPiiPlus system.

This document is intended for the use of software engineers.

Version 3.12 39

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2. ACSPL+ Commands

ACSPL+ comes with a complete programming command set. The commands are divided into

following categories:

> Axis Management Commands

> Interactive Commands

> PEGand MARK Commands

> Miscellaneous Commands

> Motion Commands

> Program Flow Commands

> Program Management Commands

> Laser Control Commands

Table 2-1. The ACSPL+ command set

ARCI

ARCI

ARC2

ARC2

ASSIGNMARK

ASSIGNPEG

ASSIGNPOUTS

AXISDEF

BLOCK...END

BREAK

CALL

COMMUT

CONNECT

Version 3.12

Adds an arc segment to MSEG...ENDS motion.
Adds an arc segment to XSEG...ENDS motion
Adds an arc segment to MSEG...ENDS motion.
Adds an arc segment to XSEG...ENDS motion
Marks inputs-to-encoder assignment

Assigns an encoder to a PEG engine and GP physical output
connection.

Assignment of physical output pins.
Assigns an alias to an axis
Performs a group of ACSPL+ commands in one controller cycle.

Immediately terminates a motion and provides smooth
transition to the next motion in the motion queue.

Calls subroutine.
Performs auto commutation for DC brushless (AC servo) motors.

Defines a formula for calculating reference position (RPOS).

40

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

"CSCREATE" on page 50

"CSDESTROY" on page 53

DC

DEPENDS

DISABLE/DISABLEALL

DISABLEON

DISP

ECRESCAN

ENABLE/ENABLE ALL

ENABLEON

FCLEAR

GO

GOTO

GROUP

HALT

IF, ELSEIF, ELSE...END

IMM

INPUT

INTERRUPT

INTERRUPTEX

JOG

Version 3.12

Creates a new Local Coordinate System.

Cancels the active Local Coordinate System.

Activates data collection.

Specifies a logical dependence between a motor and axes.

Shuts off one or more drives. DISABLE ALL provides DISABLE
operation for all axes.

Disables autoroutine activation in a buffer.

Builds a string and sends it to the default communication
channel.

Returns the system back to the operational state if one or more
slaves underwent a reset or power cycle.

Activates one or more drives

Enables autoroutine activation in a buffer.

Clears faults.

Starts a motion that was created using the /w command option.
Transfers program execution to another point in the program.
Defines an axis-group for coordinate multi-axis motion.

Terminates one or more motions using a third-order
deceleration profile (DEC deceleration).

HALTALL provides HALT operation for all axes.

IF command structure.

Provides on-the-fly change of motion parameters.

Suspends program execution pending user input

Causes an interrupt that can be intercepted by the host.
Causes an interrupt similar to that of the INTERRUPT command.

Creates a jog motion.

a4

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

KILL/KILLALL

LCDISABLE

LCENABLE

LINE

LINE

LOOP...END

MASTER

MPOINT

MPTP...ENDS

MSEG...ENDS

ON..RET

PATH...ENDS

PAUSE

POINT

PROJECTION

Version 3.12

Terminates one or more motions using a second-order
deceleration profile and the KDEC deceleration value.

KILL ALL provides KILL operation for all axes.
Stops a pulse generation process, including tickle pulses.

Enables a pulse generation process with current set
parameters.

Adds a linear segment to MSEG...ENDS motion.
Adds a linear segment to XSEG...ENDS motion.
Loop command structure.

Defines a formula for calculating MPOS.

Adds a set of points to MPTP...ENDS, PATH...ENDS or
PVSPLINE...ENDS motion.

Creates a multipoint motion.
Creates a segmented motion.

The autoroutine structure. An the autoroutine is automatically
executed when a specific condition is satisfied. The routine
interrupts the currently executing program, executes the
commands specified in the autoroutine body, and then returns
control to the interrupted program.

Creates an arbitrary path motion with linear interpolation
between the specified points.

Suspends program execution in a buffer.
Defines Incremental PEG parameters. activates the PEG engine.
Defines the Random PEG parameters. activates the PEG engine.

Adds a point to MPTP...ENDS, PATH...ENDS, or PVSPLINE...ENDS
motion.

An expansion command to the MSEG...ENDS set of commands,
that allows the controller to perform a three dimensional
segmented motion such as creating arcs and lines on a user-
defined plane.

a2

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

PTP

PVSPLINE...ENDS

READ

RESUME

SAFETYCONF

SAFETYGROUP

SEND

SET

SLAVE

SMOVE

SPDC

SPRT

SPRTSTOP

SPINJECT

SPUT

START

STOP/STOPALL

Version 3.12

Creates a point-to-point motion.

Creates an arbitrary path motion with spline interpolation
between the specified points.

Reads an array from a file in the flash memory.
Resumes program execution in a buffer.
Configures fault processing for one or more axes.

Activates the fault response for all axes in the axis_list when
any axis triggers the fault, and manages the axes as a block in
response to KILL/KILLALL and DISABLE/DISABLEALL.

Same as DISP, but also specifies the communication channel or
channels.

Defines the current value of either feedback (FPOS), reference
(RPQS), or axis (APQS) position.

Creates a master-slave motion.
Define segment of movement with transition point smoothing
Activates data collection from a Servo Processor variable.

Activates a real-time data transfer process from the MPU to a
given Servo Processor.

Stops an active real-time data transfer process on the given SP
(for cyclic command only).

Initiates the transfer of MPU real-time data to the Servo
Processor.

SPUT breaks apart an axis group.
SPLITALL breaks apart all axis groups. See GROUP.

Activates program execution in a buffer.

Restarts PEG at the current position if has been issued and the
last_point has not been reached.

Terminates program execution in a buffer.

43

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

STOPDC
STOPINJECT

Axis Management
Commands

STOPPER

TILL

TRACK

TRIGGER

WAIT

WHILE...END
WRITE

XSEG...ENDS

Terminates data collection.

Stops the transfer of MPU real-time data to the Servo Processor.

Halts the PEG engine for the specified axis.

Adds a segment separator to MSEG...ENDS motion.

Delays program execution until a specified expression produces
a non-zero (true) result.

Creates tracking motion.

Specifies a triggering condition. Once the condition is satisfied,
the controller issues an interrupt to the host computer.

Delays program execution for a specified number of
milliseconds.

While command structure.
Writes an array to a file in the flash memory.

Creates extended segment motion.

2.1 Axis Management Commands

The Axis Management commands are:

BREAK

COMMUT

CONNECT

"CSCREATE" on page 50
"CSDESTROY" on page 53

DEPENDS

DISABLE/DISABLEALL

Version 3.12

Immediately terminates a motion and provides smooth
transition to the next motion in the motion queue.

Performs auto commutation for DC brushless (AC servo) motors.
Defines a formula for calculating reference position (RPQS).
Creates a new Local Coordinate System.

Cancels the active Local Coordinate System.

Specifies a logical dependence between a motor and axes.

Shuts off one or more drives. DISABLE ALL provides DISABLE
operation for all axes.

44

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ENABLE/ENABLE ALL Activates one or more drives

ENCINIT Used for encoder configuration

FCLEAR Clears faults.

FOLLOW Switches an axis into slave mode.

GO Starts a motion that was created using the /w command option.
GROUP Defines an axis-group for coordinate multi-axis motion.

Terminates one or more motions using a third-order
HALT deceleration profile (DEC deceleration).

HALTALL provides HALT operation for all axes.
HOME Recives parameters for a predefined set of homing methods.
IMM Provides on the fly change of motion parameters.

Terminates one or more motions using a second-order
KILL/KILLALL deceleration profile and the KDEC deceleration value.

KILLALL provides KILL operation for all axes.
SAFETYCONF Configures fault processing for one or more axes.

Creates a safety axis group. When any axis in the group triggers

SAFETYGROUP a fault, the fault affects all axes in the group.
SET Defines the current value of either feedback (FPQS), reference
(RPQS), or axis (APQS) position.
<pLT SPLIT breaks apart an axis group - see GROUP.
SPLITALL breaks apart all axis groups.
UNFOLLOW Switches an axis into reqular mode.
2.1.1 BREAK
Description

BREAK immediately terminates the currently executed motion of the specified axis without building
a deceleration profile, and initiates the next motion in the axis motion queue, if it exists.

Syntax
BREAK axis_list

Version 3.12 45

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
axis list Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
- system minus 1.
Comments

BREAK executes differently in the following cases:

1. When the next motion waits in the motion queue, BREAK terminates the current motion
and starts the next motion immediately.

2. When there is no next motion in the motion queue BREAK has no immediate effect. The
current motion continues until the next motion appears in the motion queue. At that
moment the controller breaks the current motion and provides a smooth velocity transition
profile from motion to motion. If the current motion finishes before the next motion comes
to the queue, the command has no effect.

COM Library Methods and .NET Library Methods
Break

C Library Functions

acsc_Break
Example
PTP 0, 1lES8 !Move to point 1E8
PTP 0, -1E8 !Add another motion to the motion queue
WAIT 10000 'Wait 10 seconds
BREAK 0 !Terminate the first motion (PTP 0, 1E8)
'and immediately start the next motion:
' (PTP 0, -1E8)
STOP 'End program
2.1.2 COMMUT
Description

COMMUT performs auto commutation and may be used when the following conditions hold true:
> The motoris DC brushless (AC servo)
> The motoris enabled
> Themotorisidle

> The axis is already configured and properly tuned

Versions 2.60 and higher supports COMMUT in GANTRY mode. Commutation of the
primary axis will automatically trigger commutation of the secondary axis.

Syntax

COMMUT axis [,excitation_current][,settle_time][,slope][,gantry_commut_delay]

Version 3.12 46

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis The affected axis, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

excitation_ Optional - Given as a percentage of the full current command. The default

current value is set to 98% of XRMS.
Optional - Determines settling time for the auto commutation process
initiated by COMMUT. The default value is 500 msec.

settle_time The entire auto commutation process lasts approximately three times
longer, since the command executes the algorithm three times for
verification.

Optional - The slope parameter is optional, and used only in special cases.
If 3 value is assigned to this parameter then the excitation current

slope command builds up with some slope. The parameter sets the duration of
the current build-up process in milliseconds. It is usually recommended to
omit this parameter, in which case the excitation current is built instantly.

Optional — can be used only in Gantry mode. It defines the delay time in
gantry_ milliseconds after the commutation of the primary axis is completed and
commut_delay before the commutation of the complimentary axis begins. The default

value is 500 msec.

Comments
COMMUT is generally used in auto commutation-based startup programs.

The excitation current, settle time and slope are optional parameters for the auto commutation
process initiated by COMMUT.

Refer to the relevant section in the Setup Guide for a complete description of the commutation
process.

COM Library Methods and .NET Library Methods
Commut, WaitMotorCommutated
C Library Functions

acsc_Commut, acsc_WaitMotorCommutated
coMMuT 0,80,100, 30 ICommut 0 axis with an excitation current

lof 80%. Settling time is 100msec, and a
!current build-up slope of 30msec.

2.1.3 CONNECT

Description

CONNECT defines a formula for calculating reference position (RPOS). This formula can include any
other axes variables. DEPENDS must follow CONNECT.

Version 3.12 47

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Syntax
CONNECT axis_RPOS = formula

Comments

Care needs to be taken when using complex non-default connections. Especially with articulated
robots, the non-default connections can involve inverse trigonometric functions, square roots,
division, and other mathematical operations that can cause numerical errors when not properly
posed. While it is recommended that CONNECT command be written to avoid this from occurring, it is
not always possible; therefore proper handling of the numerical errors is necessary.

The following are general quidelines concerning the CONNECT command:

1. The default relation between an axis position (APOS) and its reference (motor) position
(RPQOS) is 1:1.

2. Defining a different relation can be very useful for mechanical error corrections, dynamic
error compensation, backlash compensation, inverse kinematics and more.

3. If the CONNECT relation is based on another axis position, it creates a strict link (like a
mechanical connection) between all defined axes for as long as the function is active.

4. The variable MFLAGS<axis>.17 (bit 17) disables or enables a customized (non-default)
CONNECT formula definition. See MFLAGS.

5. After CONNECT it is recommended to initialize ROFFS with the first value in the correction
table (as seen in the following example:

SET RPOS0=MAP (APOSO, ARRAY, 100,200)
This forces ROFFS to be zero and prevents the creation of a constant offset to RPOS.

6. ENABLE/ENABLE ALL, DISABLE/DISABLEALL and KILL/KILLALL change the value of ROFFS.
Therefore, if these commands follow CONNECT, then redefine the CONNECT formula, and
RPOS should be initialized to nearest value.

7. To stop motion after using CONNECT, use HALT instead of KILL. HALT does not affect the
ROFFS variable.

If a numerical error occurs when evaluating a non-default connection, the output sent to RPOS is
undefined. As such it is recommended to toggle back to the default connection and then go back to
non-default connection.

When going back to the default connection the simplest way is to set MFLAGS().17. When this
happens RPOS does not change, but APOS will change and be set to RPOS. However, this sudden
change of APOS may also cause a numerical error if APOS is used in a CONNECT function. If this
happens MFLAGS().17 will be set, but the non-default connection will still be active.

A more robust way of handling this change is to first explicitly change the connect function of all
applicable axes to RPOS = APQOS. When this happens neither RPOS nor APOS will change
instantaneously, so no numerical error should occur. Then MFLAGS().17 can be set without causing a
numerical error.

Related ACSPL+ Commands

DEPENDS

Version 3.12 48

Related ACSPL+ Variables
RPOS, APOS, ROFFS

GLOBAL REAL ARRAY (6)

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!Define ARRAY.

ARRAY (0)=60;ARRAY (1)=40;ARRAY (2)=90; ARRAY (3) =-40;ARRAY (4) =60; ARRAY (5)=10

MFLAGS (0) .17=1

ENABLE 0
MFLAGS (0) .17=0

!Populate Correction point ARRAY for MAP
I'function.

!Set default connection between APOS and
'RPOS (RPOS=APOS) .

'Enable 0 axis.

!Set non-default connection between APOS
land RPOS (RPOS is a function of APOS).

CONNECT RPOSO=APOSO0+MAP (APOS0,ARRAY,100,200)

DEPENDS 0, 0

SET APOS0=0;SET RPOS0=0

PTP 0, MAP(APOS0,ARRAY,100,200)

PTP 0, 1300

STOP

'CONNECT formula between RPOSO and
IAPOSO using the MAP function with
!correction table ARRAY.

!Assign Axis 0 to Motor 0. See DEPENDS.
!Tnitialize APOS and RPOS at O.

!Moves axis 0 to the first point in the
!correction ARRAY to avoid a constant
loffset in ROFFS, as explained in Comment 2.
!Move to 1300. Each point during the motion
!is modified according to the correction
!ARRAY in the MAP function.

!'End program

This illustrates the results of the example on the SPiiPlus MMI Application Studio Scope.

Version 3.12

o [Shop

o | Autolit 1 @ Joom

49

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-1. CONNECT Using MAP Function

2.1.4 (SCREATE

Description

The CSCREATE command creates the new Local Coordinate System (LCS) relative to the Machine
Coordinate System or the previous LCS, depending on the applied switches.

Syntax

CSCREATE[/r] axis list, x trans, y trans[, rot axis, rot angle]

or

CSCREATE [/r] axis list, x trans, y trans, z trans[, rot axis, rot angle]

Arguments

axis_list

X_trans

y_trans

z_trans

rot_axis

rot_angle

Switches

/r

Comments

The group of 2 or 3 axes. Valid values are: 0, 1, 2 ... up to the number of axes in
the system minus 1.

The new X position of the LCS in user units
The new Y position of the LCS in user units

The Z position of the LCS in user units. This parameter is included when axis_list
includes 3 axes.

(Optional)
The rotation axis:0-X,1-Y,2-7

(optional)

Rotation angle value: (-3.14159 : +3.14159) in radians

The new LCS is relative (additive) to the existing LCS (otherwise the new LCS is
relative to the Machine Coordinate System).

> Infunction calls which include rotation parameters, the translation parameters are applied
to the system first, and then the rotation parameters.

> The enumeration of axes for the rot_axis parameter is a numbered list of axes in the newly
created coordinate system. This enumeration relates to the virtual axes, not the physical
axes of the system.

> This command is supported in version 3.10 and higher.

Example 1

This example demonstrates rectangular motion in PTP mode.

Version 3.12

50

!Create LCS with origin
REAL ang = 30* 3.141592 /180

CSCREATE (X,Y,Z), 10,

PTP/ze (X,Y), 0, O

0, 0,

(10,

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

and rotated 30 degrees around Z

0,

0)

2, ang

!go to the beginning position

!Make rectangular motion

25
25
0
0

PTP/ze 0,
PTP/ze
PTP/ze

PTP/ze

(X,Y),

(X,Y)
(X,Y),
(X,Y)

4 14

(X,Y,2)

CSDESTROY

!restore machine coordinate system

Gingle Rumn ot
Sgnas Cursori
L riar Deiglay | 0OHE
Chanrel Tiate ke
k] =] A fererce Pomtion
| Refereree Pomton
SR o Referenoe Poston
Example 2

Teawm i T =
O
g | [ool | L
] 1L =061 b
{L) 1E =001 wmils ko
{2) 1E -0 urwts iy

This example demonstrates rectangular motion in MPTP mode.

Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!Create LCS with origin (10, 0, 0) and rotated 30 degrees around Z
REAL ang = 30* 3.141592 /180

CSCREATE (X,Y,Z7),

10, 0, 0, 2, ang

PTP/ze (X,Y), 0, O !go to the beginning position
MPTP/z (X,Y)
POINT (X,Y), 0, 25
POINT (X,Y), 50, 25
POINT (X,Y), 50, O
POINT (X Y), 0, O
ENDS (X, Y)
TILL GSEG(X) = -1 'Wait until motion complete

CSDESTROY (X,Y,Z)

Example 3

!restore machine coordinate system

This example demonstrates round rectangular motion in XSEG mode.

!Create LCS rotated 30 degrees around X
REAL ang = 30* 3.141592 /180

CSCREATE (X,Y,7Z),

10, 0, 0, 0, ang

ang = 75* 3.141592 /180

CSCREATE/r (X,Y,7Z

PTP/ze (X,Y), O,

XSEG/z (X,Y), O,
LINE (X,Y)
ARC2 (X,Y)
LINE (X Y)
ARC2 (X,Y)

ENDS (X, Y)

TILL GSEG(X) = -1

CSDESTROY (X,Y,Z)

Version 3.12

), 0, 0, 0, 1, ang !Additional rotation 75 deg. Around Y

0 !go to the beginning position
0

, 100, O

, 100, -30, -3.14159

; 0, =60

, 0, =30, -3.14159

!Wait until motion complete
!restore machine coordinate system

52

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Saral Cursors

Wumber |3 || Desglay (XY-CHL

thannel State Variakie

X On Refeneroe Posibon
. - Refarence Position
B on fiefereroe Positon

2.1.5 (SDESTROY

Description

w| [JgGnd
A | Dok Sraee | Limits
W 1E +001 units vy
{1 ZE 001 unisdw
{2 I #0011 units iy

The CSDESTROY command cancels the active Local Coordinate System and sets the Machine
Coordinate System or previous Local Coordinate System.

Syntax

CSDESTROY axis list[, restore flag]

Version 3.12

53

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis list The group of 3 axes. Valid values are: 0, 1, 2 ... up to the number of axes in the
- system minus 1.
(Optional)

restore_fla : .
—flag Set to 1to restore the previous LCS; O or omitted value restores the MCS.

Unpredictable and dangerous motion may result if CSDESTROY is called before the
motion involving the coordinate system created by CSCREATE is complete.

Comments

This command is supported in version 3.10 and higher.
Examples
See (SCREATE.

2.1.6 DEPENDS
Description
DEPENDS is used only following CONNECT.

DEPENDS specifies a logical dependence between a physical axis (motor) and the same or other
logical axes. By default, the physical axis (motor) is assigned to its axis. DEPENDS is necessary
because the controller is generally not capable of deriving dependence information from the
CONNECT formula.

Syntax
DEPENDS physical_axis, axis_list
Arguments

physical_axis Physical axis (motor).

- Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in
axis_list .
the system minus 1.

Comments

> Once a CONNECT command is executed, the controller resets the motor dependence
information to the default-the motor depends only on the corresponding axis.

> If a connection formula actually causes the motor to be dependent on another axis / axes,
the DEPENDS command must follow to specify actual dependence.

Related ACSPL+ Commands
CONNECT

Example

See the examples from CONNECT.

Version 3.12 54

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.1.7 DISABLE/DISABLEALL

Description

DISABLE deactivates one, several, or using DISABLEALL, all drives. After DISABLE, RPQS = FPQOS
which means that no position error exists, or PE<axis> = 0.

Syntax
DISABLE axis_list [,reason]
Arguments
- AXxis, or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
axis_list .
system minus 1.
reasonis an optional parameter. reason must be an integer constant or
expression that equates to an integer and specifies a reason why the motor
reason was disabled. If the parameter is specified, its value is stored in the MERR
variable. If the parameter is omitted, MERR stores zero after the disable
operation.
Related ACSPL+ Commands
ENABLE/ENABLE ALL, FCLEAR, DISABLEALL
Related ACSPL+ Variables

MERR, FPOS, RPOS

COM Library Methods and .NET Library Methods

Disable, DisableM, DisableAll

C Library Functions

acsc_Disable, acsc_DisableM, acsc_DisableAll

The examples illustrate the DISABLE process using positive and negative BONTIME values.

The examples are followed by screens illustrating the results of DISABLE for both positive and
negative BONTIME.

Examplel:

DISABLE (0,1) !Disables the 0 and 1 motors. A fault

'notification window will be displayed.
Example 2:

DISABLE (0,1), 6100 !Disable 0 and 1 motors, store 6100 as the
!reason. 6100 specifies a user-defined error
lcode which is stored in MERR.

Example 3:
DISABLE ALL !Disable all motors.

Version 3.12 55

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

End of IMSABLE and cosdinse
PO EXvUion
MST<axiss SENABLE=0

l |

IMSABLE ardd
halts peogram execution

|
: 1=Eraka Of
Hrake output signal I

[g O=Brake On
| | a
: 5 1=Drive Enable On
| Enable outpat signal to drive 2
i i 0=Driva Enable Off

BOMTIME mges
= Time

Figure 2-2. DISABLE and Mechanical Brake Output Process- Positive BONTIME

End of DISABLE, continue
HOEFAIT aXEculiamn,

M5 T=axis> SENABLE=0

' l

DHSABLE balts program
eecution

1=Brake O
Hrake output signal
T - ¥ O=Brake On
! @
Brnkle surpat signal 1o ‘%hm Enabie On
drive W

O=Dirive Enabie O

Al BONTIME | mses

Time
Figure 2-3. DISABLE and Mechanical Brake Output Process - Negative BONTIME

2.1.8 ENABLE/ENABLE ALL

Description

ENABLE activates one or more axes. After ENABLE, the motor starts following the reference position
(RPOS) and axis faults are enabled. ENABLE ALL activates all axes.

Syntax
ENABLE|ENABLE ALL axis_list
Arguments
- Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
axis_list .
system minus 1.
Comments

Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and
separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

Related ACSPL+ Commands

DISABLE/DISABLEALL

Version 3.12 56

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Variables

ENTIME, MFLAGS<axis>#ENMOD

COM Library Methods and .NET Library Methods
Enable, EnableM, Wait Motor Enabled

C Library Functions

acsc_Enable, acsc_EnableM, acsc_WaitMotorenabled

Example:
ENABLE O !'Enable 0 axis.
Example 2:
ENABLE (0,1) !Enable 0 and 1 axes.
il e i gy

MET=axis= FENABLE=]

l |

i TeBraka ON
Hrake sutpul signal
=, O=EBrake On

1=Drive Enable On
Enable oulpet sagnal o drive
L

1
Signal Siale

I
I
I
|
1 T
i I
L i
I
|
; = O=Driva Enabls O

Prefimanary

it ENTIME msec BOFFTIME msec

= Tinw

Figure 2-4. ENABLE and Mechanical Brake Output Process - Positive BOFFTIME

2.1.9 ENCINIT

Description

The ENCINIT function is used for encoder configuration. The ENCINIT function, if executed in a buffer,
will wait until initialization is finished.

Syntax

ENCINIT (Axis, E type, [Primaryl[,Slabits[, E par a[, E par b[, E par c [,
e freq[, e scmul[, E aoffs[, ESTBITS[, EMTIBITS]]]]11]11111)

Arguments
Axis The affected axis, valid number are: 0,1,2.. up to the number of axis in
the system minus 1.
E_type Encoder Type, according to ACSPL+ E_TYPE variable definition.

Version 3.12 57

Primary

Slabits

E_par_a

E_par_b

E_par_c

E_freq

€_scmul

€_aoffs

ESTBITS

EMTBITS

Return Value
None

Comments

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Optional. Defines the feedback — can be primary or secondary.
Possible values:

Primary: 1 - default

Secondary: 0

(Optional, Integer) Used for setting the total number of absolute

position bits for an absolute encoder, according to ACSPL+ SLABITS
variable definition.

(Optional, Double) Used for setting the encoder data transmission
actual frequency in MHZ. According to ACSPL+ E_PAR_A definition.

(Optional, Integer) Used for setting the encoder data control CRC
code. According to ACSPL+ E_PAR_B definition.

(Optional, Integer) Used for setting the interval (in microseconds) of
encoder position reading. According to ACSPL+ E_PAR_C definition.

(Optional, Integer) Used for defining the maximum encoder pulse
frequency (in MHZ). According to ACSPL+ E_FREQ definition.

(Optional, Integer) Used for specifying the Sin-Cos multiplication
factor for the encoder. According to ACSPL+ E_SCMUL definition.

(Optional, double) Used for setting user-defined offset for absolute
encoder. According to ACSPL+ E_AOFFS definition.

(Optional, integer) Used for setting the single turn resolution (number
of bits).

(Optional, integer) Used for setting the multi turn resolution (number
of bits).

If an optional parameter is specified, the relevant ACSPL+ variable is madified as well. Otherwise, the
initialization of the encoder will use the existing value of the variable.

If the Primary parameter is set to 0, secondary feedback variables are affected or used during
initialization, according to the following table.

If one of the parameters is out of range, error 3041 “Assigned value is out of range” given. Not
allowed E_TYPE value will trigger error 3194 “Not allowed Encoder Type”.

If ESTBITS or EMTBITS are not 0 and SLABITS is not equal to ESTBITS+EMTBITS, an error is triggered.

This function is supported in version 3.00 and higher.

Version 3.12

58

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

SLABITS S2LABITS
E_PAR_A E2_PAR_A
E_PAR_B €E2_PAR_B
E_PAR_C €E2_PAR_C
E_AOFFS E2_AOFFS
E_FREQ E2_FREQ
E_SCMUL €E2_SCMUL
ESTBITS E2STBITS
EMTBITS E2MTBITS
Example

ENCINIT (0,10)! triggers initialization of Endat 2.2 for axis 0, primary
! feedback

STOP

2.170 ENCREAD

Description

The ENCREAD function is used for reading encoder parameters. The function should be executed in
a buffer, and it will wait till the execution is completed.

Syntax

INT ENCREAD (Axis, E type, ParamType[, Primary])

Arguments
Axis The affected axis, valid number are: 0,1,2.. up to the number of axes in the
system minus 1
E_type Encoder Type, according to ACSPL+ E_TYPE variable definition.
Parameter Type to read.
Supported values are:
ParamType

> 0 - Resolution (total number of bits, single turn + multi turn)
> 1-Maximum Frequency (in KHz)

Version 3.12 59

Optional. Defines the feedback — can be primary or secondary.

Possible values:

Primary

> Primary:1(default)

> Secondary: 0
Return Value
Parameter value according to the requested ParamType.
Comments

Only Endat encoders are supported. For any other E_TYPE, the functions returns error 3196
"Requested Absolute Encoder is not supported”.

E_TYPE value is changed to 10 (Endat) after the function is called.

The function can be called only if the axis is disabled.

The function can be called only from a buffer; if called from the terminal, error 2073 is returned.
This variable is supported in version 3.10 and higher.

Example

|0=encread(0,10,0) ! 'Axis 0, Endat encoder, Resolution
[l=encread(0,10,1) !Axis 0, Endat encoder, Max Frequency

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

This command is supported in the IDMsm/IDMsa/ECMsm/ECMsa/UDMsm/UDMsa
=—| products only, and only for EnDAT encoders.

2.1.11 FCLEAR

Description
FCLEAR clears the FAULT variable and the results of the previous fault stored in MERR.

Syntax
FCLEAR axis_list
Arguments
axis list Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
- system minus 1.
Comments

> Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and

separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

> If the axis designation is omitted the command clears the system faults. If an axis is
specified, the command clears the FAULT and MERR components for the specified axes.

However, if the reason for the fault is still active, the controller will immediately set the fault

again following FCLEAR.

Version 3.12 60

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> If one of the cleared faults is an encoder error, FCLEAR also resets the feedback position to
Zero.

Related ACSPL+ Variables

MERR, FAULT

COM Library Methods and .NET Library Methods
FaultClear, FalutClearM

C Library Functions

acsc_FaultClear, acsc_FaultClearM

Example 1:
FCLEAR (0,1) !Clear FAULT and MERR variables for 0 and 1 axes
Example 2:

FCLEAR ALL !Clear FAULT and MERR variables for all axes

The FCLEAR.ALL command may cause an increase in USAGE.

—

[#

2.112 FOLLOW

Description

FOLLOW switches an axis into slave mode. The specified axis will follow the profile generated by the
RTC6.

Syntax
FOLLOW(axis)

Arguement

axis Axis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

2.113 GO

Description

GO starts a motion that has been created using the /w (wait) switch.
Syntax

GO axis_list

Arguments

Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis_list

Version 3.12 61

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Comments

> Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and
separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

> Where GO specifies a single axis, that axis may not be included in any group. GO starts the
last created motion for the same axis. If the motion was not created, or has been started
before, the command has no effect.

> Where GO specifies a leading axis in a group, GO starts the last created motion for the same
axis group. If the motion was not created, or has been started before, the command has no
effect.

COM Library Methods and .NET Library Methods

Go, GoM

C Library Functions

acsc_Go, acsc_GoM

Related ACSPL+ Commands

HALT , MSEG...ENDS, JOG, MPTP...ENDS, PATH...ENDS, PTP, PVSPLINE...ENDS, SLAVE, TRACK

Example
PTP/w (0,1), 1000, 1000 !Create PTP motion, but do not start
PTP/w 3, 8000 !Create PTP motion, but do not start
GO (0,1) !Start both motions at the same time

2.1.14 GROUP

Description

GROUP defines an axis group for coordinate multi-axis motion. The first axis in the axes list is the
leading axis. The motion parameters of the leading axis become the default motion parameters for
all axes in the group. Motion on all axes in a group will start and conclude at the same time.

Syntax
GROUP axis_list
Arguments
- Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
axis_list .
system minus 1.
Comments

An axis can belong to only one group at a time. If the application requires restructuring the axes, it
must split the existing group and only then create the new group.

Related ACSPL+ Variables
VEL, ACC, DEC, JERK, KDEC, GVEC, GVEL, GACC, GJERK
Related ACSPL+ Commands

SPLUIT

Version 3.12 62

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

COM Library Methods and .NET Library Methods
Group

C Library Functions

acsc_Group

Example

GROUP (0,1) !Creates an axis group that includes axes 0 and 1.
PTP (0,1), 1000, 10000 !'PTP axis 0 to 1000, and axis 1 to 10000.

2.115 HALT
Description

In single axis motion, HALT terminates currently executed motion and clears all other motions
waiting in the axis motion queue. The deceleration profile is defined by DEC (deceleration variable).

In group motion, HALT terminates currently executed motion of all group axes, and clears all other
motions waiting in the axes motion queues. The deceleration profile is defined by the DEC
(deceleration) variable of the leading axis.

Syntax

HALT axis_list[,reason]

Arguments
axis_list List of axes to be halted.
reason An optional argument, which must be an integer constant or expression that
equates to an integer, and specifies a cause why the axis was halted.
Switches
/e Wait for motion termination before executing the next command.
Comments

HALT ALL terminates the motion of all axes.

Related ACSPL+ Commands and .NET Library Methods
KILL/KILLALL

COM Library Methods

Halt, HaltM

C Library Functions

acsc_Halt, acsc_HaltM

Example 1:

HALT O !Terminates 0 axis motion, the deceleration is
laccording to DEC (0)

Version 3.12 63

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2:
HALT (0,2) !Terminates currently executed motion on axes
'0 and 2.
Example 3:
HALT ALL !Terminates currently executed motion on all axes.
2.1.16 HOME
Description

The predefined HOME command receives the following parameters: Axis, HomingMethaod,
HomingVel(optional), MaxDistance(optional), HomingOffset(optional), HomeCurrlimit(optional).

Syntax

HOME Axis, [opt]HomingMethod, [opt]HomingVel, [opt]MaxDistance,
[opt]HomingOffset, [opt]HomingCurrLimit,
[opt]HardStopThreshold, [opt]SetYawToOpen, [opt] SkewValue, [opt]LookForTwoLS

Arguments

Axis axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

Optional. The number of homing method that should be used for
homing.

If not specified: the homing method is set according to the value
of the HOMEDEF variable.

HomingMethod

Optional. The velocity that will be used for the homing.

e If not specified: SLCPRD*EFAC/2

Optional. The Maximum distance that will be used during homing.

MaxDistance o . .
If not specified, endless motion will be used.

Optional. The machine home position is found during homing. If
not specified, 0 is used. If specified, after homing is completed, the
zero position is offset from the home position by adding the
home offset of the home position.

HomingOffset

T T Optional. Current Limit during the homing process. If not specified:
min(XCURV,0.5*XRMSM,0.5*XRMSD)

Optional. If specified, Hard Stop will be identified by:

Abs(PE)>min(HardStopThreshold,CERRV*0.75)

If not specified:

Abs(PE)>CERRV*0.75

HardStopThreshold

Version 3.12 64

SetYawToOpen

SkewValue

LookForTwolS

Homing Methods

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

For Gantry mode only. Optional.

0 - Complementary Axis keeps OPEN LOOP state during homing
operation

1- Complementary Axis is set to OPEN LOOP state during homing
operation

For Gantry mode only. Optional. Used for setting positing for the
complementary axis after the homing process is finished. If not
specified, the valueis 0.

For Gantry mode only. Optional.

0 (default) - only one limit is detected

1- both limits are detected

Table 2-2. Homing Methods

Method Number Explanation

1

17

18

33/34

37

50

51

52

53

Comments

Homing Method 1: Homing on the negative limit switch and index pulse
Homing Method 2: Homing on positive limit switch and index pulse
Homing Method 17: Homing on Negative Limit Switch

Homing Method 18: Homing on Positive Limit Switch

Homing Method 33 and 34: Homing on the index pulse

Homing Method 37: Homing on current position

Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)
Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)
Homing Method 52: Negative Hard Stop (ACS Specific)

Homing Method 53: Positive Hard Stop (ACS Specific)

> The HOME command is non-waiting
> MFLAGS.#HOME bit will be set to 1after the homing is completed.

> AST.#INHOMING bit is 1during the homing process ¢ E_TYPE and other encoder initialization
processes will reset the #HOME bit

> The predefined homing methods are defined according to the DS402 standard, except

methods 50, 51, 52, 53

Version 3.12

65

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

-
> |f the homing method is not supported, the error 3314 “Requested Homing
Method is not supported” is given.
> The axis is required to be enabled, commutated, and not in motion.
% > Disable axis during homing process will cancel the homing process.
> Other motions cannot be executed while the axis is in home process
> The following homing methods are supported in Gantry mode: 1, 2, 50, and 51.
_
Example 1
enable 0
commut O

home 0,34 'homing on Positive Index Pulse
TILL MFLAGSO.#HOME=1

STOP

2.1.17 IMM
In single axis motion, IMM provides on-the-fly changes of the following motion parameters:
> VEL(Velocity)
> ACC(Acceleration)
> DEC(Deceleration)
> JERK (Jerk)
IMM affects the motion in progress and all motions waiting in the corresponding motion queue.

In group motion, IMM provides on-the-fly changes for the motion parameters of the leading axis
only.

Syntax
IMM axis_motion parameter=value or formula
Arguments
axis_motion The motion parameter with the specified axis (valid numbers are: 0, 1, 2, ...
parameter up to the number of axes in the system minus 1).
value or User specified value or formula.
formula
Related ACSPL+ Variables

VEL, ACC, DEC, JERK
COM Library Methods and .NET Library Methods

Set Acceleration Imm, Set Deceleration Imm, Set Jerk Imm, Set Kill Deceleration Imm,
Set Velocity Imm

Version 3.12 66

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

C Library Functions

acsc_SetAccelerationlmm, acsc_SetDecelerationlmm, acsc_SetJerklmm, acsc_
SetKillDecelerationlmm, acsc_SetVelocitylmm

Example

IMM VEL (0)=5000 !Tmmediately change the 0 axis velocity to 5000

2.1.18 KILL/KILLALL

Description

Use KILL after a safety event to decelerate and stop an axis faster than during normal deceleration
and stop. KILLALL stops all axes.

In single axis motion, KILL terminates currently executed motion and clears all other motions
waiting in the axis motion queue. The deceleration profile uses a second-order deceleration profile
and the KDEC (kill deceleration) value.

In group motion, KILL terminates currently executed motion only for the specified axes, and clears
all other motions waiting in the axis/axes motion queue.The deceleration profile uses a second-
order deceleration profile and the KDEC (kill deceleration) variable of each axis.

Syntax
KILL axis_list[,reason]
Arguments
- List of axes to be killed, valid numbers are: 0, 1, 2, ... up to the number of axes in
axis_list .
the system minus 1, or ALL for all axes.
An optional argument, which must be an integer constant or expression that
reason evaluates to an integer, and specifies a cause why the axis was killed. If the
parameter is specified, its value is stored in the MERR variable. If the
parameter is omitted, MERR stores zero after KILL.
Switches
/e Wait for motion termination before executing the next command.
For systems having more than 15 axes, the use of KILL ALLmay cause Over Usage or
Servo Processor Alarm faults.
Comments

1. KILL ALL terminates the motion of all axes. The deceleration profile is defined by the KDEC
(kill deceleration) variable of each axis.

2. If several sequential KILL operations specify different causes for the same motor, only the
first causeis stored in MERR and all subsequent causes are ignored.

3. A causestoredin MERR is cleared by FCLEAR or ENABLE/ENABLE ALL.

Version 3.12 67

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

HALT, FCLEAR, ENABLE/ENABLE ALL

Related ACSPL+ Variables

MERR, KDEC

COM Library Methods and .NET Library Methods
Kill, Kill All

C Library Functions

acsc_Kill, acsc_KillAll

Example 1:
KILL 1 'Kill axis 1 deceleration is according to KDEC (1)
Example 2:
KILL 0, 5011 'Kill 0 axis, store 5011 as the reason.
ICode 5011 corresponds to left limit error;
ltherefore the 0 motor will be reported as
ldisabled due to fault involving left limit.
Example 3:
KILL (0,1,2) 'Kill 0, 1 and 2 axes according to the KDEC
lof each specified axis.
Example 4:
KILL ALL, 6100 'Kills all axes, and stores the cause in MERR.

1 (6100 is the code for a user-defined cause.)

2.1.19 SAFETYCONF

Description

SAFETYCONF configures fault processing for one or more axes, by disabling the default response to
a defined axis FAULT, and performs one of the following responses:

> Ignore the interrupt

> Killthe motion

> Disable the axis

> Kill the motion and then disable the axis
Syntax
SAFETYCONF axis_list, fault_name, "conf_string”

Version 3.12 68

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the

system minus 1.

Any axis fault name like #LL for left limit.

A string enclosed in double quotation marks with one or more of the following
characters determines the action of SAFETYCONF:

Arguments
axis_list
fault_
name
>
>
conf_
string Z
>
>
Comments

K (KILL/KILLALL)
D (DISABLE/DISABLEALL)
KD (KILL/KILLALL-DISABLE/DISABLEALL)

+ when a fault occurs in any member of the axis_list, the fault
response applies to all axes of the controller (each axis fault response
can be unique)

- applies FMASK<axis>.#fault-name = O for all axes of the controller

If an empty string is specified, fault detection is enabled, but the controller has no response to the
fault. However, an autoroutine can intercept the fault and provide a response.

In devices implementing STO, the user may not use SAFETYCONF to change the default response to
an STO fault, which is KlLL<axis> + DISABLE<axis>.

Related ACSPL+ Commands
The #SC Communication Terminal command shows the current fault response configuration for all
axes.
Example 1:
SAFETYCONF 0, #PE, "K" !The 0 motion will be killed if the 0
lPosition Error fault occurs.
Example 2:
SAFETYCONF (3,5),#LL,"KD" !Changes the response to the Left Limit fault
of
13 and 5 axes to KILL and then DISABLE.
Example 3:
SAFETYCONF ALL, #DRIVE, "D+" !A1l axes will be disabled if the Drive

Version 3.12

IAlarm fault occurs in any axis.

69

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 4:

SAFETYCONF ALL, #VL,"-" 'Velocity Limit fault will be masked for
lall axes.

2.1.20 SAFETYGROUP

Description

SAFETYGROUP activates the fault response for all axes in the axis_list when any axis triggers the
fault, and manages the axes as a block in response to KILL/KILLALL and DISABLE/DISABLEALL.

To cancel the defined SAFETYGROUP, send the command again with only the first axis as the axis_
list.

Syntax
SAFETYGROUP axis_list
Arguments
- List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the system
axis_list

minus 1.

COM Library Methods and .NET Library Methods
GetSafetylnputPort
C Library Functions

acsc_GetSafetylnputPort

Example 1:
SAFETYGROUP (0,1,5) !Creates safety group for axes 0, 1 and 5.
Example 2:
SAFETYGROUP 0 !Cancels the previously created safety group for
laxes 0, 1 and 5.
2.1.21 SET
Description

SET defines the current value of either feedback (FPOS), reference (RPQS), or axis (APQS) position.
SET can be initiated when the axis is disabled, or on-the-fly. APOS and FPQOS are updated
automatically when SET is specified for RPQS,

If a non-default CONNECT is used, assign different values to APOS and RPOS.
Related ACSPL+ Variables

RPOS

Syntax

SET axis_RPOS=value or formula

Version 3.12 70

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
axis_RPOS The reference posfugn of the speuﬁgd axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.
= The assignment operator
L User-defined value or formula
formula

COM Library Methods and .NET Library Methods
SetRPosition, SetFPosition

C Library Functions

acsc_SetRPosition, acsc_SetFPosition

Example

SET RPOS (0)=300 !Axis 0 RPOS = 300

2.1.22 SPLIT

Description

SPLIT breaks down a group created using GROUP by designating any axis in the axis list. SPUT ALL
breaks down all groups.

4 A

If the SPLIT command specifying an axis that is currently in motion is executed within
the buffer, the buffer execution is suspended until the motion is completed. However, if
the SPLIT command is sent from the host or as a Communication Terminal command, it
returns error 3087: "Command cannot be executed while the axis is in motion".

_ y

Syntax
SPUT axis_list
Arguments

Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the

axis_list .
system minus 1.

Related ACSPL+ Commands

GROUP

COM Library Methods and .NET Library Methods
Split, SplitAll

C Library Functions

acsc_Split, acsc_SplitAll

Example 1:

Version 3.12 71

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

GROUP (0,1,5) !Create an axis group including axes 0, 1 and 5.
GROUP (2,3,7) !Create an axis group including axes 2, 3 and 7.
SPLIT O !Breaks down axis group 0, 1 and 5.

Example 2:
GROUP (0,1,5) !Create an axis group including axes 0, 1 and 5.
GROUP (2,3,7) !Create an axis group including axes 2, 3 and 7.
SPLIT ALL !Breaks down axis group 0, 1 and 5

'and group 2, 3 and 7.

2.1.23 UNFOLLOW

Description

UNFOLLOW switches an axis into reqular mode. The specified axis will follow the profile generated
by the ACS controller.

Syntax
UNFOLLOW(axis)
Arguement
axis AXxis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

2.2 Predefined Homing Methods

2.2.1 Homing Method 1: Homing on the negative limit switch and index pulse

With this homing method the initial direction movement is leftward if negative limit switch is
inactive (shown as low in the figure above). The home position is at the first index pulse right of the
position where the negative limit switch becomes active.

2.2.2 Homing Method 2: Homing on positive limit switch and index pulse

With this homing method the initial direction movement is rightward if the positive limit switch is
inactive (shown as low in the figure above). The home position is at the first index pulse left of the
position where the negative limit switch becomes active.

Version 3.12 72

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

—i

Indax Puiss f f
Postive Linitwaeh - | ©

2.2.3 Homing Method 17: Homing on Negative Limit Switch

G
- E:ﬁ:l

Homing method 17 is similar to method 1, except that it homes on negative limit switch only.

If negative limit switch is ON when the function is called, the homing is aborted (no homing
attained).

2.2.4 Homing Method 18: Homing on Positive Limit Switch

Homing method 18 is similar to method 2, except that it homes on positive limit switch only.

If positive limit switch is ON when the function is called, the homing is aborted (no homing attained).
2.2.5 Homing Method 33 and 34: Homing on the index pulse

Using methods 33 or 34, the direction of homing is negative or positive, respectively. The home
position is at the index pulse found in the selected direction.

2.2.6 Homing Method 37: Homing on current position
In this method, the current position shall be taken to be the home position. FW implements the

following ACSPL+ code:

SET FPOS (<axis>)=HomeOffset.

2.2.7 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)

With this homing method the initial direction movement is negative, till Hard Stop is found (by using
the Position Error indication). The home position is at the first index pulse right of the position where
the Hard Stop is found.

Paosition Error is considered as Hard Stop only if the HardStopThreshold condition is met.

Version 3.12 73

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.2.8 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)

With this homing method the initial direction movement positive, till Hard Stop is found (by using the
Position Error indication). The home position is at the first index pulse left of the position where the
Hard Stop is found.

2.2.9 Homing Method 52: Negative Hard Stop (ACS Specific)

With this homing method the initial direction movement is negative, till Hard Stop is found (by using
the Position Error indication). After the Hard Stop is found, the axis moves back to where the Hard
Stop was detected, continues threshold (this is the home position), continues additional threshold
multiplied by 2 and halts.

Paosition Error is considered as Hard Stop only if the HardStopThreshold condition is met.
2.2.10 Homing Method 53: Positive Hard Stop (ACS Specific)

With this homing method the initial direction movement is positive, till Hard Stop is found (by using
the Position Error indication). After the Hard Stop is found, the axis moves back to where the Hard
Stop was detected, continues threshold (this is the home position), continues additional threshold
multiplied by 2 and halts.

2.3 Interactive Commands

The Interactive commands are:

DISP Builds a string and sends it to the default communication channel.
INTERRUPT Causes an interrupt that can be intercepted by the host.
INTERRUPTEX Causes an interrupt similar to that of the INTERRUPT command.
SEND Same as DISP, but also specifies the communication channel or
channels.
TRIGGER Specifies a triggering condition. Once the condition is satisfied, the
controller issues an interrupt to the host computer.
2.3.1 DISP
Description

DISP builds an ASCIl output string and sends it to a communication channel. The ASCII output can
include text segments and variable values defined in various format displays. The output string is
sent to the default communication channel defined by the standard variable DISPCH.

Syntax

DISP argument [, argument. .]

Version 3.12 74

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

An expression or string where:
Expression:
ACSPL+ expression as one or more variables
argument
String:
"[text] [escape-sequence] [format-specifier]”
String must be enclosed with double quotation marks.

[, argument. . .] Optional subsequent arguments.

Command Options
An input string can include one or more of the following:

> Text
Escape Sequence - appears in the output string as a non-printing character or other
specified character.

> Formatting Specification - determines how the results of an expression that follows the
input string is formatted in the output string.

Table 2-3. DISP Command Option Escape Sequences

Escape Sequence Added Character to Output String

\r Carriage return - 0x0d

\s Avoid carriage return

\n New line - 0x0a

\t Horizontal tab - 0x09

\XxHH Any ASCII character where HH represents the ASCII code of the character.

,,, The output format specification syntax adheres to a restricted version of the Clanguage
——| syntax.

The format specification syntax is:

% [width] [.precision] type

where:

Version 3.12 75

[width]

[.precision]

type

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Optional specification for the minimum number of characters in the
output. If widthis smaller than the number of digits of a displayed number,
the specified widthis ignored, and the displayed number includes all digits.

Optional number that specifies the maximum number of characters
printed for all or part of the output field, or the minimum number of digits
printed for integer values.

Required character that determines whether the associated argument is
interpreted as a character, a string, or a number, as described in Table 2-4.

Table 2-4. Type Characters

Output Format

d

Comments

Signed decimal integer

Unsigned decimal integer

Unsigned hexadecimal integer, using "abcdef"
Unsigned hexadecimal integer, using "ABCDEF"

Signed value having the form [-]d.dddd e [sign]ddd where d is a single decimal
digit, dddd is one or more decimal digits, ddd is exactly three decimal digits, and
signis + or -.

Identical to the e format except that E rather than e introduces the exponent.

Signed value having the form [- Jdddd.dddd, where dddd is one or more decimal
digits. The number of digits before the decimal point depends on the magnitude
of the number, and the number of digits after the decimal point depends on the

requested precision.

Signed value printed in f or e format, whichever is more compact for the given
value and precision. The e format is used only when the exponent of the value is
less than -4 or greater than or equal to the precision argument. Trailing zeros
are truncated, and the decimal point appears only if one or more digits follow it.

Identical to the g format, except that E, rather than e, introduces the exponent
(where appropriate).

1. Ifaninput string argument contains n format specifiers, the specifiers apply to the n
subsequent expression arguments.

2. DISP processes arguments from left to right, as follows:

Version 3.12

76

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> Expressions: The expression is evaluated and the ASCII representation of the result is
placed in the output string. The format of the result is determined by the formatting
specifications (if any) in the input string.

> Input strings: Text is sent as-is to the output string. Escape sequences are replaced by
the ASCII codes that they represent. Formatting specifications are applied to the results
of any expressions that follow the string

3. DISP cannot be used from the SPiiPlus MMI Application Studio Communication Terminal,
only from a program buffer.

4. DISP can only display the value of a single element of an array.

In order to receive unsolicited messages by a host application, perform the following:
1. SetDISPCH to -2.
2. Setbit4 of COMMFLto 1.

3. Send SETCONF(306,-1,1) from the same communication channel where unsolicited
messages are expected to be received.

In order to stop the receipt of unsolicited messages by a host application: send SETCONF(306,-1,0)
from the same communication channel where there is no need any more to receive unsolicited
messages.

Related ACSPL+ Commands

SEND, SETCONF

Related ACSPL+ Variables

DISPCH, COMMFL

COM Library Methods and .NET Library Methods
OpenMessageBuffer, GetSingleMessage, CloseMessageBuffer
C Library Functions

acsc_OpenMessageBuffer, acsc_GetMessage, acsc_CloseMessageBuffer

Example 1:
DISP "%15.10f", FPOSO !Display FPOSO in 15 digits with 10 digits
!following the decimal point.
!Output: 997.2936183303
STOP
Example 2:
DISP "0 FVEL=%15.10f", FVELO !Output: 0 FVEL= 997.2936183303
STOP

Version 3.12 77

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 3:
DISP "%1i",INO.2 !'Output: the current state of INO.2 as
lone digit 0 or 1.
STOP
Example 4:
DISP "INO as hex: %04X", INO !'Output: INO as hex: OAlD
STOP
Example 5:

DISP "INO.0O-3 as binary: %lu%$lu%lu%lu", INO0.0,INO.1,INO.2,INO.3
'Output: INO.0-3 as binary: 0110
STOP

Example 6:

DISP "Elapsed time is: ", TIME !Output: Elapsed time is: 4.93258E+006
STOP

Example 7:

DISP "Expression, default formating:", FPOS0*2+FPOS1+5 , FPOS1
!Output: Expression, default formatting: 6.28657
10.286485

STOP

Example 8:

REAL AXIS NAME ; AXIS NAME=0 ;

DISP "Axis",AXIS NAME," was disabled due to error code", MERR(AXIS NAME)
!Display the reason of axis disable due to a fault.
!Output: Axis 0 was disabled due to error code 0

STOP

Example 9:

DISP "$5i\r", FPOSO, "$5i", FPOS1
!Standard format, minimum 5 positions, no decimals,
'and a carriage return between the two values.
!'Output:
1711
12024

STOP

Version 3.12 78

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 10:
DISP "Hexadecimal format: %08X", MFLAGS(0), " and also %08x", MFLAGS (0)
!Hexadecimal format, minimum 8 positions, capital
!letters or lower case letters.
!Output: Hexadecimal format: 002A2300 and also
100222300
STOP
Example 11:

DISP "0 FPOS: %15.3e", FPOSO," and 1 FPOS: %15.3e", FPOS1L
!Scientific format, minimum 15 positions, 3 decimals
lof FPOSO and FPOS1.
!'Output:
'0 FPOS: 5.000e-001 and
!'1T FPOS: 2.865e-001

STOP
Example 12
REAL AAA; !Standard or scientific format, small letters or
lcapital letters.
AAA=10; !Assigning integer value to AAA
DISP "%g", AAA; 'Output: 10
AAA=1e9 !Assigning Hex value to AAA
DISP "$g", AAA 'Output: 1e+009
DISP "&%G", AAA !'Output: 1E+009
STOP
232 INP
Description

INP reads data values from a specified channel and stores them to an integer array. This function is
useful for creating an interface between the controller and special input devices such as a track-ball,
mouse or various sensors. INP is also used when the controller acts as a master with the MODBUS
protocol communication.

Before using INP, configure the relevant communication channel as a special communication
channel using SETCONF function, key 302.

See also OUTP.
Syntax

int INP(channel, [array,] [start_index,] [number,] [timeout])

Version 3.12 79

Arguments

channel

array

start_index

number

timeout

Return Value

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Communication channel index:
> 1-serial communication channel COM1
> 2 -serial communication channel COM2
> 6 - Ethernet network (TCP)
> 7 - Ethernet network (TCP)
> 8- Ethernet network (TCP)
> 9 - Ethernet network (TCP)
> 10 - Ethernet Point-to-Point (UDP)
> 12 -PClbus
> 16 - communication channel with Modbus slave
> 36 - Ethernet network (TCP)
> 37 - Ethernet network (TCP)
> 38 - Ethernet network (TCP)
> 39 - ethernet network (TCP)
User-defined integer array to which the data will be stored.
If array is omitted, the function purges formerly received characters in the
channel.
The first received character is assigned to the array element with the
specified index.
If start_index is omitted, the assignment starts from the first element of the
array.
The number of characters to be collected to the variable array.
If number is omitted, the function continues receiving characters until the last
element of the array is assigned, or the carriage return character is received.
The function waits for input not more than the specified number of

milliseconds.

If timeout is omitted, the waiting time is not limited.

The number of entities that have been stored into the variable.

Error Conditions

None

Version 3.12

80

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

GLOBAL INT MMM (10) !Defines global user array MMM with ten elements.

SETCONF (302,2,1) !Assigns COM2 as special input.

INP (2) !Purges the input buffer from old values

INP (2,MMM, 0,10,1000) 'INP (2) - purge the input buffer from old values
'INP (2,MMM, 0,10,1000) - store values from COM2 port
'to MMM user variable, from array index 0, total of
10 values. The data collection process will end
'within 1000 msec or when the 10 values have been
!collected.

STOP !'Ends program

2.3.3 INTERRUPT
Description

INTERRUPT causes an unconditional trigger that is intercepted by the host. Once a program executes
INTERRUPT, the interrupt signal is sent to the host application. This interrupt is detected by the COM
library EnableEvent or C Library acsc_SetCallBack functions which then call interrupt type ACSC_
INTR_ACSPL_PROGRAM.

Syntax

INTERRUPT

Related ACSPL+ Commands

TRIGGER

COM Library Methods

Enablekvent, DisabletEvent, SetCallbackMask, SetCallbackPriority, GetCallbackMask

C Library Functions

acsc_InstallCallback, acsc_SetCallbackMask, acsc_SetCallbackPriority, acsc_GetCallbackMask
Example 1:

INTERRUPT used in an ACSPL+ program:

ENABLE 0 !'Enable axis 0
SET FPOS0=0 !Set axis 0 feedback position = 0
PTP 0, 1000 IACSPL+ executes a PTP motion.
TILL MST(0) . #MOVE=0 !The motor reaches the destination point
land stops.
INTERRUPT !INTERRUPT is sent to the host application.
STOP
Example 2:

INTERRUPT used in a Host COM Lib application:

SET ch = New Channel !Tnitialize ch as a COM library object
CALL ch.EnableEvent (ch.ACSC INTR ACSPLPROGRAM)
!Enable INTERRUPT as an event. The host application

Version 3.12 81

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

'waits for an interrupt from the controller initiated
'by INTERRUPT from within the ACSPL+ program.

Private Sub ch ACSPLPROGRAM (ByVal Param As Long) MsgBox ("Motion is

Stopped")
!When an interrupt occurs, launch a message box
!displaying “Motion is Stopped”

EndSub

Example 3:

INTERRUPT used in a Host C Lib application:

int WINAPI CallbackInput (unsigned _ int64 Param,void* UserParameter);
// will be defined late

int CardIndex;//Some external variable, which contains card index
// set callback function to monitor digital inputs
if ('acsc InstallCallback(Handle, // communication handle

CallbackInput, // pointer to the user callback function
&CardIndex, // pointer to the index
ACSC_INTR INPUT // Type of callback

))
{
printf ("callback registration error: %d\n", acsc GetLastError());

}

// If callback was installed successfully, the CallbackInput function
will
// be called each time the any digital input has changed from 0 to 1.
// CallbackInput function checks the digital inputs 0 and 1
int WINAPI CallbackInput (unsigned int64 Param,void* UserParameter)
{
if (Param & ACSC MASK INPUT 0 && *UserParameter == 0)
//Treat input 0 only for card with index 0
{
// input 0 has changed from 0 to 1
// doing something here
}
if (Param & ACSC MASK INPUT 1 && *UserParameter == 1)
//Treat input 1 only for card with index 1

// input 1 has changed from 0 to 1
// doing something here

}

return 0;

}

Version 3.12 82

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.3.4 INTERRUPTEX

Description

The INTERRUPTEX command operates in @ manner similar to INTERRUPT but has the following
differences:

> Ittriggers the dedicated callback ACSC_INTR_ACSPL_PROGRAM_EX (21)

> It accepts two mandatory integer parameters and two optional parameters. Their values
will be passed along with the interrupt to the host instead of the buffer mask passed in the
old INTERRUPT function as a 64-bit integer.

> Adjacent (“glued”) interrupts are processed differently (because parameters are not OR'ed):

> Thereis aninternal queue of 256

\Y

The next interrupt value will be triggered only after C Library delivers the previous one
> The maximum output rateis 1interrupt per CTIME
> 0nqueue overflow, the interrupt is lost

Syntax

INTERRUPTEX (32-bit_high_value,32-bit_low_value[,32-bit_high_value_second,32-bit_low_value_
second])

Arguments
32-bit_high_value Most significant value of a combined 64-bit integer
32-bit_low_value Least significant value of a combined 64-bit integer

32-bit_high_value_second Optional. High 32 bits of a combined second 64-bit integer

32-bit_low_value_second Optional. Low 32 bits of a combined second 64-bit integer

Comments

INTERRUPTEX is supported by both by SPiiPlusNT and SPiiPlusSC products. For the SPiiPlusSC-HP
products, the interrupt is passed via Shared Memory, which makes it very fast (100+(Cycle-time)/2
for the round trip on the average). For the SPIiPlusNT and the SPiiPlusSC-LT products, the interrupt is
passed via the communication channel (Ethernet/Serial RS-232).

An application that uses C Library must make sure to empty the queue, register the
callback and wait enough time until the queue is empty.

The parameters are passed to the host as a single 64-bit integer with the first parameter as the 32-
bit most significant value word and the second parameter is the 32-bit least significant word.

COM Library Methods
EnableEvent, DisableEvent, SetCallbackMask, SetCallbackPriority, GetCallbackMask
C Library Functions

acsc_InstallCallback, acsc_SetCallbackMask, acsc_SetCallbackPriority, acsc_GetCallbackMask

Version 3.12 83

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 1:
Enable 0 ! Enable axis 0
SET FPOS0=0 ! Set axis 0 position to O
PTP/e 0,1000 ! Move to position 1000
INTERRUPTEX (0x12, O0x34)! interrupt with parameter, host will receive
! 0x0000001200000034
Stop
Example 2:

Global integer interrupt description (0x100)
Global integer interrupt queue

interrupt queue = 0
interrupt buff =0 ! No pending interrupts
Enable 0 ! Enable axis O
SET FPOS0=0 ! Set axis 0 position to O
interrupt description (interrupt queue)= 0x1l ! Setting description to 1
! indicating pre-motion
! state
interrupt queue = (interrupt queue+l) &0xff ! One more pending interrupt
INTERRUPTEX (0x00, interrupt queue) ! Interrupt description in
! interrupt description (0)
PTP/e 0,1000 ! Move to position 1000
interrupt description (interrupt queue) = 0x2 ! Setting description to
2
! indicating post-motion
! state
interrupt queue = (interrupt queue+l) &0xff ! One more pending interrupt
INTERRUPTEX (0x00, interrupt queue) ! Interrupt description in
! interrupt description (1)
Stop
Example 3:
Enable 0 !'Enable axis O
SET FPOS0=0 !Set axis 0 to position 0
PTP/e 0,1000 !Move to position 1000

INTERRUPTEX (0x12, 0x34, 0x22, 0x54)
!interruptex with parameter, host will receive the following;

! 0x0000001200000034, 0x0000002200000054
2.3.5 SEND
Description
SEND is the same as DISP, but also specifies the communication channel for the output string.
Syntax

SEND channel_number, argument [, argument. .]

Version 3.12 84

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

An integer that defines the communication channel to which the message

will be sent, as follows:

-2: All channels

-1: Last used channel

1: Serial Port 1

2: Serial Port 2

6: Ethernet network (TCP)
e 7: Ethernet network (TCP)
number 8: Ethernet network (TCP)

9: Ethernet network (TCP)
10: Ethernet point-to-point (UDP)
16: MODBUS Slave

36: Ethernet network (TCP)
37: Ethernet network (TCP)
38: Ethernet network (TCP)
39: Ethernet network (TCP)

An expression or string where:
Expression:

ACSPL+ expression as one or more variables
argument

String:

"[text] [escape-sequence] [format-specifier]"
String must be enclosed with double quotation marks.

[, argument. .

J

Optional subsequent arguments.

Command Options

For a list of Command Options, relevant Comments, and Examples, see DISP.
Related ACSPL+ Commands

DISP

Related ACSPL+ Variables

DISPCH

COM Library Methods

Send

Version 3.12 85

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

C Library Functions

acsc_Send
2.3.6 TRIGGER

Description

TRIGGER specifies a triggering condition. Once the condition is satisfied, the controller issues an
interrupt to the host computer, as follows:

1. Sets AST<axis>.#TRIGGER = 0
2. Examines the triggering condition every MPU cycle
Once the condition is satisfied, the controller performs the following:
1. Sets AST<axis>#TRIGGER =1
2. Produces aninterrupt to the host application (software interrupt 10, enabled by IENA.26).

The controller continues calculating the TRIGGER expression until another TRIGGER command is
executed in the same channel. Each time the expression changes its value from zero to non-zero,
the controller sets AST<axis>.#TRIGGER = 1and causes an interrupt.

1 Fullapplication of the TRIGGER command to channels greater than 7 is not currently
=—| supported.

Syntax
TRIGGER channel, expression[, timeout]
Arguments
An integer number from 0 to 7 that specifies the trigger’s sequential
channel number. The number defines the AST element where the triggering bit will
be set and defines the bit in the interrupt tag that is automatically sent to
the host application as an interrupt.
Specifies the triggering condition. After TRIGGER is executed, the controller
. checks the expression condition each MPU cycle. Triggering occurs when
expression . e . i ; . .
the expression condition is satisfied. If the argument is omitted, triggering
in the specified channel is disabled.
Specifies triggering timeout in milliseconds. A positive number specifies
the time allowed for the triggering condition to be satisfied. If the timeout
timeout has elapsed and the triggering condition has not been satisfied, the

controller unconditionally raises the trigger bit. After any triggering, the
controller resets timeout counting to zero. If the argument is omitted,
triggering works without timeout.

Version 3.12 86

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Table 2-5. Channel Designation for TRIGGER

Hexadecimal Interrupt Tag

Channel Triggering Bit (Software Interrupt 10)
0 ASTO.M 0x0000000T1
1 AST1. 0x00000002
2 AST2.11 0x00000004
3 AST3.11 0x00000008
4 AST4.M 0x00000010
5 AST5.11 0x00000020
6 ASTE.1 0x00000040
7 AST7.1 0x00000080

Related ACSPL+ Commands

INTERRUPT

Related ACSPL+ Variables

IENA, AST

COM Library Methods

GetCallbackMask, SetCallbackMask
C Library Functions
acsc_GetCallbackMask, acsc_SetCallbackMask

Example

TRIGGER 1, MST (0) .#MOVE=0, 3000 !l - once the triggering condition is satisfied,
!the triggering bit AST1.#TRIGGER will be set
'to "1", and the interrupt tag to the host
lapplication is 0x00000002.

IMST (0) . #MOVE=0 - the triggering condition.
!Actuate trigger interrupt when the motor in
'the 0 axis is in position (not moving) .

13000 - check the triggering condition for
13000 msec. If the triggering condition is not
!satisfied after 3000 msec, then set the
!'triggering bit AST (1) .TRIGGER to "1".

2.3.7 OUTP

Description

OUTP sends data values from an integer array to a specified channel. This function is useful to create
an interface between the controller and special input devices such as a track-ball, mouse and

Version 3.12 87

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

various sensors. OUTP is also used when the controller acts as a master with the MODBUS protocol
communication.

Before using OUTP, configure the relevant communication channel as a special communication
channel using SETCONF function, key 302.

Each ASCII character is represented by its numerical value and is stored in a separate element of the
array.

The user might have to define communication parameters for the special communication channel
with SETCONF function keys 302, 303, 304, 309.

See also INP.
Syntax
int OUTP(channel, variable[, start_index[, number]])
Arguments
Communication channel index:
> 1-serial communication channel COM1
> 2 -serial communication channel COM2
> 6 - Ethernet network (TCP)
> 7 - Ethernet network (TCP)
> 8- Ethernet network (TCP)
channel > 9 - Ethernet network (TCP)
> 10 - Ethernet Point-to-Point (UDP)
> 12-PCbus
> 16 - communication channel with MODBUS slave
> 36 - Ethernet network (TCP)
> 37 - Ethernet network (TCP)
> 38 - Ethernet network (TCP)
> 39 - ethernet network (TCP)
variable User-defined integer array from which the data will be sent.
The index in the array from which to start.
start_index If start_index is omitted, number should also be omitted (in this case, all
members of the array are transmitted).
I—— The number of characters to be transmitted from the variable array.

If omitted, all members of the array starting from start_index are transmitted.

Return Value

The number of entities that have been transmitted.

Version 3.12 88

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Error Conditions

If the function fails, an error is generated.

2.4 PEG and MARK Commands

ASSIGNMARK Assigns MARK inputs pins to encoders.

ASSIGNPEG Assigns PEG engines to encoders.

ASSIGNPOUTS Assigns PEG outputs.

GETPEGCOUNT Returns the pulse counter of the required PEG engine

Activates incremental PEG, where pulses are generated at predefined,

PEG fixed position intervals.

PEG R Activates random, table-based PEG where predefined pulses are
- generated at pre-defined positions.

STARTPEG Starts PEG motion for specified axis.

STOPPEG Terminates PEG motion.

2.4.1 ASSIGNMARK

Description

The ASSIGNMARK function allows assignment of Mark inputs to encoder. It allows a mapping of
encoder latching to be triggered by using different physical input pins.

Syntax
ASSIGNMARK(/i] axis, mark_type, inputs_to_encoder_bit_code

In newer products the inputs_to_encoder_bit_code parameter is actually a byte code.
See IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping table.

Arguments
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
) system minus 1.

AXIS
The axis parameter determines which node unit is used. Axis parameter can
be any axis number of the same unit.
1for Mark-1assignment

mark_type

2 for Mark-2 assignment

Version 3.12 89

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Bit code for inputs-to-encoders mapping according to the following tables.

The bit code determines which physical input pin leads to each encoder MARK
latching.

Mark-1Inputs to Encoder mapping for
Mark-1Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD

inputs_to_ IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping

erlcoder_ Mark-1Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm-

Sl (e x/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhyv
Mark-2 Inputs to Encoder mapping for
Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD
Mark-2 Inputs to Encoders Mapping for with SPiiPlus
CMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UD
Mhv

Comments

Latching of Encoder <index> means IST(<index>).#MARK=1, and the MARK(<index>) variable value
stores the feedback position of encoder <index> (FPOS(<index>)).

The Bit Code shown in the tables affects all of the connectors in the row.
Supported products that are not listed in the tables include only the default case.
If the switch: /iis included, the MARK input signal is inverted.

In IDMxx/ECMxx products, the latching for all encoders happens simultaneously.
2.4.2 ASSIGNPEG

Description

The ASSIGNPEG function is used for engine-to-encoder assignment as well as for the additional
digital outputs assignment for use as PEG pulse outputs. It allows mapping of PEG engines to be
triggered by the feedback of a specific encoder.

Syntax
ASSIGNPEG//f] axis, engines_to_encoders_code, gp_out_assign_code
Arguments
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.
axis . . :
Axis parameter can be any axis number of the same unit.
The axis parameter determines the Servo Processor used.
engines_ Bit code for engines-to-encoders mapping according to:
to i,
- SPiiPlusNT/DC-LT/HP/LD Processor 0
encoder
S SPIiiPlusNT/DC-LT/HP/LD Processor 1

Version 3.12 90

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

SPiiPlusCMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMxa/CMhv/UDMh

v/UDMnt/UDMpa/UDMcb
code UDMIc/UDIIt/UDIhp/UDMmc/PDlcl
NPMpm/NPMpc
IDMsm, ECMsm, and UDMsm
General purpose outputs assignment to use as PEG pulse outputs according to:
SPiiPlusNT/DC-LT/HP/LD SP O
gp_out_ SPiiPlusNT/DC-LT/HP/LD SP 1
assign_ B
code SPiiPlus CMnt/CMhv/UDMpm/UDMhv
UDMnt/UDMpa/UDMcb
IDMsm, ECMsm, UDMsm
==| The axis parameter actually serves to determine the Servo Processor used.
Comments
> ASSIGNPEG is a blocking command - the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.
> The axis parameter can be any of the axes controlled by the same servo processor, the
result will be the same.
> Ifthe "/f" switch is included, fast loading of Random PEG arrays is activated. This feature
allows definition of state-arrays with more than 1024-members by using Random PEG. The
PEG_R command must be called with the "/d" switch.
> The Bit Code shown in the Mapping PEG Engines to Encoders tables affects all of the

connectors in the row.

_

HSSI devices (HSSI-1016, HSSI-ED2, etc.) cannot be used for the same Servo Processor
when fast loading of Random PEG arrays is activated.

SPRT and SPINJECT commands cannot be used for the same Servo Processor when fast
loading of Random PEG arrays is activated.

Related ACSPL+ Commands
PEG_I, ASSIGNPOUTS, PEG_R, STARTPEG, STOPPEG
COM Library Methods

None

C Library Functions

acsc_AssignPegNT

Version 3.12 91

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.4.3 ASSIGNPOUTS

Description

The ASSIGNPOUTS function is used for assigning PEG engine output signals to physical output pins.
In addition, the function allows assigning Fast General Purpose output pins and mapping between
FGP_OUT signals to the bits of the ACSPL+ OUT(x) variable, where x is the index that has been
assigned to the controller in the network during System Configuration.

()

The assignments can be obtained by running #Sl in the SPiiPlus MMI Appication Studio
Communication Terminal. For example, the following is a fragment from the response
to this command:

Axes Assignment: 8,9,10,11

Inputs/Outputs Assignment:
Digital inputs (IN): 1.0
Digital outputs (OUT): 1

gl 12,3, L. 4,1.5,1.6,1.7
c0p Lol ilo2,1.3,1.4,1.5,1.6,1L.7

\ J

OUT is an integer array that can be used for reading or writing the current state of the General
Purpose outputs - see SPiiPlus ACSPL+ Command & Variable Reference Guide.

Each PEG engine has 1 PEG pulse output and 4 state outputs for a total of 5 outputs per PEG engine
and a total of 30 outputs for the whole PEG generator. The controller supports 10 physical output
pins that can be assigned to the PEG generator. The user defines which 10 outputs (of the 30) of the
PEG generator are assigned to the 10 available physical output pins. Some of the output pins are
shared between the PEG and the HSSI.

The tables in Appendix A.2 define how each of the 30 outputs of the 6 PEG engines can be routed to
the 10 physical output pins - 4 PEG out signals, 3 PEG state signals, and 3 HSSI signals. Note that
some of the signals cannot be routed to physical pins.

Bit Code: 111is used for switching the physical output pins to Fast General Purpose
% Outputs, see ASSIGNPOUTS.

Syntax

ASSIGNPOUTS axis, peg output, bit code

Arguments
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
. system minus 1.

axis o ' . '
For controllers with firmware version 2.15 or higher, the axis parameter can be
any axis number of the unit.

peg_ The peg output number according to the Mapping of Engine Outputs to

output Physical Output tables below

Version 3.12 92

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Bit code for engine outputs to physical outputs mapping according to:
SPiiPlusNT/DC-LT/HP/LD SP O

SPiiPlusNT/DC-LT/HP/LD SP 1

CMnt/UDMpm/UDMpc/CMhv/UDMhv
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa (OUT0-4)

bit_code
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa (OUT5-9)
UDMnt/UDMpa/UDMcb
UDMIc/UDMmc/UDIIt/UDIhp/PDlIcl
NPMpm/NPMpc
IDMsm/UDMsm/ECMsm
Comments

ASSIGNPOUTS is a blocking command in the sense that the ACSPL+ program moves to the next line
or command only after this command has been fully executed or an error is generated.

A separate ASSIGNPOUTS command should be called for every GP output or PEG output.
Examples
The following examples illustrate using the ASSIGNPOUTS in order to use PEG outputs as GP outputs

Example 1.
ASSIGNPOUTS 0, 2, 0blll

This defines the Z_PEG output as FGP_OUT2 and maps it to the bit 18 of the ACSPL+ OUT variable (see
ASSIGNPOUTS).

If you run, for example:
OUT (x) .18=0

Where x is the index assigned to the controller during System Configuration, FGP_OUT2 output will
be activated.

Then if you run:
OUT (x) .18=0

FGP_OUT2 will be deactivated.

Example 2:

ASSIGNPOUTS 4, 7, 0blll

This defines the X_STATEZ2 output as FGP_0OUT6 and maps it to the bit 22 of the ACSPL+ OUT variable
(see ASSIGNPOUTS).

Version 3.12 93

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands
ASSIGNPEG, PEG_I, PEG_R, STARTPEG, STOPPEG
COM Library Methods

None

C Library Functions

acsc_AssignPegOutputsNT

2.4.4 GETPEGCOUNT

Description

The function returns the pulse counter of the required PEG engine.

Syntax

GetPEGCount (PEG_engine)

2.4.5 PEG_]

Description

The PEG_I command is used for setting the parameters for the Incremental PEG mode.
Syntax

PEG_I [/awi] peg_engine, width, first_point, interval, last_point[, time_based_pulses, time_based_
period]

Arguments
peg_engine The PEG engine number
width Width of the pulse in milliseconds.

. . A real scalar value in user units indicating the first point for the PEG
first_point

generation.
interval Areal scalar value in user units indicating the distance between PEG events.
last_point Areal scalar value in user units indicating the last point for PEG generation.
time_ Optional parameter - a real scalar value indicating the number of time-based
based_ pulses generated after each encoder-based pulse, the range is from 0 to
pulses 65,535.

Optional parameter, a real scalar in milliseconds - period of time-based pulses,
time_ the range is from 0.00005334 to 1.7476.
based.
pe”.od_ The time-based period must be at least pulse width + 26.6667 nsec (minimum

distance between two pulses).

Version 3.12 94

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

PEG is generated only after the first pre-defined start point is reached. If the current
encoder position exceeds pre-defined start point no PEG pulses are fired. It is
=—=| recommended to activate the PEG engine before the maximum current position for
¥ movementin the positive direction and the minimum current position for movementin
the negative direction.

_ J

Comments

> If the switch: /w is included, the execution of the command is delayed until the execution of
the STARTPEG command.

> If the switch: /iis included, the PEG pulse output signal is inverted.

> If the switch: /ais included, error accumulation is prevented by taking into account the
rounding of the distance between incremental PEG events.
You must use this switch if interval does not match the whole number of encoder counts.
Using this switch is recommended for any application that uses the PEG_I command,
regardless if interval matches the whole number of encoder counts.

> Valid numbers of the peg_engine parameter can be found in the #SI report. In case of
multiple network units, the first axis number of each node indicates the first PEG engine of
the node.

Example

See the Incremental PEG example in the PEG and MARK Operations Application Note.
Related ACSPL+ Commands

PEG_R, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_PegIncNT, acsc_WaitPegReady
24.6 PEG R

Description
The PEG_R command is used for setting the parameters for the Random PEG mode.
Syntax

PEG_R[/wid] peg_engine, width, mode, first_index, last_index, POS_ARRAY[, STATE_ARRAY, time_
based_pulses, time_based_period

Version 3.12 95

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
peg_engine The PEG engine number
width Width of the pulse in milliseconds
PEG state output signals configuration according to PEG_R.
Bits 0-3 relates the PEG State 0 of the specific PEG engine
Bits 4-7 relates the PEG State 1 of the specific PEG engine
mode Bits 8-11relates the PEG State 2 of the specific PEG engine

Bits 12-15 relates the PEG State 3 of the specific PEG engine
The most commonly used value is 0x4444 - PEG State Outputs 0-3 are
configured with the ‘State” option (bits 2, 6, 10, 14 are ON).

first_index Index of first entry in the array for PEG generation

last_index Index of last entry in the array for PEG generation
R The Random Event Positions array, maximum of 256/1024 members. If a
= longer array is required, use both PEG_R/d and ASSIGNPEG/f switches.
- Optional parameter - the Outputs States array defining the four PEG output
ARRA; states, maximum of 256/1024 members. If a longer array is required, use both
PEG_R/d and ASSIGNPEG/f switches.
time-based- Optional parameter - number of time-based pulses generated after each
pulses encoder-based pulse, the range is from 0 to 65,535.
Optional parameter - period of time-based pulses (milliseconds), the range is
time-based- from 0.00005334 to 1.7476.
period Time-based period must be at least pulse width + 26.6667 nsec (minimum
distance between two pulses).
Table 2-6. PEG Output Signal Configuration
PEG state output types:

“Three state” - PEG state outputis notin use
"State” - PEG state output will be changed according to the STATE_ARRAY values
“Pulse” - PEG state output will be changed according to PEG pulse value

"Pulse & State” - PEG state output will be changed according to the result of AND operation between
STATE_ARRAY values AND PEG pulse value

Pulse Polarity:
If positive or negative pulse is used as PEG pulse value for the specific “PEG State Output”
State Polarity:

If positive or negative state is used as PEG pulse value for the specific “PEG State Output”

Version 3.12 96

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Comments

>

If the switch /w is included, the execution of the command is delayed until the execution of
the STARTPEG command.

If the switch /iis specified, the PEG pulse output signal is inverted.

If the switch /d is specified, dynamic loading of positions is used. Dynamic loading can only
be implemented on a PEG engine with fast loading (ASSIGNPEG /f). In this case, , it allows
definition of a state-array which has more than 1024-members.

The parameters that can be set by the command differ from those that could be set for
SPiiPlusCM/SPiiPlusSA/SPiiPlus3U controllers with the addition of the new first_index and
last_index parameters.

When the PEG pulse is activated, the voltage between the two differential PEG outputs (+)
and (-) drops to -5V. When the PEG pulse is de-activated, the voltage between the two
differential PEG outputsis 5V.

In PEG_R, the number of position-based pulses is limited to eight pulses per controller cycle
and the minimum time interval must be >200nsec.

When using a Sin-Cos encoder, PEG is triggered at the zero crossing of the sine-cosine
waves and not at the precise interpolated position.

The last three arguments are optional. If STATE_ARRAY is omitted, the controller generates
the PEG pulses at each position but does not change the state of any output. If time-based-
pulses and time-based-period are omitted, the controller does not generate time based
pulses.

The dynamic loading feature is limited by the loading frequency. If a high loading frequency
is required, the loading capacity may not suffice to keep the FIFO loaded.

If the FIFO is emptied before all data arrays have been loaded, a memory overflow fault will
be thrown.

Valid numbers of the peg_engine parameter can be found in the #SI report. In case of
multiple network units, the first axis number of each node indicates the first peg engine of
the node.

Loading Frequency Table

CTIME (ms) Frequency (Hz)

1 200
0.5 400
0.25 800
0.2 1000

Example

See the Random PEG example in the PEG and MARK Operations Application Note.

Version 3.12 97

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

PEG_I, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG
Related ACSPL+ Variables

AST

COM Library Methods

None
C Library Functions

acsc_PegRandomNT, acsc_WaitPegReady
2.4.7 STARTPEG

Description

The STARTPEG command initiates the PEG process on the specified engine. The command is used in
both the Incremental and Random PEG modes by using /w switch in PEG_I or PEG_R command. If
this switch is included, the execution of the PEG_I and PEG_R commands is delayed until the
execution of the STARTPEG command.

Syntax
STARTPEG peg_engine

Arguments
peg_engine The PEG engine number

Comments

STARTPEG is a blocking command in the sense that the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.

If STOPPEG has been issued before the last PEG position, you have to use STARTPEG to resume PEG
engine firings from the current point.

Valid numbers of the peg_engine parameter can be found in the #SI report. In case of multiple
network units, the first axis number of each node indicates the first peg engine of the node.

Example

PEG I/w 0, 0.003, 1000, 1000, 3000, 2, 0.01
PTP 0, 3000 !The program initiates synchronous PEG, with PTP
!motion on axis 0.
WAIT 2 !Two milliseconds after motion starts, PEG
'will be initiated by STARTPEG
STARTPEG O

Related ACSPL+ Commands
ASSIGNPEG, ASSIGNPOUTS, STOPPEG
Related ACSPL+ Variables

AST

Version 3.12 98

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

COM Library Methods

None

C Library Functions

acsc_StartPegNT
2.4.8 STOPPEG

Description

The STOPPEG command terminates the PEG process immediately on the specified engine. The
command is used in both the Incremental and Random PEG modes.

Syntax
STOPPEG peg_engine
Arguments
peg_engine The PEG engine number
Comments

STOPPEG is a blocking command in the sense that the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.

Valid values of the peg_engine parameter can be found in the #SI report. In case of multiple network
units, the first axis number of each node indicates the first peg engine of the node.

Example

PEG I O, 0.003, 1000, 1000, 3000, 2, 0.01

PTP 0, 3000 !The program initiates synchronous PEG, with PTP
'motion on axis 0.
WAIT 2 !Two milliseconds after motion starts, PEG
'will be terminated by STOPPEG.
STOPPEG 0O
Related ACSPL+ Commands
ASSIGNPEG, ASSIGNPOUTS, PEG_I, PEG_R, STARTPEG
COM Library Methods
None

C Library Functions

acsc_StopPegNT

2.5 Miscellaneous Commands

The Miscellaneous commands are:

Version 3.12 99

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

AXISDEF Establishes an axis alias.
DC Activates data collection.
Returns the system back to the operational state if one or more slaves
SPINJECT
underwent a reset or power cycle.
READ Reads an array from a file in the flash memory.
SPDC Activates data collection from a Servo Processor variable.
SPINJECT Initiates the transfer of MPU real-time data to the Servo Processor.
STOPINJECT Stops the transfer of MPU real-time data to the Servo Processor.
STOPSPDC Terminate SPDC data collection
SPICFG Configure SPI Interface
Issues the SPI transaction with the number of SPI words to be sent and
SPIWRITE
received in a single transaction
SPRT Starts a real-time data transfer process from the MPU to a given Servo
Processor.
SPRTSTOP Stops an active real-time data transfer process on the given SP (for cyclic
command only).
STOPDC Terminates data collection.
WRITE Writes an array to a file in the flash memory.

2.5.1 AXISDEF

Description

The AXISDEF command enables the user to assign an alias to one or more axes. Once assigned, the
user can use the alias throughout the program in any command requiring an axis argument.

Syntax

AXISDEF axis_alias = axis

Version 3.12 100

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
Any string with the following restrictions:
> Only one name can be defined for one axis, that is, different names
cannot be used for the same axis.
. > The names must be unique, i.e., two axes cannot be defined with the
axis_alias
same name.
> Anaxis name must not be the same of any other variable name, [abel,
keyword, etc.
A compilation error occurs if one of the above restrictions is not satisfied.
The axis number, valid numbers are: 0, 1, 2, ... up to the number of axes in
. the system minus 1.
axis
Adding (R) to the axis parameter means G-Code run on the axis will ignore the
modality entry of G20.
Comments

The AXISDEF command can be repeated many times to define all required aliases.

The axis name must be defined in the D-Buffer. In any case, the axis definition has global scope (the
definitions of the same axis in a different program must be identical as applies to all global
variables).

Although postfix indexing can be used, it is recommended using explicit indexing and providing
names as symbolic constants.

Related ACSPL+ Commands

None

COM Library Methods

None

C Library Functions

None

Example 1

An axis name can be used in expressions as a symbolic constant. For example, given the program
includes the declaration:

AXISDEF Q=3

the following command

VEL (Q)=1000;

assigns 1000 to the required velocity of axis 3.

Version 3.12 101

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2

As user variables, axis-related standard variables accept explicit indexing. However, axis-related
standard variables also accept postfix indexing. For example, given a program that includes the
declaration:

AXISDEF 0=3, X1l=1, X2= 2

Example 3
Adding (R) to the axis parameter means G-Code run on the axis will ignore the modality entry of G20
in order to support axes driving a rotational motion with G-Code commands.

AXISDEF X=0,Y=1,2=2,2=5(R) ,B = 6(R),C=7

In this example axis 5 and axis 6 will ignore the modality entry of G20.

Explicit Indexing Postfix Indexing

VEL(3) or VEL(Q) VEL3
ACC(1) or ACC(X1) ACCI
SLVKI(2) or SLVKI(X2) SLVKI2

252 DC

Description

DC (Data Collection) accumulates data of any specified standard or user-defined variable with a
constant sampling rate. DC synchronized with motion (see Command Option /s) is called Axis Data
Collection. DC not synchronized with motion is called System Data Collection.

DC terminates due to:
> STOPDC
> Thedefined DCarray is completed
Syntax (except for DC/s)
DC[/switch] array_name, number of points, time-interval, variable_1, [variable_2...variable_N]
Syntax for DC/s

DC/s axis, global array, number of points, time-interval, variable_1, [variable_2...variable_N]

Arguments
global array The name of a global array that stores samples
nU{nber of Define the number of samples
points
time-interval Define the time interval between each sample

Version 3.12 102

variable 1

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Define variable/s to be sampled. The number of rows defined in array_name
must match the number of variables to be sampled

Switches

/switch can be one of the following:

Triggers DC with the execution of the next motion command following the call to

/s DC/s. Motions queued before the call to DC/S will not be recorded. DC synchronized
with motion is called Axis Data Collection.
Jw Create the synchronous data collection, but do not start until GO. Command option
/w can only be used with the /s.
/c Cyclic data collection
Comments

1. DCcaninclude up to 24 sampled variables.

2. Only one DC (system data collection) process can run at the same time.

3. Upto eight DC/s (axis data collection) processes can be simultaneously executed where
each process fills a separate array.

4. DC/cdoes not self-terminate. STOPDC terminates cyclic data collection.

5. DC/cuses the collection array as a cyclic buffer and can continue to collect data indefinitely.
When the array is full, each new sample overwrites the oldest sample in the array.

6. After the cyclic data collection concludes, the controller reorganizes the sample array so
that the first element represents the oldest sample and the last element represents the
most recent sample.

7. Variable S_ST.#DC = 1when non-synchronized DC s active.

8. Variable AST<axis>.#DC = 1when synchronized DCis active.

Related ACSPL+ Commands
STOPDC, SPDC
Related ACSPL+ Variables

S_ST, AST,S_DCN, S_DCP, DCN, DCP
COM Library Methods and .NET Library Methods
DataCollection, WaitCollecténd, StopCollect

C Library Functions

acsc_DataCollectionExt, acsc_WaitCollectend, acsc_StopCollect

Example 1:

Cyclic Data Collection

GLOBAL REAL ARRAY (2) (1000)

Version 3.12 103

https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_ACSPLprogrammer/Document/Axis_Data_Collection.htm

!Define a real type array for two variables

! (rows) and 1000 sampling points (columns) .
DC/C ARRAY, 1000, 3, FP0OS0, TIME

!Start cyclic data collection and store 1000

!'samples in ARRAY.

!The time between each sampling point is 3 msec.

!The FPOSO standard variable samples are stored
'in the first row of ARRAY, and the TIME
!variable values are stored in the second row.
TILL ~S_ST.#DC

!Wait until S ST.#DC = 0 (DC collection is

!finished) .
STOP

Example 2

Motion Synchronized Data Collection

GLOBAL REAL SAMPLE ARRAY (2) (1000)

ACSPL+ Commands & Variables Reference Guide

2. ACSPL+ Commands

!'Define a real type array for two variables
! (rows) and 1000 sampling points (columns) .

DC/S 0,SAMPLE ARRAY,1000,3,FPOS0O, TIME

!Start cyclic data collection when motion

! (synchronized on axis 0) begins, and store 1000
!samples in SAMPLE ARRAY. The time
!between each sampling point is 3 msec.

!The FPOSO standard variable samples are stored in
!the first row of SAMPLE ARRAY, and the TIME
!variable values are stored in the second row.

TILL "~AST(0) .#DC
'Wait until AST.#DC = 0
'finished) .

STOP

2.5.3 STOPDC
Description

Immediately terminates DC and SPDC.

Syntax
STOPDC/[/switch]

Version 3.12 104

(DC collection is

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Switch

/switch can be:
/s Terminate synchronized data collection

Comments
> STOPDC with an argument delays termination of DC.
> STOPDC/s terminates synchronous DCinitiated by DC/s.
> Multiple axis specification is not allowed.

Related ACSPL+ Commands

DC, SPDC

Related ACSPL+ Variables

S_ST, AST,S_DCN, S_DCP, DCN, DCP

COM Library Methods and .NET Library Methods

DataCollection, StopCollect, WaitCollectend

C Library Functions

acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectend

Example1
STOPDC 50 !Collect an additional 50 samples and then
!terminate DC.
Example 2
STOPDC/S 1 !Stop synchronous axis data collection for axis 1
2.5.4 READ
Description

Reads a file from the controller's nonvolatile (flash) memory to a user defined array or variable. The
file must exist in the nonvolatile memory by previously writing it using the WRITE command.

Syntax
READ array[,filename]

or

READ/s user-variable[, filename]

Switch

/s Specifies that the user variable is a scalar and not an array

Version 3.12 105

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
array User defined array to which the data will be imported
user-variable A scalar variable for use with the /s switch, can be either REAL or INT
filename Optional non-volatile memory file name.

Comments

1. The filename must not include a file name extension.
The filename maximum lenth is 100 chars.

The user-array name must be declared in the buffer where the command is executed.

ININWEN

The variable name may be declared in the buffer where the command is executed, or it
may be declared in the D-buffer.

5. IfREAD is executed from the Communication Terminal as a command, array must specify
the name of a global array.

6. If READ/s is executed from the Communication Terminal as a command, variable must
specify the name of a global variable.

7. If the optional file name is not supplied, the variable name will be used as the file name.
The following error is supported:
> Error 3333 “File name MAX length is 100 chars”
Related ACSPL+ Commands
WRITE
COM Library Methods
Transaction
C Library Functions

acsc_Transaction

Examples
GLOBAL REAL ARRAY (5) !Define a real global array
READ ARRAY, FILENAME !Read the defined file to the array

GLOBAL INT VAR !Define an integer global variable
READ/s VAR, FILENAME !Reads from file to the variable(scalar)
STOP

255 SPDC

Description

SPDC (Servo Processor Data Collection) performs fast data collection and accumulates data about
the specified Servo Processor variable with a constant maximum sampling rate of 20kHz. A typical

Version 3.12 106

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

use for SPDC s for collecting position error (PE) and feedback position (FPOS) data at the fast Servo
Processor rate.

The Servo Processor value is different from the MPU value. The Servo Processor always uses counts
and not units. The Servo Processor position value is not affected by a SET FPOS command. An offset
is added at the MPU level only. The formula (that you can find in our manuals) is:

FPOS = FP*EFAC + EOFFS
where FPOS is the MPU variable and FP is the Servo Processor calculated value.
SPDC terminates due to:
> STOPDC

> After accumulating the defined number of samples

Syntax
SPDC/[/r] Array, number_of_samples, sampling_period, SP_number, SP_Address]1, [SP_Address2]
Arguments
Array name, up to XARRSIZE variable value.
Array By default, Array is assumed to be an integer array, if the /r

switch is added, it defines the array as real.

The number of samples to collect, the maximum value depends

number_of_samples on the size of the array.

sampling_period The time, in millisecords, that each sample is taken.
SP_number The number of the Servo Processor to be sampled

The address of the Servo Processor variable in the Servo

SP_Address1
Processor to sample.

As an option, you can add another address of an other Servo
SP_Address2 Processor variable in the Servo Processor to sample. In this case,
the array should be defined as (2)(N)

As an option, you can add another address of an other Servo
SP_Address3 Processor variable in the Servo Processor to sample, In this case,
the array should be defined as (3)(N).

As an option, you can add another address of an other Servo
SP_Address4 Processor variable in the Servo Processor to sample. In this case,
the array should be defined as (4)(N)

Version 3.12 107

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Since memory addresses may vary between SPiiPlus products and revisions, it is highly
% recommended to define a variable to represent SP_Address as the return value of
7 GETSPA.SPDC can then use this variable in any SPiiPlus product or revision.

Related ACS
STOPDC

Comments

PL+ Commands

Only one SPDC command per Servo Processor can run at the same time.

ACC (0)
DEC (0) =
JERK (0)

SET FPOS
ENABLE O

Table 2-7. Commonly Monitored SPDC Variables

Position Error
Feedback Position
Feedback Velocity
Sin Analog Input
Cos Analog Input
Phase A Current
Phase B Current

Current Command

0,123

0,123

0,123

0,123

0,123

0,123

0,123

0,123

[cocoosoososs Declare data arrays
GLOBAL INT DATA (15000)
!Declare global array of integer of size 15000
REAL PAR ADDRESS
PAR ADDRESS=GETSPA (0, "axes[0] .PE")
—————— Defing mMotilion PAEEMEtErg-—mrmososrsosoo oo s oo oo o=

5000

= 100000

100000
=2e6

(0) =0

SPDC DATA,15000,0.05,0, PAR ADDRESS

PTP/e O,
PTP/e O,
PTP/e O,
!Use the

Version 3.12

1000
-1000
1000

axes[0].PE
axes[0].fpos
axes[0].fvel
axes[0].sin
axes[0].cos
axes[0].is
axes[0].it

axes[0].command

following if you need to convert the data to one column to

108

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

lexport to Excel (otherwise you can collect 30000 points by SPDC above)
!Convert the array data from one row to one column to fit to export to
Excel.

!'INT DATAL (15000) (1)

'INT J; J=0
!LOOP 15000;DATAL (J) (0)=DATA (J) ; J=J+1;END
STOP

Since memory addresses may vary between SPiiPlus products and revisions, it is highly
recommended to define a variable to represent SP_Address as the return value of GETSPA. SPDC
can then use this variable in any SPiiPlus product or revision.

SP_number may be set to 2 at most for most ACS products. The following products support sampling
of up to 4 variables:

> |[MDsm

> ECMsm

> UDMsm

> |DMsa

> ECMsa

> UDMsa
Related ACSPL+ Commands
STOPDC

2.5.6 STOPSPDC

Description

The STOPSPDC function Immediately terminates the data collection of SPDC (Servo processor data
collection) for the specified servo processor.

Syntax
STOPSPDC SP number

Arguments
SP_Number The number of the Servo Processor.

Return Value
None
Comments
The following errors are supported:
> 3034 -"lllegal index value"

NST.#SPDC bit is set to off (for the relevant server processor)

This variable is supported in version 3.10 and higher.
Related ACSPL+ Commands
SPDC

Version 3.12 109

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Variables
NST.#SPDC

Example

STOPSPDC1 !Stop Data Collection for Servo Processor 1

2.5.7 WRITE

Description

Writes an array or scalar (any system or user-defined variable) to a file in the controller's nonvolatile
(flash) memory.

Syntax
WRITE user-array][, filename]

WRITE/s user-array|, filename]

Switch
/s Specifies that the user variable is a scalar and not an array
Arguments
user-array User defined array from which the data will be imported
user-variable User defined scalar variable, can be either REAL or INT
filename Optional non-volatile memory file name.
Comments

1. The nonvolatile memory filename must not include an extension.

2. The user-array or user-variable name must be declared in the buffer where the command
is executed or it may be declared in a D buffer.

3. If WRITE is executed from the Communication Terminal as a command, user-arraymust
specify the name of a global array.

4. If WRITE/s is executed from the Communication Terminal as a command, user-variable
must specify the name of a global scalar variable.

5. If filename does not exist, it is created. If the file already exists, it is overwritten.
6. If the optional file name is not supplied, the variable name will be used as the file name.
The following error is supported:
> Error 3333 “File name MAX length is 100 chars”
Related ACSPL+ Commands
READ
COM Library Methods

Transaction

Version 3.12 110

C Library Functions

acsc_Transaction

2.5.8 SPINJECT

Description

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

SPINJECT initiates the transfer of MPU real-time data to the Servo Processor.

Syntax

SPINJECT([/switch] Array,Nsamples,Node,Addr1,[Addr2])

Arguments

Array

Nsamples

Node

SP_Address1

SP_Address2

SP_Address3

SP_Address4

Switches

Data source: 1or 2 dimensional ACSPL+ array (real or integer).

Number of samples from the source Array to inject. If the process
is not cyclic, the injection will stop after this number of samples.
The last telegram will be padded by the last element if needed.

The number of the EtherCAT node as in Servo Processor data
collection.

Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program.

Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 2 dimensional.

Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 3 dimensional.

Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 4 dimensional.

/switch can be one of the following:

Cyclic: For each MPU cycle the FW fills CTIME*20 values from the source Array. Once

c . .
/ the end is reached, the process continues from the start.
/r Designates a real source.
Examples

IMYDCOM is RT control of DCOM for axis 0O inside Servo Processor O

REAL MYDCOM (20)

Version 3.12

20 values are used for CTIME = 1.0

m

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

! Initialize MYDCOM here to the desired values
|

SPINJECT/CR MYDCOM, 20, 0,getspa (0, ”axes[0].direct command”)

2.5.9 STOPINJECT

Description

STOPINJECT stops active injection process on the given Servo Processor.

Syntax

STOPINJECT Servo_Processor

Arguments
Servo_ Identifies the Servo Processor upon which the injection process is
Processor operating.

Example

STOPINJECT 1
!Stops the injection process on Servo Processorl

2.5.10 SPICFG

Description

SPICFG configures and initializes the SPI interface.

Syntax

SPICFG (Slavelndex, Mode, NumberOfWords, Polarity,Size,Frequency)

Arguments
Slavelndex Index of the EtherCAT slave in the EtherCAT network, or 0 in case of
IDMsm/ECMsm/UDMsm
The mode of the SPI interface. The following modes are supported:
> 0-Slave
> 1-Master
Mode

> 2-SlavelistenOnly

> 3-Disable

> 4 - Master Single Transaction (Used by ACSPL+ SPIWRITE)
Number of SPI Data Words used by the application (FW to SPI).

NumberOfWords Range:{0,8}
Not relevant in case of Master Single Transaction Mode

Clock Polarity.

Polarity

Four types are available:

Version 3.12 12

Size

Frequency

Frequency Values Supported

Return Value
None

Comments

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> Rising Edge -0
> Rising Edge with Delay -1
> Falling Edge - 2
> Falling Edge with Delay - 3

Data size in bits, the range is {1-16}.

An integer number which defines the frequency. The range is
200KHz-10MHz, limited values are supported (defined in the table
below).

Frequencey (kHz)

2 800

3 1000
4 1500
5 2000
6 2500
7 3000
8 3500
9 4000
10 5000

When the SPI interface is not required anymore, SPICFG should be called with Mode=3 (disable)

parameter.

Example

Version 3.12

3

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.5.10.1 SPIWRITE

2.5.11 SPIWRITE

Description

SPIWRITE is a function that issues the SPI transaction with the number of SPI words to be sent and
received in a single transaction.

The function may be used in two modes: Slave and Single Master Transaction

Syntax
int SPIWRITE(Slavelndex, NumberOfWords,SPIDataWrite,SPIDataRead, TimeOut)
Arguments
Index of the EtherCAT slave in the EtherCAT network, or 0 in case of
Slavelndex
IDMsm/ECMsm
NUMberofwords Number-of SPI Data Words to be sent/received in the single
transaction. Range: {0,8}
SPIDataWrite INT array. Size must be number of words.
SPIDataRead INT array. Size must be number of words.
(Optional) integer, specifies the timeout in milliseconds. Relevant
Timeout only in case of slave mode.

Default value is 5000.

Return Value
STATUS value, OK (0) or error.
Comments

Master mode behavior:

The data in the SPIDataWrite arraywritten to the SPI interface.
The SPIDataRead array contains the reply data.

The function blocks until the reply is ready (when number of received words is equal to the
NumberOfWords parameter.

Slave mode behavior:

The data in the SPIDataWrite array is written to the EXTOUT variable (and copied to the SPI
interface). The SPIDataRead array contains the reply data. The function will wait until one of the
following conditions is true:

1. SPIRXN equals to NumberOfwWords parameter
2. Timeoutis reached

3. Error stateis returned The function returns

Version 3.12 14

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

int SPIDataWrite (8)
int SPIDataRead (8)

int i=0

SPICFG(0,4,8,0,16,6) !Master Single Transaction Mode

loop 8
SPIDataWrite (i)=1i+1
i=i+1
end
SPIWRITE (0,8, SPIDataWrite, SPIDataRead)
STOP
2.5.12 SPRT
Description

This function starts a real-time data transfer process from the MPU to a given Servo Processor.

Syntax
SPRT[/c] SP, Value_Array, Addr_Array
Switches
/c Cyclic.For each MPU cycle, the firmware fills values from the source arrays.
Arguments
SP Number of the Servo Processor to be used for real-time data transfer.
Data source, 1-dimensional ACSPL+ real array
Ll > Upto 20 values for CTIME >= 0.50
Array

> upto12values for 0.20 <= CTIME < 0.50

Array of addresses inside that Servo Processor. It must correspond to the float
Addr_Array or integer variable in the Servo Processor's program, as well as to the Value_
Array values order and size.

Comments

The SPRT command cannot be used in parallel with the SPINJECT command for the
% same Servo Processor.

The SPRT command can be used for simultaneous and deterministic update of 12-20 Servo
Processor variables at the controller cycle rate.

Version 3.12 15

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Itis superior to the SETSP command that can only update one Servo Processor variable in each
controller cycle and cannot be used for continuous update (every controller cycle).

For example, assume that the PIV gains (SLPKP, SLVKP, SLIKI) need to be updated simultaneously
and frequently for gain scheduling. Even if the variables are set in the same program line, or with a
block command, the controller still updates one Servo Processor variable every controller cycle. Each
of the parameters SLVKP, SLPKP, SLVKI has three values according to the motion phase (O=motion,
1=idle, 2= settling) and the corresponding idle and settling gains.

If this is not needed, you could simply set the three values equal for each parameter. The update is
completed within several controller cycles, that can influence the system performance.

However, using SPRT, the internal Servo Processor variables can be updated simultaneously within
one cycle.

Note that SPRT affects only Servo Processor variables i.e. corresponding ACSPL+ variables don't
change.

Example1

GLOBAL REAL Value (9)

INT Address(9)

INT Axis

GLOBAL REAL SLPKP value, SLVKP value, SLVKI value

Axis = 0
! Finding the relevant addresses can be done as one time operation
! (No need to re-use GETSPA prior to each update).

Q

% Adress of the Servo Processor SLVKP parameter used during motion

Address (0) = getspa(0,"axes[0] .params[0] .SLVKP")

% Adress of the Servo Processor SLVKP parameter used in idle state
Address (1) = GETSPA (0, "axes[0] .params[1].SLVKP")

% Adress of the Servo Processor SLVKP parameter used during settling
Address (2) = GETSPA (0, "axes[0] .params[2] .SLVKP")

Address (3) = GETSPA (0, "axes[0] .params[0] .SLPKP")

Address (4) = GETSPA (0, "axes[0] .params[1l].SLPKP")

Address (5) = GETSPA (0, "axes[0] .params[2] .SLPKP")

Address (6) = GETSPA (0, "axes[0] .params[0] .SLVKI")

Address (7) = GETSPA(0,"axes[0] .params[1].SLVKI")

Address (8) = GETSPA (0, "axes[0].params[2] .SLVKI")

BLOCK

! SLPKP=SLPK value, SLVKP=SLVKP Value, SLVKI=SLVKI value must be set
! simultaneously.
! The following lines calculate the corresponding dsp variables:

! Desired ACSPL parameters:
! Desired SLVKP value

SLVKP value = 100
! Desired SLPKP value
SLVKP value = 50

! Desired SLVKI value

Version 3.12 16

SLVKP value

SPRTSTOP SP
commands for the same SP
SPRT/C SP, Value,

Version 3.12

10

Translate the ACSPL+ variables to the low level Servo Processor
variables and store them in an array
SLVKP value /1024/32766*20000*SAT (POW (2, 21) /XVEL (Axis) *EFAC

Value (0)
Value (0)
SLPKP_value /20000

Value (3)

0;

BLOCK

= Value (3)
SLVKI value /POW(2,16)
Value (6)
Value (6)

The following command performs the update:
SPRTSTOP 0;

Value, Address

Real-Time MPU-Servo Processor Data Transfer (Cyclic)
REAL Value (2)
INT Address (2)

Value (1)
GETSPA (SP,
GETSPA (SP,

For making sure there is no previously running SPRT

Value (0)
Value (1)

i =

IF (i

i1 =
END

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

"dummy double[1]");
"dummy double[2]");

Address

Example 3

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

! Real-Time MPU-Servo Processor Data Transfer

REAL Value (2)
INT Address (2)

INT SP;

INT i

SP = 0;

i=0;

Value (0) = 0; Value(l) =
Address (0) = GETSPA(SP,
Address (1) = GETSPA (SP,

SPRTSTOP SP ! For making
commands for the same SP

19;

"dummy double[1]");
"dummy double[2]");

sure there is no previously running SPRT

while 1
BLOCK
Value (0) = 1
Value (1) = (20 - 1)
i=1+1
IF (i = 20)
i =0
END
SPRT SP, Value, Address
END
END
STOP

2.5.13 SPRTSTOP

Description

SPRTSTOP stops an active real-time data transfer process on the given SP (for cyclic command only).

Syntax
SPRTSTOP SP

Arguments

SP

2.6 Motion Commands

The Motion commands are:

Number of the EtherCAT node as in SP data collection.

ARCI

ARCI

Version 3.12

Adds an arc segment to MSEG...ENDS motion.

Adds an arc segment to XSEG...ENDS motion.

18

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ARCI

ARC2

ARC2

ARC2

BPTP

BSEG...ENDS

JOG

LINE

LINE

LINE

MASTER

MPOINT

MPTP...ENDS

MSEG...ENDS

PATH...ENDS

POINT

PROJECTION

PTP

PVSPLINE...ENDS

SLAVE

Version 3.12

Adds an arc segment to BSEG...ENDS motion
Adds an arc segment to MSEG...ENDS motion.
Adds an arc segment to BSEG...ENDS motion
Adds an arc segment to XSEG...ENDS motion
Creates a motion boost profile

Creates a blended segmented motion.
Creates a jog motion.

Adds a linear segment to MSEG...ENDS motion.
Adds a linear segment to XSEG...ENDS motion.
Adds an liners segment to BSEG...ENDS motion
Defines a formula for calculating MPOS.

Adds a set of points to MPTP...ENDS, PATH...ENDS or
PVSPLINE...ENDSmotion.

Creates a multipoint motion.
Creates a segmented motion.

Creates an arbitrary path motion with linear interpolation between
the specified points.

Adds a point to MPTP...ENDS, PATH...ENDS, or PVSPLINE...ENDS
motion.

An expansion command to the MSEG...ENDS set of commands, that
allows the controller to perform a three dimensional segmented
motion such as creating arcs and lines on a user-defined plane.

Creates a point-to-point motion.

Creates an arbitrary path motion with spline interpolation between
the specified points.

Creates a master-slave motion.

19

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

STOPPER Adds a segment separator to MSEG...ENDS motion.

TRACK Creates tracking motion.

XSEG...ENDS Creates an extended segment motion.

NURBS Creates NURBS motion

NPOINT Creates NURBS motion segment

SPATH Creates SmoothPath motion

SEGMENT Creates SmoothPath motion segment

SMOVE Define segment of movement with transition point smoothing

For systems having more than 15 axes, avoid using motion commands to start the
motion of all axes simultaneously as this may cause Over Usage or Servo Processor

Alarm faults

2.6.1 ARCIT

Description

ARC1 must be initialized with MSEG...ENDS. Use ARC1 to specify the center point and final point
coordinates of an arc and the direction of rotation. Direction is designated by a plus sign (+) or (-) for
clockwise or counterclockwise rotation depending on the encoders’ connections.

Final point coordinates — o
Center point coordinates i
Initial point coordinates or
end of previous sagmnt-ﬁﬂﬂ
Figure 2-5. ARC1 Coordinate Specification

Syntax

ARC1 axis_list, center-point, final-point, direction[,user-specified velocity]

Version 3.12 120

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments
List of axes involved, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.
The ARC1 axis_list can involve two or more axes, see PROJECTION.
axis_list
A minimum of two axes must be specified.
center-point Center point coordinates.
final point Last point.
N Use + for motion in the direction of increasing encoder counts, or - for
direction . o .
motion in the direction decreasing encoder counts.
user- . . o .
e If MSEG command option /v is used, the user-specified velocity must be the
specified .
. last parameter in the ARC1 syntax.
velocity
Comments

> ARCl and ARC2 differ only by the required arguments. ARC1 requires the coordinates of the
center point, final point, and the direction of rotation. ARC2 requires the coordinates of the
center point and the rotation angle in radians. Each command produces the same result, so
selection of either ARC1 or ARC2 depends on the available data.

> Asingle ARC1 command can not create a complete circle because the start point and end
point of the motion can not be the same. Use two ARC1 commands, or use ARC2.

Related ACSPL+ Commands

MSEG...ENDS, ARCZ2, LINE, STOPPER, PROJECTION
COM Library Methods

Arcl, ExtArcl

C Library Functions

acsc_Arcl, acsc_ExtArcl

Example

See MSEG...ENDS.

2.6.2 ARC1

Description

Use ARC1 to specify the center point and final point coordinates of an arc and the direction of
rotation. Direction is designated by a plus sign (+) or (=) for clockwise or counterclockwise rotation
depending on the encoders’ connections. When ARCl is used for Extended Motion, it must be
initialized with XSEG...ENDS.

Version 3.12 121

Syntax

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ARC1 [/switches] (axis_list), center_point_axisl, center_point_axis2, destination_point_axis]1,
destination_point_axis2, [destination_point_axis3, ... destination_point_axis6,] direction|, velocity]
[,end_velocity][,time][,values, variables[,index [,masks]l][, [ci_segment_active]

Arguments

axis_list

center_point_

axisl

center_point_

axis2

destination_
point_axis1

destination_
point_axis2

destination_
point_axis3

destination_
point_axis6

direction

velocity

end_velocity

time

Version 3.12

Defines one or two axes, specified as axes numbers separated by
COMMas or as axes names separated by commas. The axes should only
be those axes specified in the corresponding XSEG command.

Center point position for the first axis

Center point position for the second axis

Destination position of the first axis

Destination position of the second axis

Mandatory only if AXIS_LIST contains more than 2 axes.

Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in the AXIS_LIST.

Direction is specified as + or -. It defines clockwise or counterclockwise
rotation depending on the encoder connection: “+" for motion in the
direction of increasing encoder counts, or “-” for motion in the direction
decreasing encoder counts.

[Mandatory with /V switch].

Defines required velocity for the current and for all subsequent
segments. See Using ARC1, ARC2 and LINE Switches

[Mandatory with /F switch].

Defines required velocity at the end of the current segment. See Using
ARC1, ARC2 and LINE Switches.

[Mandatory with /T switch].

122

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Defines segment processing time. See Using ARC1, ARC2 and LINE
Switches.

[Mandatory with /0 switch].

Defines the values to be written to variables array at the beginning of
the current segment execution. valuesis a one-dimensional user
defined array of integer or real type with maximum size of 10 elements .

values

[Mandatory with /0 switch].

. Defines the user-defined array, which will be written with values data at
variables the beginning of the current segment execution. variablesis a one-
dimensional user defined array of the same type and size as the values
array.

[Optional, only used with /0 switch]

Defines the first element (starting from zero) of the variables array, to
which values data will be written. If argument is omitted, values data is
written to the variables array starting from the first element (index 0).

index

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are

written to variables array at the beginning of the current segment

execution. masks is a one-dimensional user-defined array of integer

type and the same size as the values array. The masks are only applied
masks for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask
()

If argument is omitted, all values bits are written to variables.

If valuesis a real array, the masks argument should be omitted.

[Mandatory with /p switch]
. Integer value. Fire LCl State or Pulse at the beginning of current segment.
IC|_.segment_ The function is available if the LCI segment-based mode was previously
active defined by the SegmentGate or SegmentPulse functions. The value

defines the state value in SegmentGate mode (1 or 0). In SegmentPulse
mode the value equal 1.

For information on optional switches for this command, see Using ARC1, ARC2 and LINE
=—] Switches.

Version 3.12 123

ACSPL+ Commands & Variables Reference Guide

2. ACSPL+ Commands

2.6.3 ARCI

This format of ARCT is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and ends in the destination point with the specified center point.

Syntax
ARC1[/switches] (axis_list),

center_point_axisl,center_point_axis2,
destination_point_axisl,destination_point_axis2, direction
[,segment_time [,acceleration_time [jerk_time [,dwell_time]]]]

Arguments

Argument

axis_list

center_point_axis1
center_point_axis2
destination_point_axis1

destination_point_axis2

direction

segment_time

acceleration_time

Jerk_time

dwell_time

Version 3.12

Commments

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

Center point position for the first axis
Center point position for the second axis
Destination position of the first axis
Destination position of the second axis

Direction is specified as + or -. It defines clockwise or
counterclockwise rotation depending on the encoder
connection: “+" for motion in the direction of increasing encoder
counts, or “-" for motion in the direction decreasing encoder
counts.

Only if switch/m is specified: Segment time (Ty,) in milliseconds.

Only if switch/a is specified: Acceleration time (T3) in
milliseconds.

Only if sufswitchfix /s is specified: Jerk time (T;) in milliseconds

Only if sufswitchfix /d is specified: Dwell time at the final point of
the segment in milliseconds.

With this switch no blending will be done at the segment final
point.

124

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.4 ARC2

Description

ARC2 must be initialized with MSEG...ENDS. Use ARC2 to specify the center point and rotation angle
in radians of an arc segment. Designate direction by positive or negative rotation angle, depending
on the encoders’ connections.

Rotation angle (radians)
Cenler point coordinates —

Inifial point coordinates ur/
end of previous segment

Figure 2-6. ARC2 Center Point and Rotation Angle Specification

Syntax
ARC2 axis_list, center-point, rotation-angle and direction [,user-specified velocity]
Arguments
List of axes involved, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.
L The ARC2 axis_list can involve two or more axes, see PROJECTION.
axis_list
A minimum of two axes must be specified.

center-point center point coordinates

final point last point

rotation Rotation is in radians. Use + for motion in the direction of increasing encoder

angle and . . .

L counts, or - for motion in the direction decreasing encoder counts
direction
user-
pe If MSEG command option /v is used, the user-specified velocity must be the
specified .
. last parameter in the ARC2 syntax.

velocity

Comments

ARC1and ARC2 differ only by the required arguments. ARCI requires the coordinates of the center
point, final point, and the direction of rotation. ARC2 requires the coordinates of the center point and
the rotation angle. Each command produces the same result, so selection of either ARC1 or ARC2
depends on the available data.

See Using ARC1, ARC2 and LINE Switches for details about function switches.

Version 3.12 125

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

MSEG...ENDS, ARC], LINE, STOPPER, PROJECTION
COM Library Methods

Arce, ExtArc2

C Library Functions

acsc_Arc2, acsc_ExtArc2

Example

See MSEG...ENDS.

2.6.5 ARC2

Description

This format of ARC2 is used for extended segment motion and in this form must be initialized with
XSEG...ENDS . Use ARC2 to specify the center point and rotation angle in in radians of an arc
segment. Designate direction by positive or negative rotation angle, depending on the encoders’

connections.

Syntax

ARC2[/switches] (axis_list), center_point_axisl,center_point_axis2, rotation_angle, [,destination_

point_axis3, ...

destination_point_axis6][,velocity][,end_velocity][,time][,values, variables[,index[,masks]]]
[,external_loop_type, external_loop_type, maximum_allowed_deviation]], lci_segment_active]

Arguments

axis_list

center_point_
axis1

center_point_
axis2

destination_

point_axis3

destination_
point_axis6

Version 3.12

List of axes numbers separated by comma or as axes names separated
by comma. The axes should only be those axes specified in the
corresponding XSEG command.

A minimum of two axes must be specified.

Center point position for the first axis

Center point position for the second axis

Mandatory only if axis_list contains more than 2 axes.
Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in the axis_list.

126

rotation_angle

velocity

end_velocity

time

values

variables

index

masks

Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Defines central angle of the arc, signed according to rotation direction:
plus for a counter-clock-wise arc, minus for a clock-wise arc.

[Optional, only used with /v switch]

Defines required velocity for the current and for all subsequent
segments. See Switches explanation for details.

[Optional, only used with /f switch]

Defines required velocity at the end of the current segment. See
Switches explanation for details.

[Mandatory with /t switch].
Defines segment processing time.

[Optional, only used with /o switch]

Defines the values to be written to variables array at the beginning of
the current segment execution. values is a one-dimensional user
defined array of integer or real type with maximum size of 10 elements .

[Optional, only used with /o switch]

Defines the user-defined array, which will be written with values data at
the beginning of the current segment execution. variablesis a one-
dimensional user defined array of the same type and size as the values
array.

[Optional, only used with /o switch]

Defines the first element (starting from zero) of the variables array, to
which values data will be written. If argument is omitted, values data is
written to the variables array starting from the first element (index 0).

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are
written to variables array at the beginning of the current segment
execution. masks is a one-dimensional user-defined array of integer
type and the same size as the values array. The masks are only applied
for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask
(n)

If argument is omitted, all values bits are written to variables.

If valuesis a real array, the masks argument should be omitted.

127

external_loop_

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

0 - Cancel external loop
1- Smooth External loop (line-arc-line)

type 2 — Triangle External loop (line-line-line)
minimum_ If the lengths of both segments are more than this value, the skywriting
segment_length algorithm will be applied.
LR ILIUE The parameter limits the external loop deviation from the defined
allowed_ . . . o

.- profile. If the value is negative — no limitation.
deviation

[Mandatory with /p switch]

. Integer value. Fire LCl State or Pulse at the beginning of current
lu_;egrnent_ segment. The function is available if the LClI segment-based mode was
active previously defined by the SegmentGate or SegmentPulse functions. The

value defines the state value in SegmentGate mode (10or 0). In
SegmentPulse mode the value equal 1.
Switches

The following optional /switches may be used singularly or in combination with the ARC2 command:

/v

/f

/0

/b

/p

Version 3.12

Specify required velocity.

The switch requires an additional parameter that specifies the required velocity.
The switch changes the required velocity for the current segment and for all
subsequent segments.

If the switch is not specified, the required velocity does not change.

Decelerate to the end of segment.

The switch requires an additional parameter that specifies the end velocity. The
controller decelerates to the specified velocity at the end of segment. The specified
value should be less than the required velocity; otherwise the parameter is
ignored. The switch affects only one segment.

The switch also disables corner detection and processing at the end of segment.

If the switch is not specified, deceleration is not required. However, in special cases
the deceleration might occur due to corner processing or other velocity control
conditions.

Synchronize user variables with segment execution. The switch requires additional
two or three parameters that specify values, user variable and mask. See details in
Arguments for explanation.

Use external loops at corners. The switch requires additional parameters that
specify the external loop type, the minimum segment length, and the maximul

allowed deviation from profile.

Specifies that the Ici_segment_active parameter is required

128

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.6 ARC2

This format of ARC2 is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and specified as the center point and rotation angle.

Syntax

ARC2[/switches] (axis_list),
center_point_axisl,center_point_axis2,
rotation_angle

[,segment_time [,acceleration_time [jerk_time [,dwell_time]]]]

Arguments

Arguments Comments

Defines one or two axes, specified as axes numbers separated
- by comma or as axes names separated by comma. The axes

axis_list e .
should only be from those axes specified in the corresponding
BSEG command.

center_point_axis1 Center point position for the first axis

center_point_axis2 Center point position for the second axis
Defines central angle of the arc, signed according to rotation

rotation_angle direction: plus on counter-clock-wise arc, minus on clock-wise
arc.

segment_time Only if switch/m is specified: Segment time (Tr,) in milliseconds.

. . Only if switch/a is specified: Acceleration time (T3) in

acceleration_time -
milliseconds.

Jerk_time Only if switch/s is specified: Jerk time (Tj) in milliseconds

Only if switch/d is specified: Dwell time at the final point of the
segment in milliseconds.

dwell_time
With this switchno blending will be done at the segment final
point.
2.6.7 BPTP
Description

BPTP defines a motion profile using the MotionBoost Feature.
Syntax

BPTP[/switch] axis_list, destination_point, [value of Tf, value of Vf, motor_motion_delay]

Version 3.12 129

Switches

None

/t

/d

/f
/e
Ir
/v
/w

/z

/m

/q

Travel time will be calculated by the MPU to achieve a the minimum
possible time

Minimum travel time in seconds, The calculated travel time will be at least
the specified value. Incompatible with the /d switch.
Travel Time - specifies the exact travel time for the motion in seconds.

All other considerations are ignored, which could cause a safety fault
during motion execution.

Incompatible with the /t switch.

User will enter final, nonzero velocity

Wait for motion termination before executing next command.

Relative motion

Use velocity parameter instead of default velocity parameters.

Create the motion, but to not start until the GO command is issued.
Interpret entered coordinates according to the Local Coordinate System.

Use the motion profile values of the axis group as a whole, rather than
those of the leading axis, without exceeding any of the defined axes
motion VEL, ACC, DEC, JERK values. Not compatible with /2 switch. Range
is 0-25 ms.

Defines actual motor movement delay in microseconds. The delay
resolution is 50 microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=Tms or
20ms for CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified
delay, while motion profile generation (APOS) s