
ACSPL+ Commands & Variables

Reference Guide
May 2022

Document Revision: 3.12

ACSPL+ Commands & Variables

Release Date: May 2022

COPYRIGHT

© ACS Motion Control Ltd., 2022. All rights reserved.

Changes are periodically made to the information in this document. Changes are published as release notes and later
incorporated into revisions of this document.

No part of this document may be reproduced in any form without prior written permission from ACS Motion Control.

TRADEMARKS

Windows and Intellisense are trademarks of Microsoft Corporation.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Any other companies and product names mentioned herein may be the trademarks of their respective owners.

PATENTS

Israel Patent No. 235022
US Patent Application No. 14/532,023
Europe Patent application No.15187586.1
Japan Patent Application No.: 2015-193179
Chinese Patent Application No.: 201510639732.X
Taiwan(R.O.C.) Patent Application No. 104132118
Korean Patent Application No. 10-2015-0137612

www.acsmotioncontrol.com

support@acsmotioncontrol.com

sales@acsmotioncontrol.com

NOTICE

The information in this document is deemed to be correct at the time of publishing. ACS Motion Control reserves the right to
change specifications without notice. ACS Motion Control is not responsible for incidental, consequential, or special damages
of any kind in connection with using this document.

2Version 3.12

ACSPL+ Commands & Variables Reference Guide

http://www.acsmotioncontrol.com/
mailto:support@acsmotioncontrol.com
mailto:sales@acsmotioncontrol.com

Revision History
Date Revision Description

May 2022 3.12
New Release, Error mapping, FOE, Modulo, other
functions

February 2022 3.11.01.06 Corrections to ARC1, ARC2, LINE, switches

February 2022 3.11.01.05 Corrections to PRATE

January 2022 3.11.01.04 Correction to HOME entry, INTERUPTEX correction

January 2022 3.11.01.03 Remove SET/GETCONF(29)

December 2021 3.11.01.02
Remove AERR
peg_engine instead of axis in PEG_I, PEG_R, etc.

December 2021 3.11.01.01

Document /q switch for XSEG, PTP, other motion
commands
Local Coordinates function explanations
XSEG example

November 2021 3.11.01
PEG & MARK Improvements, MFLAGSX.#SATPROT,
AIN/AOUT corrections

September
2021

3.11 New and updated functions with ADK Release

June 2021 3.10.01 Formatting Corrections, ASSIGNPOUTS for XXMsa

April 2021 3.10

SLCRAT, SLVRAT corrections
Note M&S State for MSTIMEA/B/C
Document SET/GETCONF(270)
Changes for V3.10

December
2020

3.03 INSHAPEON example if CTIME<1

September
2020

3.02 Remove reference to obsolete SPiiPlus PCI device

July 2020 3.01 Fix Error Tables

June 2020 3.00 Changes supporting ADK v3.00

September
2019

2.70.10 Corrections to XCURV, XCURI and related variables

3Version 3.12

ACSPL+ Commands & Variables Reference Guide

Date Revision Description

July 2019 2.70.02 SLCPA is obsolete, removed from documentation

June 2019 2.70.01
Formatting corrections, examples for functions, fixed
links for system configuration variables, moved
stepper loop variables to servo loop section

April 2019 2.70
GCODE Errors
Many new functions, commands, and variables for
new features. See version 2.70 release notes.

October 2018 2.60.10

Updated AST bits for laser and SLEC module

Added FOLLOW, UNFOLLOW, EXTFAC, FOLLOWCH

Added error code 5042 to the list of motion
termination errors

July 2018 2.60 Updated for SPiiPlus ADK Suite v2.60

January 2018 2.50.01 Added laser control commands and functions.

December 2017 2.50 Updated for SPiiPlus ADK Suite v2.50

September
2017

2.40.01 Updated SETSP function.

June 2017 2.40 Updated for SPiiPlus ADK Suite v2.40

December 2016 2.30.02 Removed unsupported ServoBoost variables

October 2016 2.30.01
Added support for Absolute Encoders to SLPROUT,
SLVROUT, SLCROUT Replaced references to acsc_Write
and acsc_Read with acsc_Transaction

September
2016

2.30.10

Changed LINE1 to LINE, ARC2 to ARC1, ARC3 to ARC2,
and ARC4 to ARC2

Updated XSEG, LINE, ARC1, and ARC2 for 6 axes support

August 2016 2.30 Updated for SPiiPlus ADK Suite v2.30

September
2014

01 First Release

4Version 3.12

ACSPL+ Commands & Variables Reference Guide

Conventions Used in this Guide
Text Formats

Format Description

Bold Names of GUI objects or commands

BOLD + UPPERCASE ACSPL+ variables and commands

Monospace + grey background Code example

Italic Names of other documents

Blue Hyperlink

[] In commands indicates optional item(s)

| In commands indicates either/or items

Flagged Text

Note - includes additional information or programming tips.

Caution - describes a condition that may result in damage to equipment.

Warning - describes a condition that may result in serious bodily injury or
death.

Model - highlights a specification, procedure, condition, or statement that
depends on the product model

Advanced - indicates a topic for advanced users.

5Version 3.12

ACSPL+ Commands & Variables Reference Guide

Related Documents
Documents listed in the following table provide additional information related to this document.

The most updated version of the documents can be downloaded by authorized users from ACS
Motion Control Resources under "Downloads".

Online versions for all ACS software manuals are available to authorized users at ACS Motion Control
Knowledge Center.

Document Description

SPiiPlus C Library
Reference

C++ and Visual Basic® libraries for host PC applications. This guide is
applicable for all the SPiiPlus motion control products.

SPiiPlus COM Library
Reference C

COM Methods, Properties, and Events for Communication with the
Controller.

SPiiPlus .NET Library
Reference

.NET Methods, Properties, and Events for Communication with the
Controller.

SPiiPlusMMI
Application Studio User
Guide

A complete guide for using the SPiiPlus MMI Application Studio and
associated monitoring tools.

SPiiPlus Utilities User
Guide

A guide for using the SPiiPlus User Mode Driver (UMD) for settingup
communication with the SPiiPlus motion controller.

SPiiPlus NT/DC
Hardware Guide

Technical description of the SPiiPlus NT/DC product line.

SPiiPlus PDMnt
Hardware

Guide

Technical description of the SPiiPlus PDMnt Network Interface.

SPiiPlus SDMnt
Hardware Guide

Technical description of the SPiiPlus SDMnt Step Motor Drive
Module.

SPiiPlus UDMnt
Hardware

Guide

Technical description of the SPiiPlus UDMnt Universal Drive
Module.

MC4U-CS Control
Module Hardware
Guide

Technical description of the MC4U Control Module integrated
motion control product line.

HSSI Expansion
Modules Guide

High-Speed Synchronous Serial Interface (HSSI) for expanded I/O,
distributed axes, and nonstandard devices.

6Version 3.12

ACSPL+ Commands & Variables Reference Guide

https://acsmotioncontrol.com/engineering-resources-video/
https://acsmotioncontrol.com/engineering-resources-video/
https://www.acsmotioncontrol.com/knowledge-center
https://www.acsmotioncontrol.com/knowledge-center

Document Description

PEG and MARK
Operations Application
Notes

Provides details on using the PEG commands in SPiiPlus systems.

7Version 3.12

ACSPL+ Commands & Variables Reference Guide

Table of Contents

1. Introduction 39

2. ACSPL+ Commands 40

2.1 Axis Management Commands 44

2.1.1 BREAK 45

2.1.2 COMMUT 46

2.1.3 CONNECT 47

2.1.4 CSCREATE 50

2.1.5 CSDESTROY 53

2.1.6 DEPENDS 54

2.1.7 DISABLE/DISABLEALL 55

2.1.8 ENABLE/ENABLE ALL 56

2.1.9 ENCINIT 57

2.1.10 ENCREAD 59

2.1.11 FCLEAR 60

2.1.12 FOLLOW 61

2.1.13 GO 61

2.1.14 GROUP 62

2.1.15 HALT 63

2.1.16 HOME 64

2.1.17 IMM 66

2.1.18 KILL/KILLALL 67

2.1.19 SAFETYCONF 68

2.1.20 SAFETYGROUP 70

2.1.21 SET 70

2.1.22 SPLIT 71

2.1.23 UNFOLLOW 72

2.2 Predefined Homing Methods 72

2.2.1 Homing Method 1: Homing on the negative limit switch and index pulse 72

2.2.2 Homing Method 2: Homing on positive limit switch and index pulse 72

2.2.3 Homing Method 17: Homing on Negative Limit Switch 73

2.2.4 Homing Method 18: Homing on Positive Limit Switch 73

2.2.5 Homing Method 33 and 34: Homing on the index pulse 73

8Version 3.12

ACSPL+ Commands & Variables Reference Guide

2.2.6 Homing Method 37: Homing on current position 73

2.2.7 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific) 73

2.2.8 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific) 74

2.2.9 Homing Method 52: Negative Hard Stop (ACS Specific) 74

2.2.10 Homing Method 53: Positive Hard Stop (ACS Specific) 74

2.3 Interactive Commands 74

2.3.1 DISP 74

2.3.2 INP 79

2.3.3 INTERRUPT 81

2.3.4 INTERRUPTEX 83

2.3.5 SEND 84

2.3.6 TRIGGER 86

2.3.7 OUTP 87

2.4 PEG and MARK Commands 89

2.4.1 ASSIGNMARK 89

2.4.2 ASSIGNPEG 90

2.4.3 ASSIGNPOUTS 92

2.4.4 GETPEGCOUNT 94

2.4.5 PEG_I 94

2.4.6 PEG_R 95

2.4.7 STARTPEG 98

2.4.8 STOPPEG 99

2.5 Miscellaneous Commands 99

2.5.1 AXISDEF 100

2.5.2 DC 102

2.5.3 STOPDC 104

2.5.4 READ 105

2.5.5 SPDC 106

2.5.6 STOPSPDC 109

2.5.7 WRITE 110

2.5.8 SPINJECT 111

2.5.9 STOPINJECT 112

2.5.10 SPICFG 112

2.5.10.1 SPIWRITE 114

9Version 3.12

ACSPL+ Commands & Variables Reference Guide

2.5.11 SPIWRITE 114

2.5.12 SPRT 115

2.5.13 SPRTSTOP 118

2.6 Motion Commands 118

2.6.1 ARC1 120

2.6.2 ARC1 121

2.6.3 ARC1 124

2.6.4 ARC2 125

2.6.5 ARC2 126

2.6.6 ARC2 129

2.6.7 BPTP 129

2.6.8 BPTPCalc 132

2.6.9 BSEG...ENDS 133

2.6.10 JOG 134

2.6.11 LINE 135

2.6.12 LINE 136

2.6.13 LINE 139

2.6.14 MASTER 140

2.6.15 MPOINT 141

2.6.16 MPTP...ENDS 146

2.6.17 MSEG...ENDS 149

2.6.18 PATH...ENDS 151

2.6.19 POINT 153

2.6.20 PROJECTION 156

2.6.21 PTP 158

2.6.22 PVSPLINE...ENDS 160

2.6.23 SLAVE 163

2.6.24 STOPPER 164

2.6.25 TRACK 165

2.6.26 XSEG...ENDS 166

2.6.27 NURBS 176

2.6.28 NPOINT 178

2.6.29 SPATH 180

2.6.30 SEGMENT 183

10Version 3.12

ACSPL+ Commands & Variables Reference Guide

2.6.31 SMOVE 183

2.6.32 Using ARC1, ARC2 and LINE Switches 184

2.7 Program Flow Commands 186

2.7.1 Assignment Command 186

2.7.2 BLOCK...END 188

2.7.3 CALL 189

2.7.4 GOTO 189

2.7.5 IF, ELSEIF, ELSE...END 190

2.7.6 INPUT 192

2.7.7 LOOP...END 193

2.7.8 ON...RET 194

2.7.9 TILL 195

2.7.10 WAIT 196

2.7.11 WHILE...END 196

2.8 Program Management Commands 197

2.8.1 DISABLEON 198

2.8.2 ENABLEON 198

2.8.3 PAUSE 198

2.8.4 RESUME 199

2.8.5 START 199

2.8.6 STOP/STOPALL 201

2.9 Ethernet/IP ACSPL+ Support Commands 201

2.9.1 EIPGETATTR 201

2.9.2 EIPGETIND1 203

2.9.3 EIPGETIND2 204

2.9.4 EIPGETTAG 204

2.9.5 EIPSETASM 205

2.10 Laser Control Commands 206

2.10.1 LCENABLE 206

2.10.2 LCDISABLE 206

2.11 Input Shaping Commands 206

2.11.1 INSHAPEON 207

2.11.2 INSHAPEOFF 208

3. ACSPL+ Variables 209

11Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.1 Axis Configuration Variables 222

3.1.1 AFLAGS 224

3.1.2 ENTIME 225

3.1.3 ESTBITS 225

3.1.4 E2STBITS 226

3.1.5 EMTBITS 227

3.1.6 E2MTBITS 227

3.1.7 MFF 228

3.1.8 MFLAGS 229

3.1.9 MFLAGSX 236

3.1.10 MODULOMD 238

3.1.11 PEGQUE 242

3.1.12 SETTLE 242

3.1.13 SLPMAX 243

3.1.14 SLPMIN 244

3.1.15 STEPF 245

3.1.16 STEPW 246

3.1.17 TARGRAD 247

3.2 Brake Variables 247

3.2.1 BOFFTIME 248

3.2.2 BONTIME 249

3.2.3 MBRKROUT 250

3.2.4 VELBRK 251

3.3 Feedback Variables 252

3.3.1 E_AOFFS 254

3.3.2 E_FREQ 255

3.3.3 E2_AOFFS 256

3.3.4 E2_FREQ 256

3.3.5 E_FLAGS 257

3.3.6 E2_FLAGS 258

3.3.7 E_PAR_A 259

3.3.8 E2_PAR_A 260

3.3.9 E_PAR_B 261

3.3.10 E2_PAR_B 261

12Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.3.11 E_PAR_C 262

3.3.12 E2_PAR_C 263

3.3.13 E_PAR_D 264

3.3.14 E2_PAR_D 264

3.3.15 E_PAR_E 265

3.3.16 E2_PAR_E 265

3.3.17 E_SCMUL 266

3.3.18 E2_SCMUL 267

3.3.19 E_TYPE 267

3.3.20 E2_TYPE 269

3.3.21 EFAC 270

3.3.22 E2FAC 271

3.3.23 EOFFS 272

3.3.24 E2OFFS 273

3.3.25 EPOS 273

3.3.26 FVFIL 274

3.3.27 F2ACC 275

3.3.28 HOMEDEF 275

3.3.29 HOMEVELI 276

3.3.30 HOMEVELL 277

3.3.31 RVFIL 278

3.3.32 SCSOFFS 279

3.3.33 SCCOFFS 280

3.3.34 SC2COFFS 281

3.3.35 SC2GAIN 281

3.3.36 SC2PHASE 282

3.3.37 SC2SOFFS 282

3.3.38 SLEBIASA 283

3.3.39 SLEBIASB 284

3.3.40 SLEBIASC 285

3.3.41 SLEBIASD 286

3.3.42 SLABITS 286

3.3.43 S2LABITS 287

3.3.44 SCGAIN 288

13Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.3.45 SCPHASE 288

3.4 Axis State Variables 289

3.4.1 AST 289

3.4.2 IND 292

3.4.3 IST 293

3.4.4 M2ARK 294

3.4.5 MARK 295

3.4.6 MST 296

3.4.7 RMSM 297

3.4.8 RMSD 298

3.4.9 NST 298

3.5 Safety Limits Variables 300

3.5.1 CERRA 301

3.5.2 CERRI 302

3.5.3 CERRV 303

3.5.4 DELV 303

3.5.5 DELI 304

3.5.6 E_ERR 305

3.5.7 ERRA 306

3.5.8 ERRI 307

3.5.9 ERRV 307

3.5.10 SLLIMIT 308

3.5.11 SLLROUT 309

3.5.12 SRLIMIT 310

3.5.13 XACC 311

3.5.14 XCURCDB 311

3.5.15 XCURI 312

3.5.16 XCURK 313

3.5.17 XCURV 314

3.5.18 XRMS 315

3.5.19 XRMSD 315

3.5.20 XRMSM 316

3.5.21 XRMST 317

3.5.22 XRMSTD 318

14Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.5.23 XRMSTM 319

3.5.24 XSACC 320

3.5.25 XVEL 321

3.6 Data Collection Variables 321

3.6.1 DCN 322

3.6.2 DCP 323

3.6.3 S_DCN 323

3.6.4 S_DCP 324

3.6.5 S_ST 325

3.7 Input and Output Variables 325

3.7.1 AIN 326

3.7.2 AINOFFS 327

3.7.3 AINSCALE 328

3.7.4 AOUT 328

3.7.5 DOUT 329

3.7.6 EXTIN 330

3.7.7 EXTOUT 330

3.7.8 IN 331

3.7.9 OUT 332

3.7.10 SPIRXN 333

3.7.11 SPIST 333

3.8 Monitoring Variables 334

3.8.1 BCODECFG 335

3.8.2 BCODEUSG 335

3.8.3 BGLOBCFG 336

3.8.4 BGLOBUSG 337

3.8.5 BSRCUSG 338

3.8.6 BSRCCFG 338

3.8.7 BVARUSG 339

3.8.8 BVARCFG 340

3.8.9 JITTER 341

3.8.10 MSSYNC 341

3.8.11 USGBUF 341

3.8.12 USGTRACE 342

15Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.8.13 SOFTIME 342

3.8.14 TIME 343

3.8.15 USAGE 343

3.8.16 USAGESIM 344

3.9 Motion Variables 344

3.9.1 ACC 347

3.9.2 APOS 348

3.9.3 APOSFILT 349

3.9.4 CERRK 349

3.9.5 DAPOS 350

3.9.6 DEC 351

3.9.7 DECOMP 352

3.9.8 DELK 352

3.9.9 FACC 353

3.9.10 FPOS 353

3.9.11 F2POS 354

3.9.12 FVEL 355

3.9.13 F2VEL 355

3.9.14 FEEDRF 355

3.9.15 GACC 356

3.9.16 GJERK 357

3.9.17 GMOT 357

3.9.18 GMQU 358

3.9.19 GMTYPE 358

3.9.20 GPATH 359

3.9.21 GPHASE 360

3.9.22 GRTIME 361

3.9.23 GSEG 362

3.9.24 GSFREE 363

3.9.25 GSNAP 363

3.9.26 GVEC 363

3.9.27 GVEL 364

3.9.28 JERK 364

3.9.29 KDEC 365

16Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.9.30 LPOS 366

3.9.31 MPOS 367

3.9.32 MSTIMEA 367

3.9.33 MSTIMEB 368

3.9.34 MSTIMEC 369

3.9.35 NVEL 370

3.9.36 PE 371

3.9.37 PPOS 372

3.9.38 PPOSCOMP 372

3.9.39 PRFLTIME 373

3.9.40 RACC 374

3.9.41 RJERK 374

3.9.42 ROFFS 374

3.9.43 RPOS 375

3.9.44 RPOSCOMP 376

3.9.45 RPOSDEL 376

3.9.46 RSNAP 377

3.9.47 RVEL 377

3.9.48 SETTLEA 378

3.9.49 SETTLEB 378

3.9.50 SLSFF 379

3.9.51 SETTLEC 379

3.9.52 SNAP 380

3.9.53 STLTIMEA 381

3.9.54 STLTIMEB 382

3.9.55 STLTIMEC 383

3.9.56 TARGRADA 383

3.9.57 TARGRADB 384

3.9.58 TARGRADC 385

3.9.59 TPOS 386

3.9.60 VEL 387

3.10 Program Execution Control Variables 388

3.10.1 ONRATE 389

3.10.2 PCHARS 389

17Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.10.3 PERL 390

3.10.4 PERR 390

3.10.5 PEXL 391

3.10.6 PFLAGS 391

3.10.7 PLINES 393

3.10.8 PRATE 394

3.10.9 PST 395

3.11 Safety Control Variables 395

3.11.1 E_ERR 397

3.11.2 ECALERR 397

3.11.3 ECERR 398

3.11.4 ECEXTERR 398

3.11.5 ECEXTST 399

3.11.6 ECST 400

3.11.7 FAULT 402

3.11.8 FAULTSIM 405

3.11.9 FDEF 409

3.11.10 FMASK 414

3.11.11 HLLROUT 417

3.11.12 HRLROUT 420

3.11.13 MERR 422

3.11.14 SAFIN 422

3.11.15 SAFINI 424

3.11.16 S_ERR 425

3.11.17 S_FAULT 425

3.11.18 S_FDEF 429

3.11.19 S_FMASK 432

3.11.20 S_SAFIN 433

3.11.21 S_SAFINI 434

3.11.22 SS11TIME 435

3.11.23 SS12TIME 435

3.11.24 STODELAY 436

3.11.25 SYNC 437

3.12 Induction Motor Variables 437

18Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.12.1 SLCFIELD 437

3.12.2 SLCSLIP 439

3.13 Nanomotion Variables 440

3.13.1 SLDZMIN 441

3.13.2 SLDZMAX 442

3.13.3 SLDZTIME 443

3.13.4 SLZFF 443

3.13.5 SLFRC 444

3.13.6 SLFRCN 445

3.13.7 SLHRS 446

3.13.8 SLVKPDCF 446

3.13.9 SLPKPDCF 447

3.13.10 SLVKIDCF 448

3.14 Servo-Loop Variables 448

3.14.1 DCOM 449

3.14.2 Servo-Loop Current Variables 450

3.14.2.1 SLBIASA 450

3.14.2.2 SLBIASB 451

3.14.2.3 SLBIASC 452

3.14.2.4 SLIKI 453

3.14.2.5 SLIKP 454

3.14.2.6 SLIFILT 454

3.14.2.7 SLIOFFS 455

3.14.2.8 SLILI 456

3.14.3 Servo-Loop Velocity Variables 456

3.14.3.1 SLCRAT 457

3.14.3.2 SLVKI 458

3.14.3.3 SLVKIIF 458

3.14.3.4 SLVKISF 459

3.14.3.5 SLVKITF 460

3.14.3.6 SLVKP 460

3.14.3.7 SLVKPIF 461

3.14.3.8 SLVKPSF 462

3.14.3.9 SLVKPTF 462

19Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.14.3.10 SLVLI 463

3.14.3.11 SLVRAT 464

3.14.4 Servo-Loop Velocity Notch Filter Variables 465

3.14.4.1 SLVNFRQ 465

3.14.4.2 SLVNWID 466

3.14.4.3 SLVNATT 466

3.14.5 Servo-Loop Velocity Low Pass Filter Variables 467

3.14.5.1 SLVSOF 467

3.14.5.2 SLVSOFD 468

3.14.6 Servo-Loop Velocity Bi-Quad Filter Variables 468

3.14.6.1 SLVB0DD 469

3.14.6.2 SLVB0DF 470

3.14.6.3 SLVB0ND 470

3.14.6.4 SLVB0NF 471

3.14.7 Servo-Loop Position Variables 472

3.14.7.1 SLDRA 472

3.14.7.2 SLDRAIF 473

3.14.7.3 SLDRX 474

3.14.7.4 SLPKI 475

3.14.7.5 SLPKIIF 476

3.14.7.6 SLPKISF 476

3.14.7.7 SLPKITF 477

3.14.7.8 SLPLI 477

3.14.7.9 SLPKP 478

3.14.7.10 SLPKPIF 479

3.14.7.11 SLPKPSF 480

3.14.7.12 SLPKPTF 480

3.14.8 Servo-Loop Compensations Variables 481

3.14.8.1 SLAFF 481

3.14.8.2 SLFRCD 482

3.14.9 Servo Loop Stepper Variables 483

3.14.9.1 MFLAGSX 483

3.14.9.2 SLSDZ 485

3.14.9.3 SLSKI 486

20Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.14.9.4 SLSKP 486

3.14.9.5 SLSMC 487

3.14.9.6 SLSOUT 488

3.14.9.7 SLSRL 489

3.14.10 Servo-Loop Miscellaneous Variables 489

3.14.10.1 SLCROUT 490

3.14.10.2 SLGCAXN 491

3.14.10.3 SLPROUT 492

3.14.10.4 SLP2ROUT 494

3.14.10.5 SLTFWID 496

3.14.10.6 SLVROUT 496

3.14.11 Non-Linear Control Variables 498

3.14.11.1 SLPAP 498

3.14.11.2 SLPDP 499

3.14.11.3 SLPAI 499

3.14.11.4 SLPDI 500

3.14.11.5 SLVAP 501

3.14.11.6 SLVDP 501

3.14.11.7 SLVAI 502

3.14.11.8 SLVDI 503

3.15 Commutation Variables 503

3.15.1 SLCHALL 504

3.15.2 SLCNP 504

3.15.3 SLCOFFS 505

3.15.4 SLCORG 506

3.15.5 SLCPRD 507

3.15.6 SLHROUT 507

3.15.7 SLSTHALL 508

3.16 System Configuration Variables 509

3.16.1 CFG 510

3.16.2 CTIME 510

3.16.3 EXTFAC 511

3.16.4 FOLLOWCH 511

3.16.5 G_01WCS...G_12WCS 513

21Version 3.12

ACSPL+ Commands & Variables Reference Guide

3.16.6 GPEXL 513

3.16.7 GSPEXL 514

3.16.8 GUFAC 514

3.16.9 IENA 515

3.16.10 IMASK 516

3.16.11 ISENA 517

3.16.12 S_FLAGS 518

3.16.13 S_SETUP 520

3.16.14 XSEGAMAX 522

3.16.15 XSEGAMIN 522

3.16.16 XSEGRMAX 522

3.16.17 XSEGRMIN 523

3.17 Communication Variables 523

3.17.1 BAUD 524

3.17.2 COMMCH 525

3.17.3 COMMFL 526

3.17.4 CONID 527

3.17.5 ECHO 528

3.17.6 DISPCH 529

3.17.7 GATEWAY 531

3.17.8 SUBNET 532

3.17.9 TCPIP 533

3.17.10 TCPIP2 534

3.17.11 TCPPORT 535

3.17.12 UDPPORT 536

3.18 Miscellaneous 537

3.18.1 FK 537

3.18.2 STATIC 537

3.18.3 XARRSIZE 538

4. ACSPL+ Functions 539

4.1 Arithmetical Functions 544

4.1.1 ABS 545

4.1.2 ACOS 545

4.1.3 ASIN 546

22Version 3.12

ACSPL+ Commands & Variables Reference Guide

4.1.4 ATAN 546

4.1.5 ATAN2 547

4.1.6 CEIL 547

4.1.7 COS 548

4.1.8 EXP 548

4.1.9 FLOOR 549

4.1.10 HYPOT 549

4.1.11 LDEXP 550

4.1.12 LOG 550

4.1.13 LOG10 551

4.1.14 POW 551

4.1.15 SIGN 552

4.1.16 SIN 552

4.1.17 SQRT 553

4.1.18 TAN 553

4.1.19 ROUND 554

4.2 Matrix Functions 554

4.2.1 Matrix Type 555

4.2.1.1 Matrix Initialization in Compilation Time 555

4.2.2 MATRIXADD 556

4.2.3 MATRIXSUB 556

4.2.4 MATRIXMUL 557

4.2.5 MATRIXMULSCA 558

4.2.6 MATRIXMULEW 559

4.2.7 MATRIXDIV 559

4.2.8 MATRIXIDENT 560

4.2.9 MATRIXTRANS 561

4.2.10 MATRIXINVERT 561

4.3 Miscellaneous Functions 562

4.3.1 GETCONF 562

4.3.2 SYSINFO 569

4.3.3 GETVAR 570

4.3.4 SETCONF 570

4.3.5 SETVAR 583

23Version 3.12

ACSPL+ Commands & Variables Reference Guide

4.3.6 STR 583

4.3.7 STRTONUM 584

4.3.8 NUMTOSTR 585

4.3.9 BCOPY 586

4.3.10 SS1RESET 588

4.3.11 MDURATION 588

4.4 Array Processing Functions 591

4.4.1 AVG 592

4.4.2 COPY 592

4.4.3 DSHIFT 594

4.4.4 FILL 595

4.4.5 MAX 596

4.4.6 MAXI 597

4.4.7 MIN 597

4.4.8 MINI 598

4.4.9 SIZEOF 598

4.5 EtherCAT Functions 599

4.5.1 COEGETSIZE 601

4.5.2 ECCLOSEPORT 601

4.5.3 ECCLRREG 602

4.5.4 ECEXTIN 603

4.5.5 ECEXTOUT 604

4.5.6 ECGETGRPIND 605

4.5.7 ECGETPID 606

4.5.8 ECGETMAIN 606

4.5.9 ECGETOFFSET 606

4.5.10 ECGETOPTGRP 608

4.5.11 ECGETRED 608

4.5.12 ECGETREG 608

4.5.13 ECGETSLAVES 610

4.5.14 ECGETSTATE 610

4.5.15 ECGETVID 611

4.5.16 ECGRPINFO 611

4.5.17 ECIN 611

24Version 3.12

ACSPL+ Commands & Variables Reference Guide

4.5.18 ECOUT 613

4.5.19 ECREPAIR 615

4.5.20 ECRESCAN 616

4.5.21 ECRESCUE 616

4.5.22 ECSAVECFG 617

4.5.23 ECSAVEDCNF 617

4.5.24 ECUNMAP 618

4.5.25 ECUNMAPIN 618

4.5.26 ECUNMAPOUT 619

4.5.27 FOEDOWNLOAD 619

4.5.28 FOEUPLOAD 620

4.5.29 PDOEXT 621

4.6 CoE Functions 621

4.6.1 COEREAD 622

4.6.2 COEWRITE 623

4.7 Modbus Functions 625

4.7.1 MBOPEN 626

4.7.2 MBGETHANDLE 627

4.7.3 MBCLOSE 628

4.7.4 MBREADHREG 629

4.7.5 MBREADIREG 632

4.7.6 MBWRITEHREG 636

4.7.7 MBREADCOIL 640

4.7.8 MBWRITECOIL 643

4.7.9 MBREADDIN 646

4.7.10 MBUNMAP 649

4.7.11 MBCLEAR 650

4.7.12 MBERR 651

4.7.13 #MBMAPREP 652

4.8 Servo Processor Functions 653

4.8.1 GETSP 654

4.8.2 GETSPA 655

4.8.3 GETSPV 655

4.8.4 SETSP 655

25Version 3.12

ACSPL+ Commands & Variables Reference Guide

4.8.5 SETSPV 656

4.9 Signal Processing Functions 656

4.9.1 DEADZONE 658

4.9.2 DSIGN 660

4.9.3 DSTR 661

4.9.4 EDGE 662

4.9.5 INTGR 663

4.9.6 LAG 664

4.9.7 Interpolation Functions 666

4.9.7.1 Linear interpolation 666

4.9.7.2 Spline interpolation 666

4.9.7.3 MAP 672

4.9.7.4 MAPB 674

4.9.7.5 MAPN 676

4.9.7.6 MAPNB 678

4.9.7.7 MAPNS 680

4.9.7.8 MAPS 682

4.9.7.9 MAP2 684

4.9.7.10 MAP2B 686

4.9.7.11 MAP2N 688

4.9.7.12 MAP2NB 691

4.9.7.13 MAP2NS 693

4.9.7.14 MAP2S 696

4.9.7.15 MATCH 699

4.9.7.16 RAND 700

4.9.7.17 ROLL 701

4.9.7.18 SAT 702

4.10 Laser Control Functions 703

4.10.1 LCMODULATION 705

4.10.1.1 Duty cycle or frequency update 708

4.10.1.2 Duty cycle or Frequency monitoring 708

4.10.2 LCFixedDist 708

4.10.3 LCFixedInt 712

4.10.4 LCRandomDist 714

26Version 3.12

ACSPL+ Commands & Variables Reference Guide

4.10.5 LCTickle 717

4.10.6 LCZone 718

4.10.6.1 LCZoneSet 720

4.10.6.2 LCZoneGet 720

4.10.7 LCStop 721

4.10.8 LCSignalSet 721

4.10.9 LCSignalGet 724

4.10.10 LCS conditioning example 724

4.10.11 Physical outputs configuration 725

4.10.11.1 LCOutputSet 725

4.10.11.2 LCOutputGet 727

4.10.12 LCDelaySet 728

4.10.13 LCDelayGet 728

4.10.14 AxListAsMask 728

4.11 Dynamic Error Compensation 729

4.11.1 ERRORMAP1D 730

4.11.2 ERRORMAPN1D 731

4.11.3 ERRORMAPA1D 732

4.11.4 ERRORMAP2D 733

4.11.5 ERRORMAPN2D 735

4.11.6 ERRORMAPA2D 737

4.11.7 ERRORMAP3DA 738

4.11.8 ERRORMAP3D2 741

4.11.9 ERRORMAP3D3 746

4.11.10 ERRORMAPN3D2 750

4.11.11 ERRORMAPN3D3 754

4.11.12 ERRORMAP3D5 758

4.11.13 ERRORMAPN3D5 761

4.11.14 ERRORMAPN3DA 764

4.11.15 ERRORMAPOFF 767

4.11.16 ERRORMAPON 767

4.11.17 #ERRORMAPREP 767

4.11.18 ERRORUNMAP 768

5. ACSPL+ Standard Structures 769

27Version 3.12

ACSPL+ Commands & Variables Reference Guide

5.1 LCI Standard Structure 769

5.1.1 LCI Functions 769

5.1.1.1 PowerPWMOut 769

5.1.1.2 PowerAnalogOut 770

5.1.1.3 PowerDigitalOut 771

5.1.1.4 FixedDistPulse 772

5.1.1.5 DistanceArrPulse 773

5.1.1.6 CoordinateArrPulse 774

5.1.1.7 Tickle 775

5.1.1.8 LaserEnable 776

5.1.1.9 LaserDisable 776

5.1.1.10 DistanceArrGate 776

5.1.1.11 CoordinateArrGate 777

5.1.1.12 AddZone 778

5.1.1.13 SetZone 778

5.1.1.14 SetCondition 779

5.1.1.15 GetCondition 781

5.1.1.16 SegmentGate 782

5.1.1.17 SegmentPulse 782

5.1.1.18 SetExtClockSync 782

5.1.1.19 PowerPWMBurst 783

5.1.1.20 SetSafetyMasks 784

5.1.1.21 Stop 784

5.1.1.22 SetMechPlatformAxes 784

5.1.1.23 SetMotionAxes 785

5.1.1.24 SetSystemDelay 786

5.1.1.25 GetSystemDelay 786

5.1.1.26 SetConfigOut 786

5.1.1.27 AssignChannels 788

5.1.1.28 SetCustomPosCalc 788

5.1.1.29 SetCustomVelCalc 789

5.1.1.30 SetCustomVelVar 789

5.1.2 LCI Structure Fields 790

5.1.2.1 MotionAxes 791

28Version 3.12

ACSPL+ Commands & Variables Reference Guide

5.1.2.2 PosResolution 792

5.1.2.3 InternalPosResolution 792

5.1.2.4 PWMDutyCycle 792

5.1.2.5 PWMFrequency 792

5.1.2.6 PWMPulseWidth 792

5.1.2.7 TickleFrequency 792

5.1.2.8 TicklePulseWidth 793

5.1.2.9 PWMActive 793

5.1.2.10 TickleActive 793

5.1.2.11 InRange 793

5.1.2.12 LaserEnabled 793

5.1.2.13 OperationMode 793

5.1.2.14 Positions 793

5.1.2.15 UserPos 794

5.1.2.16 MultiAxWinSize 794

5.1.2.17 ExtraPulsesQty 794

5.1.2.18 ExtraPulsesPeriod 794

5.1.2.19 PiercePulsesNum 795

5.1.2.20 PiercePulsesWidth 795

5.1.2.21 GateOnDelay 795

5.1.2.22 GateOffDelay 795

5.1.2.23 PulseDelay 796

5.1.2.24 PowerAOutVal 796

5.1.2.25 Faults 797

5.1.2.26 PWMBurstReady 797

5.2 Diagnostics and Preventive Maintenance (DPM) 797

5.2.1 DPM_Measurement 798

5.2.1.1 DPM_Measurement Fields 798

5.2.1.2 DPM_Measurement Functions 801

5.2.2 DPM_Motion_Status 803

5.2.2.1 DPM_Motion_Status Fields 803

5.2.2.2 DPM_Motion_Status Functions 804

5.2.3 DPM Example - Adding current measurement during acceleration phase to an
existing application 805

29Version 3.12

ACSPL+ Commands & Variables Reference Guide

5.3 Motion Duration 806

5.3.1 MotionDuration Struct 806

6. Terminal Commands 811

6.1 Entering Terminal Commands 811

6.2 Query Commands 811

6.2.1 Default Query Formats 813

6.2.2 Predefined Query Output Formats 813

6.2.3 User-Defined Query Output Format 815

6.3 Program Management Commands 815

6.3.1 Program Management Command Arguments 815

6.3.2 Program Buffer Commands 817

6.3.2.1 Open/Close Buffer (#) 817

6.3.2.2 D 818

6.3.2.3 F/IF 819

6.3.2.4 L 820

6.3.3 RESET 822

6.3.4 Listing Program Variables 822

6.3.4.1 VGR 822

6.3.4.2 VSD 823

6.3.4.3 VS/VSG 823

6.3.4.4 VSF/VSGF 824

6.3.4.5 VG/VGF 825

6.3.4.6 VL/VLF 825

6.3.4.7 V/VF 826

6.3.4.8 VSP 827

6.3.4.9 VST/VSGT 827

6.3.4.10 VSTF/VSGTF/VSDT 828

6.3.4.11 VGV 828

6.3.4.12 VGS/VGSF 828

6.3.5 Program Handling Commands 829

6.3.5.1 C 830

6.3.5.2 X 831

6.3.5.3 S/SR 832

6.3.5.4 P 832

30Version 3.12

ACSPL+ Commands & Variables Reference Guide

6.3.6 Debug Commands 833

6.3.6.1 XS 833

6.3.6.2 XD 834

6.3.6.3 BS 834

6.3.6.4 BR 835

6.4 System Commands 836

6.4.1 SI 836

6.4.2 SIR 840

6.4.3 MEMORY 852

6.4.4 IR 852

6.4.5 U 854

6.4.6 TD 855

6.4.7 SC 855

6.4.8 ETHERCAT 857

6.4.9 ECMAPREP 866

6.4.10 CC 867

6.4.11 PLC 868

6.4.12 LOG 869

6.4.13 LOG HOST_TICKS 870

6.4.14 LOGP 871

7. SPiiPlus Error Codes 873

7.1 ACSPL+ Syntax Errors 873

7.2 ACSPL+ Compilation Errors 908

7.3 ACSPL+ Runtime Errors 932

7.4 Errors 964

7.5 Encoder Errors 974

7.6 System Errors 976

7.7 EtherCAT Errors 979

7.8 EtherCAT Slave Errors 981

7.9 MODBUS Errors 987

8. G-Code Error Codes 988

8.1 G-Code Syntax Errors 988

8.2 G-Code Compilation Errors 992

8.3 G-Code Runtime Errors 992

31Version 3.12

ACSPL+ Commands & Variables Reference Guide

Appendix A. PEG And MARK Mapping Tables 996

A.1 ASSIGNPEG Mapping 996

A.2 ASSIGNPOUTS Mapping 1009

A.3 ASSIGNMARK Mapping 1020

32Version 3.12

ACSPL+ Commands & Variables Reference Guide

List Of Figures

Figure 2-1. CONNECT Using MAP Function 50

Figure 2-2. DISABLE and Mechanical Brake Output Process- Positive BONTIME 56

Figure 2-3. DISABLE and Mechanical Brake Output Process - Negative BONTIME 56

Figure 2-4. ENABLE and Mechanical Brake Output Process - Positive BOFFTIME 57

Figure 2-5. ARC1 Coordinate Specification 120

Figure 2-6. ARC2 Center Point and Rotation Angle Specification 125

Figure 2-7. SLAVE /pt Illustration 141

Figure 2-8. Single-Axis Motion Using MPTP 148

Figure 2-9. Two-Axis Group Motion Using MPTP/v 149

Figure 2-10. Results of Example MSEG 151

Figure 2-11. PATH...ENDS Diagram 153

Figure 2-12. PROJECTION of the XA Plane 157

Figure 2-13. FPOS - PROJECTION Example 157

Figure 2-14. PROJECTION Example - Final Result 158

Figure 2-15. PVSPLINE Motion Diagram 162

Figure 2-16. Use of STOPPER 165

Figure 2-17. Corner Processing - Exact Path Option 172

Figure 2-18. Corner Processing - Permitted Deviation, Permitted Radius and Corner
Smoothing Options 173

Figure 4-1. Illustration of COPY Function 594

Figure 4-2. Example Mapping 632

Figure 4-3. Example Mapping 636

Figure 4-4. Example Mapping 640

Figure 4-5. Example Mapping 643

Figure 4-6. Example Mapping 646

Figure 4-7. Symmetrical Dead Zone Example 659

Figure 4-8. Asymmetrical Dead Zone Example 659

Figure 4-9. DSIGN Function Example 661

Figure 4-10. EDGE Function Example 663

Figure 4-11. INTGR Function Example 664

Figure 4-12. LAG Function Example 666

Figure 4-13. Spline Definition Range 667

33Version 3.12

ACSPL+ Commands & Variables Reference Guide

Figure 4-14. Two-Dimensional Spline Definition Range 668

Figure 4-15. 5-Point Catmull-Rom Spline 669

Figure 4-16. B-Spline - Approximation of Points 670

Figure 4-17. Catmull-Ron Spline Beyond the Definition Range 671

Figure 4-18. B-Spline Map 672

Figure 4-19. MAP Example on the Scope 674

Figure 4-20. MAPB Example on the Scope 676

Figure 4-21. MAPN Example on the Scope 678

Figure 4-22. MAPNB Example on the Scope 680

Figure 4-23. MAPNS Example on the Scope 682

Figure 4-24. MAPS Example on the Scope 684

Figure 4-25. MAP2 Example on the Scope 686

Figure 4-26. MAP2B Example on the Scope 688

Figure 4-27. MAP2N Example on the Scope 691

Figure 4-28. MAP2NB Example on the Scope 693

Figure 4-29. MAP2NS Example on the Scope 696

Figure 4-30. MAP2S Example on the Scope 699

Figure 4-31. ROLL Example on the Scope 702

Figure 4-32. SAT Example on the Scope 703

Figure 4-33. Velocity 707

Figure 4-34. 2 Pulses with Pulse Width 120 msec. 795

Figure 4-35. Delays in Gating Mode 795

Figure 5-1. Communication Terminal Window 811

Figure 5-2. Interaction of Program Buffer States 829

34Version 3.12

ACSPL+ Commands & Variables Reference Guide

List of Tables

Table 2-1. The ACSPL+ command set 40

Table 2-2. Homing Methods 65

Table 2-3. DISP Command Option Escape Sequences 75

Table 2-4. Type Characters 76

Table 2-5. Channel Designation for TRIGGER 87

Table 2-6. PEG Output Signal Configuration 96

Table 2-7. Commonly Monitored SPDC Variables 108

Table 2-8. Matrix Values 157

Table 2-9. IF Control Structures 190

Table 3-1. Alphabetical Listing of All ACSPL+ Variables 210

Table 3-2. AFLAG Bit Description 224

Table 3-3. MFLAGS Bit Designators 230

Table 3-4. E_FLAGS Bit Description 257

Table 3-5. Homing Methods 276

Table 3-6. AST Bit Descriptions 290

Table 3-7. MST Bit Descriptions. 296

Table 3-8. NST Bit Description 299

Table 3-9. PFLAGS Bit Description 1 392

Table 3-10. PST Bit Description 395

Table 3-11. ECST Bits 400

Table 3-12. Axis Fault Bits 402

Table 3-13. FDEF Bit Description 410

Table 3-14. FMASK Bit Description 414

Table 3-15. SAFINI Valid Bits 424

Table 3-16. S_FAULT Fault Bits 426

Table 3-17. S_FDEF Bit Description 430

Table 3-18. S_FMASK Bit Description 432

Table 3-19. SLCROUT Values 490

Table 3-20. SLPROUT Values 493

Table 3-21. SLVROUT Values 497

Table 3-22. IENA Bit Description 515

35Version 3.12

ACSPL+ Commands & Variables Reference Guide

Table 3-23. ISENA Bit Description 518

Table 3-24. S_FLAGS Bit Description 519

Table 3-25. S_SETUP Bit Designators 520

Table 3-26. COMMCH Values 525

Table 3-27. COMMFL Bit Descriptions 526

Table 3-28. ECHO Channel Numbers 528

Table 3-29. DISPCH Channel Numbers 530

Table 4-1. GETCONF Return Values 563

Table 4-2. SYSINFO Return Values 569

Table 4-3. 16-bit Binary value Template 571

Table 4-4. SETCONF Arguments 572

Table 4-5. Supported Error Counter Registers 609

Table 4-6. Modbus Error Codes 651

Table 4-7. MAP Array 673

Table 4-8. MAPB Array 675

Table 4-9. MAPN Array 677

Table 4-10. MAPNB Array 679

Table 4-11. MAPNS Array 681

Table 4-12. MAPS Array 683

Table 4-13. MAP2 686

Table 4-14. MAP2B 688

Table 4-15. MAP2B 690

Table 4-16. MAP2NB 693

Table 4-17. MAP2NS 696

Table 4-18. MAP2S 698

Table 4-19. Condition Mask for Register 0 779

Table 4-20. Condition Mask for Register 1 780

Table 4-21. Condition Mask for Register 2 780

Table 5-1. Line Designation 816

Table 6-1. ACSPL+ Syntax Errors 873

Table 6-2. ACSPL+ Compilation Errors 909

Table 6-3. ACSPL+ Runtime Errors 932

Table 6-4. ACSPL+ Motion Termination Errors 964

Table 6-5. Encoder Errors 974

36Version 3.12

ACSPL+ Commands & Variables Reference Guide

Table 6-6. ACSPL+ System Errors 976

Table 6-7. ACSPL+ EtherCAT Errors 979

Table 6-8. EtherCAT Slave Errors 982

Table 6-9. Modbus Errors 987

Table A-1. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlusNT/DC-LT/HP/LD996

Table A-2. Mapping PEG Engines to Encoders (Servo Processor 1) for SPiiPlusNT/DC-LT/HP/LD 997

Table A-3. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlus
CMnt/CMhv/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/UDMhv/UDMnt/UDMpa/UDMpm/U
DMpc/UDMcb

99
8

Table A-4. Mapping PEG Engines to Encoders (Servo Processor 0) for
UDMlc/UDIlt/UDIhp/UDMmc/PDIcl 999

Table A-5. Mapping PEG Engines to Encoders (Servo Processor 0) for NPMpm/NPMpc- 1000

Table A-6. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo
Processor 0) for SPiiPlusNT/DC-LT/HP/LD 1003

Table A-7. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo
Processor 1) for SPiiPlusNT/DC-LT/HP/LD 1003

Table A-8. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo
Processor 0) for SPiiPlus CMnt/UDMpm/CMhv/UDMhv- 1004

Table A-9. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo
Processor 0) for UDMnt/UDMpa/UDMcb 1005

Table A-10. Engine to Encoder Assignment for IDMxx, ECMxx, and UDMsm/sa/ma 1006

Table A-11. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
SPiiPlusNT/DC-LT/HP/LD 1009

Table A-12. SPiiPlusNT/DC-LT/HP/LD Mapping of Engine Outputs to Physical Outputs (Servo
Processor 1) 1010

Table A-13. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
CMnt/UDMpm/UDMpc/CMhv/UDMhv 1010

Table A-14. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0, OUT 0-4) for
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa 1011

Table A-15. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0, OUT_5-9) for
CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa 1012

Table A-16. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
UDMnt/UDMpa/UDMcb 1013

Table A-17. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for
UDMlc/UDMmc/UDIlt/UDIhp/PDIcl 1014

Table A-18. NPMpm/NPMpc Mapping of Engine Outputs to Physical Outputs (Servo Processor
0) 1015

37Version 3.12

ACSPL+ Commands & Variables Reference Guide

Table A-19. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Mapping of Engine Outputs to Physical
Outputs (Servo Processor 0) 1017

Table A-20. Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD 1020

Table A-21. Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD 1022

Table A-22. Mark-1 Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm-
x/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv 1024

Table A-23. Mark-2 Inputs to Encoders Mapping for with SPiiPlus
CMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv 1025

Table A-24. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping 1026

38Version 3.12

ACSPL+ Commands & Variables Reference Guide

1. Introduction
This document details all of the elements making up the SPiiPlus ACSPL+ Programming Language as
well as the command set that may be entered through the SPiiPlus MMI Application Studio
Communication Terminal for use in a SPiiPlus system.

This document is intended for the use of software engineers.

39Version 3.12

ACSPL+ Commands & Variables Reference Guide
1. Introduction

2. ACSPL+ Commands
ACSPL+ comes with a complete programming command set. The commands are divided into
following categories:

> Axis Management Commands

> Interactive Commands

> PEG and MARK Commands

> Miscellaneous Commands

> Motion Commands

> Program Flow Commands

> Program Management Commands

> Laser Control Commands

Table 2-1. The ACSPL+ command set

Command Description

ARC1 Adds an arc segment to MSEG...ENDS motion.

ARC1 Adds an arc segment to XSEG...ENDS motion

ARC2 Adds an arc segment to MSEG...ENDS motion.

ARC2 Adds an arc segment to XSEG...ENDS motion

ASSIGNMARK Marks inputs-to-encoder assignment

ASSIGNPEG
Assigns an encoder to a PEG engine and GP physical output
connection.

ASSIGNPOUTS Assignment of physical output pins.

AXISDEF Assigns an alias to an axis

BLOCK...END Performs a group of ACSPL+ commands in one controller cycle.

BREAK
Immediately terminates a motion and provides smooth
transition to the next motion in the motion queue.

CALL Calls subroutine.

COMMUT Performs auto commutation for DC brushless (AC servo) motors.

CONNECT Defines a formula for calculating reference position (RPOS).

40Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

"CSCREATE" on page 50 Creates a new Local Coordinate System.

"CSDESTROY" on page 53 Cancels the active Local Coordinate System.

DC Activates data collection.

DEPENDS Specifies a logical dependence between a motor and axes.

DISABLE/DISABLEALL
Shuts off one or more drives. DISABLE ALL provides DISABLE
operation for all axes.

DISABLEON Disables autoroutine activation in a buffer.

DISP
Builds a string and sends it to the default communication
channel.

ECRESCAN
Returns the system back to the operational state if one or more
slaves underwent a reset or power cycle.

ENABLE/ENABLE ALL Activates one or more drives

ENABLEON Enables autoroutine activation in a buffer.

FCLEAR Clears faults.

GO Starts a motion that was created using the /w command option.

GOTO Transfers program execution to another point in the program.

GROUP Defines an axis-group for coordinate multi-axis motion.

HALT

Terminates one or more motions using a third-order
deceleration profile (DEC deceleration).

HALTALL provides HALT operation for all axes.

IF, ELSEIF, ELSE...END IF command structure.

IMM Provides on-the-fly change of motion parameters.

INPUT Suspends program execution pending user input

INTERRUPT Causes an interrupt that can be intercepted by the host.

INTERRUPTEX Causes an interrupt similar to that of the INTERRUPT command.

JOG Creates a jog motion.

41Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

KILL/KILLALL

Terminates one or more motions using a second-order
deceleration profile and the KDEC deceleration value.
KILL ALL provides KILL operation for all axes.

LCDISABLE Stops a pulse generation process, including tickle pulses.

LCENABLE
Enables a pulse generation process with current set
parameters.

LINE Adds a linear segment to MSEG...ENDS motion.

LINE Adds a linear segment to XSEG...ENDS motion.

LOOP...END Loop command structure.

MASTER Defines a formula for calculating MPOS.

MPOINT
Adds a set of points to MPTP...ENDS, PATH...ENDS or
PVSPLINE...ENDS motion.

MPTP...ENDS Creates a multipoint motion.

MSEG...ENDS Creates a segmented motion.

ON...RET

The autoroutine structure. An the autoroutine is automatically
executed when a specific condition is satisfied. The routine
interrupts the currently executing program, executes the
commands specified in the autoroutine body, and then returns
control to the interrupted program.

PATH...ENDS
Creates an arbitrary path motion with linear interpolation
between the specified points.

PAUSE Suspends program execution in a buffer.

Defines Incremental PEG parameters. activates the PEG engine.

Defines the Random PEG parameters. activates the PEG engine.

POINT
Adds a point to MPTP...ENDS, PATH...ENDS, or PVSPLINE...ENDS
motion.

PROJECTION

An expansion command to the MSEG...ENDS set of commands,
that allows the controller to perform a three dimensional
segmented motion such as creating arcs and lines on a user-
defined plane.

42Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

PTP Creates a point-to-point motion.

PVSPLINE...ENDS
Creates an arbitrary path motion with spline interpolation
between the specified points.

READ Reads an array from a file in the flash memory.

RESUME Resumes program execution in a buffer.

SAFETYCONF Configures fault processing for one or more axes.

SAFETYGROUP
Activates the fault response for all axes in the axis_list when
any axis triggers the fault, and manages the axes as a block in
response to KILL/KILLALL and DISABLE/DISABLEALL.

SEND
Same as DISP, but also specifies the communication channel or
channels.

SET
Defines the current value of either feedback (FPOS), reference
(RPOS), or axis (APOS) position.

SLAVE Creates a master-slave motion.

SMOVE Define segment of movement with transition point smoothing

SPDC Activates data collection from a Servo Processor variable.

SPRT
Activates a real-time data transfer process from the MPU to a
given Servo Processor.

SPRTSTOP
Stops an active real-time data transfer process on the given SP
(for cyclic command only).

SPINJECT
Initiates the transfer of MPU real-time data to the Servo
Processor.

SPLIT
SPLIT breaks apart an axis group.

SPLITALL breaks apart all axis groups. See GROUP.

START Activates program execution in a buffer.

Restarts PEG at the current position if has been issued and the
last_point has not been reached.

STOP/STOPALL Terminates program execution in a buffer.

43Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

STOPDC Terminates data collection.

STOPINJECT Stops the transfer of MPU real-time data to the Servo Processor.

Axis Management
Commands

Halts the PEG engine for the specified axis.

STOPPER Adds a segment separator to MSEG...ENDS motion.

TILL
Delays program execution until a specified expression produces
a non-zero (true) result.

TRACK Creates tracking motion.

TRIGGER
Specifies a triggering condition. Once the condition is satisfied,
the controller issues an interrupt to the host computer.

WAIT
Delays program execution for a specified number of
milliseconds.

WHILE...END While command structure.

WRITE Writes an array to a file in the flash memory.

XSEG...ENDS Creates extended segment motion.

2.1 Axis Management Commands

The Axis Management commands are:

Command Description

BREAK
Immediately terminates a motion and provides smooth
transition to the next motion in the motion queue.

COMMUT Performs auto commutation for DC brushless (AC servo) motors.

CONNECT Defines a formula for calculating reference position (RPOS).

"CSCREATE" on page 50 Creates a new Local Coordinate System.

"CSDESTROY" on page 53 Cancels the active Local Coordinate System.

DEPENDS Specifies a logical dependence between a motor and axes.

DISABLE/DISABLEALL
Shuts off one or more drives. DISABLE ALL provides DISABLE
operation for all axes.

44Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

ENABLE/ENABLE ALL Activates one or more drives

ENCINIT Used for encoder configuration

FCLEAR Clears faults.

FOLLOW Switches an axis into slave mode.

GO Starts a motion that was created using the /w command option.

GROUP Defines an axis-group for coordinate multi-axis motion.

HALT

Terminates one or more motions using a third-order
deceleration profile (DEC deceleration).

HALTALL provides HALT operation for all axes.

HOME Recives parameters for a predefined set of homing methods.

IMM Provides on the fly change of motion parameters.

KILL/KILLALL

Terminates one or more motions using a second-order
deceleration profile and the KDEC deceleration value.

KILLALL provides KILL operation for all axes.

SAFETYCONF Configures fault processing for one or more axes.

SAFETYGROUP
Creates a safety axis group. When any axis in the group triggers
a fault, the fault affects all axes in the group.

SET
Defines the current value of either feedback (FPOS), reference
(RPOS), or axis (APOS) position.

SPLIT
SPLIT breaks apart an axis group - see GROUP.

SPLITALL breaks apart all axis groups.

UNFOLLOW Switches an axis into regular mode.

2.1.1 BREAK

Description

BREAK immediately terminates the currently executed motion of the specified axis without building
a deceleration profile, and initiates the next motion in the axis motion queue, if it exists.

Syntax

BREAK axis_list

45Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Comments

BREAK executes differently in the following cases:

1. When the next motion waits in the motion queue, BREAK terminates the current motion
and starts the next motion immediately.

2. When there is no next motion in the motion queue BREAK has no immediate effect. The
current motion continues until the next motion appears in the motion queue. At that
moment the controller breaks the current motion and provides a smooth velocity transition
profile from motion to motion. If the current motion finishes before the next motion comes
to the queue, the command has no effect.

COM Library Methods and .NET Library Methods

Break

C Library Functions

acsc_Break

Example

PTP 0, 1E8 !Move to point 1E8
PTP 0, -1E8 !Add another motion to the motion queue
WAIT 10000 !Wait 10 seconds
BREAK 0 !Terminate the first motion (PTP 0, 1E8)

!and immediately start the next motion:
!(PTP 0, -1E8)

STOP !End program

2.1.2 COMMUT

Description

COMMUT performs auto commutation and may be used when the following conditions hold true:

> The motor is DC brushless (AC servo)

> The motor is enabled

> The motor is idle

> The axis is already configured and properly tuned

Versions 2.60 and higher supports COMMUT in GANTRY mode. Commutation of the
primary axis will automatically trigger commutation of the secondary axis.

Syntax

COMMUT axis [,excitation_current][,settle_time][,slope][,gantry_commut_delay]

46Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis
The affected axis, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

excitation_
current

Optional - Given as a percentage of the full current command. The default
value is set to 98% of XRMS.

settle_time

Optional - Determines settling time for the auto commutation process
initiated by COMMUT. The default value is 500 msec.

The entire auto commutation process lasts approximately three times
longer, since the command executes the algorithm three times for
verification.

slope

Optional - The slope parameter is optional, and used only in special cases.
If a value is assigned to this parameter then the excitation current
command builds up with some slope. The parameter sets the duration of
the current build-up process in milliseconds. It is usually recommended to
omit this parameter, in which case the excitation current is built instantly.

gantry_
commut_delay

Optional – can be used only in Gantry mode. It defines the delay time in
milliseconds after the commutation of the primary axis is completed and
before the commutation of the complimentary axis begins. The default
value is 500 msec.

Comments

COMMUT is generally used in auto commutation-based startup programs.

The excitation current, settle time and slope are optional parameters for the auto commutation
process initiated by COMMUT.

Refer to the relevant section in the Setup Guide for a complete description of the commutation
process.

COM Library Methods and .NET Library Methods

Commut, WaitMotorCommutated

C Library Functions

acsc_Commut, acsc_WaitMotorCommutated

COMMUT 0,80,100,30 !Commut 0 axis with an excitation current
!of 80%. Settling time is 100msec, and a
!current build-up slope of 30msec.

2.1.3 CONNECT

Description

CONNECT defines a formula for calculating reference position (RPOS). This formula can include any
other axes variables. DEPENDS must follow CONNECT.

47Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Syntax

CONNECT axis_RPOS = formula

Comments

Care needs to be taken when using complex non-default connections. Especially with articulated
robots, the non-default connections can involve inverse trigonometric functions, square roots,
division, and other mathematical operations that can cause numerical errors when not properly
posed. While it is recommended that CONNECT command be written to avoid this from occurring, it is
not always possible; therefore proper handling of the numerical errors is necessary.

The following are general guidelines concerning the CONNECT command:

1. The default relation between an axis position (APOS) and its reference (motor) position
(RPOS) is 1:1.

2. Defining a different relation can be very useful for mechanical error corrections, dynamic
error compensation, backlash compensation, inverse kinematics and more.

3. If the CONNECT relation is based on another axis position, it creates a strict link (like a
mechanical connection) between all defined axes for as long as the function is active.

4. The variable MFLAGS<axis>.17 (bit 17) disables or enables a customized (non-default)
CONNECT formula definition. See MFLAGS.

5. After CONNECT it is recommended to initialize ROFFS with the first value in the correction
table (as seen in the following example:

SET RPOS0=MAP(APOS0,ARRAY,100,200)

This forces ROFFS to be zero and prevents the creation of a constant offset to RPOS.

6. ENABLE/ENABLE ALL, DISABLE/DISABLEALL and KILL/KILLALL change the value of ROFFS.
Therefore, if these commands follow CONNECT, then redefine the CONNECT formula, and
RPOS should be initialized to nearest value.

7. To stop motion after using CONNECT, use HALT instead of KILL. HALT does not affect the
ROFFS variable.

If a numerical error occurs when evaluating a non-default connection, the output sent to RPOS is
undefined. As such it is recommended to toggle back to the default connection and then go back to
non-default connection.

When going back to the default connection the simplest way is to set MFLAGS().17. When this
happens RPOS does not change, but APOS will change and be set to RPOS. However, this sudden
change of APOS may also cause a numerical error if APOS is used in a CONNECT function. If this
happens MFLAGS().17 will be set, but the non-default connection will still be active.

A more robust way of handling this change is to first explicitly change the connect function of all
applicable axes to RPOS = APOS. When this happens neither RPOS nor APOS will change
instantaneously, so no numerical error should occur. Then MFLAGS().17 can be set without causing a
numerical error.

Related ACSPL+ Commands

DEPENDS

48Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Variables

RPOS, APOS, ROFFS

GLOBAL REAL ARRAY(6) !Define ARRAY.
ARRAY(0)=60;ARRAY(1)=40;ARRAY(2)=90;ARRAY(3)=-40;ARRAY(4)=60; ARRAY(5)=10

!Populate Correction point ARRAY for MAP
!function.

MFLAGS(0).17=1 !Set default connection between APOS and
!RPOS (RPOS=APOS).

ENABLE 0 !Enable 0 axis.
MFLAGS(0).17=0 !Set non-default connection between APOS

!and RPOS (RPOS is a function of APOS).
CONNECT RPOS0=APOS0+MAP(APOS0,ARRAY,100,200)

!CONNECT formula between RPOS0 and
!APOS0 using the MAP function with
!correction table ARRAY.

DEPENDS 0,0 !Assign Axis 0 to Motor 0. See DEPENDS.
SET APOS0=0;SET RPOS0=0 !Initialize APOS and RPOS at 0.
PTP 0, MAP(APOS0,ARRAY,100,200)

!Moves axis 0 to the first point in the
!correction ARRAY to avoid a constant
!offset in ROFFS, as explained in Comment 2.

PTP 0, 1300 !Move to 1300. Each point during the motion
!is modified according to the correction
!ARRAY in the MAP function.

STOP !End program

This illustrates the results of the example on the SPiiPlus MMI Application Studio Scope.

49Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-1. CONNECT Using MAP Function

2.1.4 CSCREATE

Description

The CSCREATE command creates the new Local Coordinate System (LCS) relative to the Machine
Coordinate System or the previous LCS, depending on the applied switches.

Syntax

CSCREATE[/r] axis_list, x_trans, y_trans[, rot_axis, rot_angle]

or

CSCREATE[/r] axis_list, x_trans, y_trans, z_trans[, rot_axis, rot_angle]

Arguments

axis_list
The group of 2 or 3 axes. Valid values are: 0, 1, 2 ... up to the number of axes in
the system minus 1.

x_trans The new X position of the LCS in user units

y_trans The new Y position of the LCS in user units

z_trans
The Z position of the LCS in user units. This parameter is included when axis_list
includes 3 axes.

rot_axis
(Optional)
The rotation axis: 0 – X, 1 – Y, 2 – Z

rot_angle
(optional)

Rotation angle value: (-3.14159 : +3.14159) in radians

Switches

/r
The new LCS is relative (additive) to the existing LCS (otherwise the new LCS is
relative to the Machine Coordinate System).

Comments

> In function calls which include rotation parameters, the translation parameters are applied
to the system first, and then the rotation parameters.

> The enumeration of axes for the rot_axis parameter is a numbered list of axes in the newly
created coordinate system. This enumeration relates to the virtual axes, not the physical
axes of the system.

> This command is supported in version 3.10 and higher.

Example 1

This example demonstrates rectangular motion in PTP mode.

50Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!Create LCS with origin (10, 0, 0) and rotated 30 degrees around Z
REAL ang = 30* 3.141592 /180
CSCREATE (X,Y,Z), 10, 0, 0, 2, ang

PTP/ze (X,Y), 0, 0 !go to the beginning position

!Make rectangular motion
PTP/ze (X,Y), 0, 25
PTP/ze (X,Y), 50, 25
PTP/ze (X,Y), 50, 0
PTP/ze (X,Y), 0, 0

CSDESTROY (X,Y,Z) !restore machine coordinate system

Example 2

This example demonstrates rectangular motion in MPTP mode.

51Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!Create LCS with origin (10, 0, 0) and rotated 30 degrees around Z
REAL ang = 30* 3.141592 /180
CSCREATE (X,Y,Z), 10, 0, 0, 2, ang
PTP/ze (X,Y), 0, 0 !go to the beginning position
MPTP/z (X,Y)

POINT (X,Y), 0, 25
POINT (X,Y), 50, 25
POINT (X,Y), 50, 0
POINT (X,Y), 0, 0

ENDS(X,Y)
TILL GSEG(X) = -1 !Wait until motion complete
CSDESTROY (X,Y,Z) !restore machine coordinate system

Example 3

This example demonstrates round rectangular motion in XSEG mode.

!Create LCS rotated 30 degrees around X
REAL ang = 30* 3.141592 /180
CSCREATE (X,Y,Z), 10, 0, 0, 0, ang
ang = 75* 3.141592 /180
CSCREATE/r (X,Y,Z), 0, 0, 0, 1, ang !Additional rotation 75 deg. Around Y

PTP/ze (X,Y), 0, 0 !go to the beginning position

XSEG/z (X,Y), 0, 0
LINE (X,Y), 100, 0
ARC2 (X,Y), 100, -30, -3.14159
LINE (X,Y), 0, -60
ARC2 (X,Y), 0, -30, -3.14159

ENDS(X,Y)
TILL GSEG(X) = -1 !Wait until motion complete
CSDESTROY (X,Y,Z) !restore machine coordinate system

52Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.1.5 CSDESTROY

Description

The CSDESTROY command cancels the active Local Coordinate System and sets the Machine
Coordinate System or previous Local Coordinate System.

Syntax

CSDESTROY axis_list[, restore_flag]

53Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
The group of 3 axes. Valid values are: 0, 1, 2 ... up to the number of axes in the
system minus 1.

restore_flag
(Optional)
Set to 1 to restore the previous LCS; 0 or omitted value restores the MCS.

Unpredictable and dangerous motion may result if CSDESTROY is called before the
motion involving the coordinate system created by CSCREATE is complete.

Comments

This command is supported in version 3.10 and higher.

Examples

See CSCREATE.

2.1.6 DEPENDS

Description

DEPENDS is used only following CONNECT.

DEPENDS specifies a logical dependence between a physical axis (motor) and the same or other
logical axes. By default, the physical axis (motor) is assigned to its axis. DEPENDS is necessary
because the controller is generally not capable of deriving dependence information from the
CONNECT formula.

Syntax

DEPENDS physical_axis, axis_list

Arguments

physical_axis Physical axis (motor).

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

Comments

> Once a CONNECT command is executed, the controller resets the motor dependence
information to the default-the motor depends only on the corresponding axis.

> If a connection formula actually causes the motor to be dependent on another axis / axes,
the DEPENDS command must follow to specify actual dependence.

Related ACSPL+ Commands

CONNECT

Example

See the examples from CONNECT.

54Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.1.7 DISABLE/DISABLEALL

Description

DISABLE deactivates one, several, or using DISABLEALL, all drives. After DISABLE, RPOS = FPOS
which means that no position error exists, or PE<axis> = 0.

Syntax

DISABLE axis_list [,reason]

Arguments

axis_list
Axis, or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

reason

reason is an optional parameter. reason must be an integer constant or
expression that equates to an integer and specifies a reason why the motor
was disabled. If the parameter is specified, its value is stored in the MERR
variable. If the parameter is omitted, MERR stores zero after the disable
operation.

Related ACSPL+ Commands

ENABLE/ENABLE ALL, FCLEAR, DISABLEALL

Related ACSPL+ Variables

MERR, FPOS, RPOS

COM Library Methods and .NET Library Methods

Disable, DisableM, DisableAll

C Library Functions

acsc_Disable, acsc_DisableM, acsc_DisableAll

The examples illustrate the DISABLE process using positive and negative BONTIME values.

The examples are followed by screens illustrating the results of DISABLE for both positive and
negative BONTIME.

Example1:

DISABLE (0,1) !Disables the 0 and 1 motors. A fault
!notification window will be displayed.

Example 2:

DISABLE (0,1), 6100 !Disable 0 and 1 motors, store 6100 as the
!reason. 6100 specifies a user-defined error
!code which is stored in MERR.

Example 3:

DISABLE ALL !Disable all motors.

55Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-2. DISABLE and Mechanical Brake Output Process- Positive BONTIME

Figure 2-3. DISABLE and Mechanical Brake Output Process - Negative BONTIME

2.1.8 ENABLE/ENABLE ALL

Description

ENABLE activates one or more axes. After ENABLE, the motor starts following the reference position
(RPOS) and axis faults are enabled. ENABLE ALL activates all axes.

Syntax

ENABLE|ENABLE ALL axis_list

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Comments

Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and
separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

Related ACSPL+ Commands

DISABLE/DISABLEALL

56Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Variables

ENTIME, MFLAGS<axis>.#ENMOD

COM Library Methods and .NET Library Methods

Enable, EnableM, Wait Motor Enabled

C Library Functions

acsc_Enable, acsc_EnableM, acsc_WaitMotorEnabled

Example1:

ENABLE 0 !Enable 0 axis.

Example 2:

ENABLE (0,1) !Enable 0 and 1 axes.

Figure 2-4. ENABLE and Mechanical Brake Output Process - Positive BOFFTIME

2.1.9 ENCINIT

Description

The ENCINIT function is used for encoder configuration. The ENCINIT function, if executed in a buffer,
will wait until initialization is finished.

Syntax

ENCINIT (Axis, E_type, [Primary[,Slabits[, E_par_a[, E_par_b[, E_par_c [,
e_freq[, e_scmul[, E_aoffs[, ESTBITS[, EMTBITS]]]]]]]]]])

Arguments

Axis
The affected axis, valid number are: 0,1,2.. up to the number of axis in
the system minus 1.

E_type Encoder Type, according to ACSPL+ E_TYPE variable definition.

57Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Primary

Optional. Defines the feedback – can be primary or secondary.

Possible values:

Primary: 1 – default

Secondary: 0

Slabits
(Optional, Integer) Used for setting the total number of absolute
position bits for an absolute encoder, according to ACSPL+ SLABITS
variable definition.

E_par_a
(Optional, Double) Used for setting the encoder data transmission
actual frequency in MHZ. According to ACSPL+ E_PAR_A definition.

E_par_b
(Optional, Integer) Used for setting the encoder data control CRC
code. According to ACSPL+ E_PAR_B definition.

E_par_c
(Optional, Integer) Used for setting the interval (in microseconds) of
encoder position reading. According to ACSPL+ E_PAR_C definition.

E_freq
(Optional, Integer) Used for defining the maximum encoder pulse
frequency (in MHZ). According to ACSPL+ E_FREQ definition.

E_scmul
(Optional, Integer) Used for specifying the Sin-Cos multiplication
factor for the encoder. According to ACSPL+ E_SCMUL definition.

E_aoffs
(Optional, double) Used for setting user-defined offset for absolute
encoder. According to ACSPL+ E_AOFFS definition.

ESTBITS
(Optional, integer) Used for setting the single turn resolution (number
of bits).

EMTBITS
(Optional, integer) Used for setting the multi turn resolution (number
of bits).

Return Value

None

Comments

If an optional parameter is specified, the relevant ACSPL+ variable is modified as well. Otherwise, the
initialization of the encoder will use the existing value of the variable.

If the Primary parameter is set to 0, secondary feedback variables are affected or used during
initialization, according to the following table.

If one of the parameters is out of range, error 3041 “Assigned value is out of range” given. Not
allowed E_TYPE value will trigger error 3194 “Not allowed Encoder Type”.

If ESTBITS or EMTBITS are not 0 and SLABITS is not equal to ESTBITS+EMTBITS, an error is triggered.

This function is supported in version 3.00 and higher.

58Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Primary Feedback ACSPL+ Variable Secondary Feedback ACSPL+ Variable

SLABITS S2LABITS

E_PAR_A E2_PAR_A

E_PAR_B E2_PAR_B

E_PAR_C E2_PAR_C

E_AOFFS E2_AOFFS

E_FREQ E2_FREQ

E_SCMUL E2_SCMUL

ESTBITS E2STBITS

EMTBITS E2MTBITS

Example

ENCINIT (0,10)! triggers initialization of Endat 2.2 for axis 0, primary
!feedback

STOP

2.1.10 ENCREAD

Description

The ENCREAD function is used for reading encoder parameters. The function should be executed in
a buffer, and it will wait till the execution is completed.

Syntax

INT ENCREAD (Axis, E_type, ParamType[, Primary])

Arguments

Axis
The affected axis, valid number are: 0,1,2.. up to the number of axes in the
system minus 1

E_type Encoder Type, according to ACSPL+ E_TYPE variable definition.

ParamType

Parameter Type to read.
Supported values are:

> 0 – Resolution (total number of bits, single turn + multi turn)
> 1 – Maximum Frequency (in KHz)

59Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Primary

Optional. Defines the feedback – can be primary or secondary.

Possible values:

> Primary: 1 (default)
> Secondary: 0

Return Value

Parameter value according to the requested ParamType.

Comments

Only Endat encoders are supported. For any other E_TYPE, the functions returns error 3196
“Requested Absolute Encoder is not supported”.

E_TYPE value is changed to 10 (Endat) after the function is called.

The function can be called only if the axis is disabled.

The function can be called only from a buffer; if called from the terminal, error 2073 is returned.

This variable is supported in version 3.10 and higher.

Example

I0=encread(0,10,0) ! !Axis 0, Endat encoder, Resolution
I1=encread(0,10,1) !Axis 0, Endat encoder, Max Frequency

This command is supported in the IDMsm/IDMsa/ECMsm/ECMsa/UDMsm/UDMsa
products only, and only for EnDAT encoders.

2.1.11 FCLEAR

Description

FCLEAR clears the FAULT variable and the results of the previous fault stored in MERR.

Syntax

FCLEAR axis_list

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Comments

> Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and
separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

> If the axis designation is omitted the command clears the system faults. If an axis is
specified, the command clears the FAULT and MERR components for the specified axes.
However, if the reason for the fault is still active, the controller will immediately set the fault
again following FCLEAR.

60Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> If one of the cleared faults is an encoder error, FCLEAR also resets the feedback position to
zero.

Related ACSPL+ Variables

MERR, FAULT

COM Library Methods and .NET Library Methods

FaultClear, FalutClearM

C Library Functions

acsc_FaultClear, acsc_FaultClearM

Example 1:

FCLEAR (0,1) !Clear FAULT and MERR variables for 0 and 1 axes

Example 2:

FCLEAR ALL !Clear FAULT and MERR variables for all axes

The FCLEAR.ALL command may cause an increase in USAGE.

2.1.12 FOLLOW

Description

FOLLOW switches an axis into slave mode. The specified axis will follow the profile generated by the
RTC6.

Syntax

FOLLOW(axis)

Arguement

axis Axis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

2.1.13 GO

Description

GO starts a motion that has been created using the /w (wait) switch.

Syntax

GO axis_list

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

61Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Comments

> Motor specification is a single axis like 0 or 13, a string of axes enclosed in parentheses and
separated by commas, for example: (0,1,13), or the keyword: ALL for all axes.

> Where GO specifies a single axis, that axis may not be included in any group. GO starts the
last created motion for the same axis. If the motion was not created, or has been started
before, the command has no effect.

> Where GO specifies a leading axis in a group, GO starts the last created motion for the same
axis group. If the motion was not created, or has been started before, the command has no
effect.

COM Library Methods and .NET Library Methods

Go, GoM

C Library Functions

acsc_Go, acsc_GoM

Related ACSPL+ Commands

HALT , MSEG...ENDS, JOG, MPTP...ENDS, PATH...ENDS, PTP, PVSPLINE...ENDS, SLAVE, TRACK

Example

PTP/w (0,1), 1000, 1000 !Create PTP motion, but do not start
PTP/w 3, 8000 !Create PTP motion, but do not start
GO (0,1) !Start both motions at the same time

2.1.14 GROUP

Description

GROUP defines an axis group for coordinate multi-axis motion. The first axis in the axes list is the
leading axis. The motion parameters of the leading axis become the default motion parameters for
all axes in the group. Motion on all axes in a group will start and conclude at the same time.

Syntax

GROUP axis_list

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Comments

An axis can belong to only one group at a time. If the application requires restructuring the axes, it
must split the existing group and only then create the new group.

Related ACSPL+ Variables

VEL, ACC, DEC, JERK, KDEC, GVEC, GVEL, GACC, GJERK

Related ACSPL+ Commands

SPLIT

62Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

COM Library Methods and .NET Library Methods

Group

C Library Functions

acsc_Group

Example

GROUP (0,1) !Creates an axis group that includes axes 0 and 1.
PTP (0,1), 1000, 10000 !PTP axis 0 to 1000, and axis 1 to 10000.

2.1.15 HALT

Description

In single axis motion, HALT terminates currently executed motion and clears all other motions
waiting in the axis motion queue. The deceleration profile is defined by DEC (deceleration variable).

In group motion, HALT terminates currently executed motion of all group axes, and clears all other
motions waiting in the axes motion queues. The deceleration profile is defined by the DEC
(deceleration) variable of the leading axis.

Syntax

HALT axis_list[,reason]

Arguments

axis_list List of axes to be halted.

reason
An optional argument, which must be an integer constant or expression that
equates to an integer, and specifies a cause why the axis was halted.

Switches

/e Wait for motion termination before executing the next command.

Comments

HALT ALL terminates the motion of all axes.

Related ACSPL+ Commands and .NET Library Methods

KILL/KILLALL

COM Library Methods

Halt, HaltM

C Library Functions

acsc_Halt, acsc_HaltM

Example 1:

HALT 0 !Terminates 0 axis motion, the deceleration is

! according to DEC(0)

63Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2:

HALT (0,2) !Terminates currently executed motion on axes
!0 and 2.

Example 3:

HALT ALL !Terminates currently executed motion on all axes.

2.1.16 HOME

Description

The predefined HOME command receives the following parameters: Axis, HomingMethod,
HomingVel(optional), MaxDistance(optional), HomingOffset(optional), HomeCurrLimit(optional).

Syntax

HOME Axis, [opt]HomingMethod, [opt]HomingVel, [opt]MaxDistance,
[opt]HomingOffset, [opt]HomingCurrLimit,
[opt]HardStopThreshold,[opt]SetYawToOpen,[opt]SkewValue,[opt]LookForTwoLS

Arguments

Axis
axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

HomingMethod

Optional. The number of homing method that should be used for
homing.
If not specified: the homing method is set according to the value
of the HOMEDEF variable.

HomingVel
Optional. The velocity that will be used for the homing.
If not specified: SLCPRD*EFAC/2

MaxDistance
Optional. The Maximum distance that will be used during homing.
If not specified, endless motion will be used.

HomingOffset

Optional. The machine home position is found during homing. If
not specified, 0 is used. If specified, after homing is completed, the
zero position is offset from the home position by adding the
home offset of the home position.

HomingCurrLimit
Optional. Current Limit during the homing process. If not specified:
min(XCURV,0.5*XRMSM,0.5*XRMSD)

HardStopThreshold

Optional. If specified, Hard Stop will be identified by:
Abs(PE)>min(HardStopThreshold,CERRV*0.75)
If not specified:
Abs(PE)>CERRV*0.75

64Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

SetYawToOpen

For Gantry mode only. Optional.
0 – Complementary Axis keeps OPEN LOOP state during homing
operation
1- Complementary Axis is set to OPEN LOOP state during homing
operation

SkewValue
For Gantry mode only. Optional. Used for setting positing for the
complementary axis after the homing process is finished. If not
specified, the value is 0.

LookForTwoLS

For Gantry mode only. Optional.

0 (default) - only one limit is detected

1- both limits are detected

Homing Methods

Table 2-2. Homing Methods

Method Number Explanation

1 Homing Method 1: Homing on the negative limit switch and index pulse

2 Homing Method 2: Homing on positive limit switch and index pulse

17 Homing Method 17: Homing on Negative Limit Switch

18 Homing Method 18: Homing on Positive Limit Switch

33/34 Homing Method 33 and 34: Homing on the index pulse

37 Homing Method 37: Homing on current position

50 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)

51 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)

52 Homing Method 52: Negative Hard Stop (ACS Specific)

53 Homing Method 53: Positive Hard Stop (ACS Specific)

Comments

> The HOME command is non-waiting

> MFLAGS.#HOME bit will be set to 1 after the homing is completed.

> AST.#INHOMING bit is 1 during the homing process • E_TYPE and other encoder initialization
processes will reset the #HOME bit

> The predefined homing methods are defined according to the DS402 standard, except
methods 50, 51, 52, 53

65Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> If the homing method is not supported, the error 3314 “Requested Homing
Method is not supported” is given.

> The axis is required to be enabled, commutated, and not in motion.

> Disable axis during homing process will cancel the homing process.

> Other motions cannot be executed while the axis is in home process

> The following homing methods are supported in Gantry mode: 1, 2, 50, and 51.

Example 1

enable 0
commut 0
home 0,34 !homing on Positive Index Pulse
TILL MFLAGS0.#HOME=1

STOP

2.1.17 IMM

In single axis motion, IMM provides on-the-fly changes of the following motion parameters:

> VEL (Velocity)

> ACC (Acceleration)

> DEC (Deceleration)

> JERK (Jerk)

IMM affects the motion in progress and all motions waiting in the corresponding motion queue.

In group motion, IMM provides on-the-fly changes for the motion parameters of the leading axis
only.

Syntax

IMM axis_motion parameter=value or formula

Arguments

axis_motion
parameter

The motion parameter with the specified axis (valid numbers are: 0, 1, 2, ...
up to the number of axes in the system minus 1).

value or
formula

User specified value or formula.

Related ACSPL+ Variables

VEL, ACC, DEC, JERK

COM Library Methods and .NET Library Methods

Set Acceleration Imm, Set Deceleration Imm, Set Jerk Imm, Set Kill Deceleration Imm,
Set Velocity Imm

66Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

C Library Functions

acsc_SetAccelerationImm, acsc_SetDecelerationImm, acsc_SetJerkImm, acsc_
SetKillDecelerationImm, acsc_SetVelocityImm

Example

IMM VEL(0)=5000 !Immediately change the 0 axis velocity to 5000

2.1.18 KILL/KILLALL

Description

Use KILL after a safety event to decelerate and stop an axis faster than during normal deceleration
and stop. KILLALL stops all axes.

In single axis motion, KILL terminates currently executed motion and clears all other motions
waiting in the axis motion queue. The deceleration profile uses a second-order deceleration profile
and the KDEC (kill deceleration) value.

In group motion, KILL terminates currently executed motion only for the specified axes, and clears
all other motions waiting in the axis/axes motion queue.The deceleration profile uses a second-
order deceleration profile and the KDEC (kill deceleration) variable of each axis.

Syntax

KILL axis_list[,reason]

Arguments

axis_list
List of axes to be killed, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1, or ALL for all axes.

reason

An optional argument, which must be an integer constant or expression that
evaluates to an integer, and specifies a cause why the axis was killed. If the
parameter is specified, its value is stored in the MERR variable. If the
parameter is omitted, MERR stores zero after KILL.

Switches

/e Wait for motion termination before executing the next command.

For systems having more than 15 axes, the use of KILL ALLmay cause Over Usage or
Servo Processor Alarm faults.

Comments

1. KILL ALL terminates the motion of all axes. The deceleration profile is defined by the KDEC
(kill deceleration) variable of each axis.

2. If several sequential KILL operations specify different causes for the same motor, only the
first cause is stored in MERR and all subsequent causes are ignored.

3. A cause stored in MERR is cleared by FCLEAR or ENABLE/ENABLE ALL.

67Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

HALT , FCLEAR, ENABLE/ENABLE ALL

Related ACSPL+ Variables

MERR, KDEC

COM Library Methods and .NET Library Methods

Kill, Kill All

C Library Functions

acsc_Kill, acsc_KillAll

Example 1:

KILL 1 !Kill axis 1 deceleration is according to KDEC(1)

Example 2:

KILL 0, 5011 !Kill 0 axis, store 5011 as the reason.

!Code 5011 corresponds to left limit error;
!therefore the 0 motor will be reported as
!disabled due to fault involving left limit.

Example 3:

KILL (0,1,2) !Kill 0, 1 and 2 axes according to the KDEC

!of each specified axis.

Example 4:

KILL ALL, 6100 !Kills all axes, and stores the cause in MERR.
!(6100 is the code for a user-defined cause.)

2.1.19 SAFETYCONF

Description

SAFETYCONF configures fault processing for one or more axes, by disabling the default response to
a defined axis FAULT, and performs one of the following responses:

> Ignore the interrupt

> Kill the motion

> Disable the axis

> Kill the motion and then disable the axis

Syntax

SAFETYCONF axis_list, fault_name, “conf_string”

68Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

fault_
name

Any axis fault name like #LL for left limit.

conf_
string

A string enclosed in double quotation marks with one or more of the following
characters determines the action of SAFETYCONF:

> K (KILL/KILLALL)

> D (DISABLE/DISABLEALL)

> KD (KILL/KILLALL-DISABLE/DISABLEALL)

> + when a fault occurs in any member of the axis_list, the fault
response applies to all axes of the controller (each axis fault response
can be unique)

> - applies FMASK<axis>.#fault-name = 0 for all axes of the controller

Comments

If an empty string is specified, fault detection is enabled, but the controller has no response to the
fault. However, an autoroutine can intercept the fault and provide a response.

In devices implementing STO, the user may not use SAFETYCONF to change the default response to
an STO fault, which is KILL<axis> + DISABLE<axis>.

Related ACSPL+ Commands

The #SC Communication Terminal command shows the current fault response configuration for all
axes.

Example 1:

SAFETYCONF 0,#PE,"K" !The 0 motion will be killed if the 0

!Position Error fault occurs.

Example 2:

SAFETYCONF (3,5),#LL,"KD" !Changes the response to the Left Limit fault
of

!3 and 5 axes to KILL and then DISABLE.

Example 3:

SAFETYCONF ALL,#DRIVE,"D+" !All axes will be disabled if the Drive

!Alarm fault occurs in any axis.

69Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 4:

SAFETYCONF ALL,#VL,"-" !Velocity Limit fault will be masked for

!all axes.

2.1.20 SAFETYGROUP

Description

SAFETYGROUP activates the fault response for all axes in the axis_list when any axis triggers the
fault, and manages the axes as a block in response to KILL/KILLALL and DISABLE/DISABLEALL.

To cancel the defined SAFETYGROUP, send the command again with only the first axis as the axis_
list.

Syntax

SAFETYGROUP axis_list

Arguments

axis_list
List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the system
minus 1.

COM Library Methods and .NET Library Methods

GetSafetyInputPort

C Library Functions

acsc_GetSafetyInputPort

Example 1:

SAFETYGROUP (0,1,5) !Creates safety group for axes 0, 1 and 5.

Example 2:

SAFETYGROUP 0 !Cancels the previously created safety group for
!axes 0, 1 and 5.

2.1.21 SET

Description

SET defines the current value of either feedback (FPOS), reference (RPOS), or axis (APOS) position.
SET can be initiated when the axis is disabled, or on-the-fly. APOS and FPOS are updated
automatically when SET is specified for RPOS,

If a non-default CONNECT is used, assign different values to APOS and RPOS.

Related ACSPL+ Variables

RPOS

Syntax

SET axis_RPOS=value or formula

70Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_RPOS
The reference position of the specified axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

= The assignment operator

value or
formula

User-defined value or formula

COM Library Methods and .NET Library Methods

SetRPosition, SetFPosition

C Library Functions

acsc_SetRPosition, acsc_SetFPosition

Example

SET RPOS(0)=300 !Axis 0 RPOS = 300

2.1.22 SPLIT

Description

SPLIT breaks down a group created using GROUP by designating any axis in the axis list. SPLIT ALL
breaks down all groups.

If the SPLIT command specifying an axis that is currently in motion is executed within
the buffer, the buffer execution is suspended until the motion is completed. However, if
the SPLIT command is sent from the host or as a Communication Terminal command, it
returns error 3087: "Command cannot be executed while the axis is in motion".

Syntax

SPLIT axis_list

Arguments

axis_list
Axis or list of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Related ACSPL+ Commands

GROUP

COM Library Methods and .NET Library Methods

Split, SplitAll

C Library Functions

acsc_Split, acsc_SplitAll

Example 1:

71Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

GROUP (0,1,5) !Create an axis group including axes 0, 1 and 5.
GROUP (2,3,7) !Create an axis group including axes 2, 3 and 7.
SPLIT 0 !Breaks down axis group 0, 1 and 5.

Example 2:

GROUP (0,1,5) !Create an axis group including axes 0, 1 and 5.
GROUP (2,3,7) !Create an axis group including axes 2, 3 and 7.
SPLIT ALL !Breaks down axis group 0, 1 and 5

!and group 2, 3 and 7.

2.1.23 UNFOLLOW

Description

UNFOLLOW switches an axis into regular mode. The specified axis will follow the profile generated
by the ACS controller.

Syntax

UNFOLLOW(axis)

Arguement

axis Axis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

2.2 Predefined Homing Methods

2.2.1 Homing Method 1: Homing on the negative limit switch and index pulse

With this homing method the initial direction movement is leftward if negative limit switch is
inactive (shown as low in the figure above). The home position is at the first index pulse right of the
position where the negative limit switch becomes active.

2.2.2 Homing Method 2: Homing on positive limit switch and index pulse

With this homing method the initial direction movement is rightward if the positive limit switch is
inactive (shown as low in the figure above). The home position is at the first index pulse left of the
position where the negative limit switch becomes active.

72Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.2.3 Homing Method 17: Homing on Negative Limit Switch

Homing method 17 is similar to method 1, except that it homes on negative limit switch only.

If negative limit switch is ON when the function is called, the homing is aborted (no homing
attained).

2.2.4 Homing Method 18: Homing on Positive Limit Switch

Homing method 18 is similar to method 2, except that it homes on positive limit switch only.

If positive limit switch is ON when the function is called, the homing is aborted (no homing attained).

2.2.5 Homing Method 33 and 34: Homing on the index pulse

Using methods 33 or 34, the direction of homing is negative or positive, respectively. The home
position is at the index pulse found in the selected direction.

2.2.6 Homing Method 37: Homing on current position

In this method, the current position shall be taken to be the home position. FW implements the
following ACSPL+ code:

SET FPOS(<axis>)=HomeOffset.

2.2.7 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)

With this homing method the initial direction movement is negative, till Hard Stop is found (by using
the Position Error indication). The home position is at the first index pulse right of the position where
the Hard Stop is found.

Position Error is considered as Hard Stop only if the HardStopThreshold condition is met.

73Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.2.8 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)

With this homing method the initial direction movement positive, till Hard Stop is found (by using the
Position Error indication). The home position is at the first index pulse left of the position where the
Hard Stop is found.

2.2.9 Homing Method 52: Negative Hard Stop (ACS Specific)

With this homing method the initial direction movement is negative, till Hard Stop is found (by using
the Position Error indication). After the Hard Stop is found, the axis moves back to where the Hard
Stop was detected, continues threshold (this is the home position), continues additional threshold
multiplied by 2 and halts.

Position Error is considered as Hard Stop only if the HardStopThreshold condition is met.

2.2.10 Homing Method 53: Positive Hard Stop (ACS Specific)

With this homing method the initial direction movement is positive, till Hard Stop is found (by using
the Position Error indication). After the Hard Stop is found, the axis moves back to where the Hard
Stop was detected, continues threshold (this is the home position), continues additional threshold
multiplied by 2 and halts.

2.3 Interactive Commands

The Interactive commands are:

Command Description

DISP Builds a string and sends it to the default communication channel.

INTERRUPT Causes an interrupt that can be intercepted by the host.

INTERRUPTEX Causes an interrupt similar to that of the INTERRUPT command.

SEND
Same as DISP, but also specifies the communication channel or
channels.

TRIGGER
Specifies a triggering condition. Once the condition is satisfied, the
controller issues an interrupt to the host computer.

2.3.1 DISP

Description

DISP builds an ASCII output string and sends it to a communication channel. The ASCII output can
include text segments and variable values defined in various format displays. The output string is
sent to the default communication channel defined by the standard variable DISPCH.

Syntax

DISP argument [, argument. . .]

74Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

argument

An expression or string where:

Expression:

ACSPL+ expression as one or more variables

String:

"[text] [escape-sequence] [format-specifier]"
String must be enclosed with double quotation marks.

[, argument. . .] Optional subsequent arguments.

Command Options

An input string can include one or more of the following:

> Text
Escape Sequence - appears in the output string as a non-printing character or other
specified character.

> Formatting Specification - determines how the results of an expression that follows the
input string is formatted in the output string.

Table 2-3. DISP Command Option Escape Sequences

Escape Sequence Added Character to Output String

\r Carriage return - 0x0d

\s Avoid carriage return

\n New line - 0x0a

\t Horizontal tab - 0x09

\xHH Any ASCII character where HH represents the ASCII code of the character.

The output format specification syntax adheres to a restricted version of the C language
syntax.

The format specification syntax is:

% [width] [.precision] type

where:

75Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

[width]
Optional specification for the minimum number of characters in the
output. If width is smaller than the number of digits of a displayed number,
the specified width is ignored, and the displayed number includes all digits.

[.precision]
Optional number that specifies the maximum number of characters
printed for all or part of the output field, or the minimum number of digits
printed for integer values.

type
Required character that determines whether the associated argument is
interpreted as a character, a string, or a number, as described in Table 2-4.

Table 2-4. Type Characters

Type Output Format

d Signed decimal integer

u Unsigned decimal integer

x Unsigned hexadecimal integer, using "abcdef"

X Unsigned hexadecimal integer, using "ABCDEF"

e
Signed value having the form [-]d.dddd e [sign]ddd where d is a single decimal
digit, dddd is one or more decimal digits, ddd is exactly three decimal digits, and
sign is + or -.

E Identical to the e format except that E rather than e introduces the exponent.

f

Signed value having the form [-]dddd.dddd, where dddd is one or more decimal
digits. The number of digits before the decimal point depends on the magnitude
of the number, and the number of digits after the decimal point depends on the
requested precision.

g

Signed value printed in f or e format, whichever is more compact for the given
value and precision. The e format is used only when the exponent of the value is
less than -4 or greater than or equal to the precision argument. Trailing zeros
are truncated, and the decimal point appears only if one or more digits follow it.

G
Identical to the g format, except that E, rather than e, introduces the exponent
(where appropriate).

Comments

1. If an input string argument contains n format specifiers, the specifiers apply to the n
subsequent expression arguments.

2. DISP processes arguments from left to right, as follows:

76Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> Expressions: The expression is evaluated and the ASCII representation of the result is
placed in the output string. The format of the result is determined by the formatting
specifications (if any) in the input string.

> Input strings: Text is sent as-is to the output string. Escape sequences are replaced by
the ASCII codes that they represent. Formatting specifications are applied to the results
of any expressions that follow the string

3. DISP cannot be used from the SPiiPlus MMI Application Studio Communication Terminal,
only from a program buffer.

4. DISP can only display the value of a single element of an array.

In order to receive unsolicited messages by a host application, perform the following:

1. Set DISPCH to -2.

2. Set bit 4 of COMMFL to 1.

3. Send SETCONF(306,-1,1) from the same communication channel where unsolicited
messages are expected to be received.

In order to stop the receipt of unsolicited messages by a host application: send SETCONF(306,-1,0)
from the same communication channel where there is no need any more to receive unsolicited
messages.

Related ACSPL+ Commands

SEND, SETCONF

Related ACSPL+ Variables

DISPCH, COMMFL

COM Library Methods and .NET Library Methods

OpenMessageBuffer, GetSingleMessage, CloseMessageBuffer

C Library Functions

acsc_OpenMessageBuffer, acsc_GetMessage, acsc_CloseMessageBuffer

Example 1:

DISP "%15.10f",FPOS0 !Display FPOS0 in 15 digits with 10 digits
!following the decimal point.
!Output: 997.2936183303

STOP

Example 2:

DISP "0 FVEL=%15.10f", FVEL0 !Output: 0 FVEL= 997.2936183303
STOP

77Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 3:

DISP "%1i",IN0.2 !Output: the current state of IN0.2 as
!one digit 0 or 1.

STOP

Example 4:

DISP "IN0 as hex: %04X",IN0 !Output: IN0 as hex: 0A1D
STOP

Example 5:

DISP "IN0.0-3 as binary: %1u%1u%1u%1u", IN0.0,IN0.1,IN0.2,IN0.3
!Output: IN0.0-3 as binary: 0110

STOP

Example 6:

DISP "Elapsed time is: ", TIME !Output: Elapsed time is: 4.93258E+006
STOP

Example 7:

DISP "Expression, default formating:", FPOS0*2+FPOS1+5 , FPOS1
!Output: Expression, default formatting: 6.28657
!0.286485

STOP

Example 8:

REAL AXIS_NAME ; AXIS_NAME=0 ;
DISP "Axis",AXIS_NAME," was disabled due to error code", MERR(AXIS_NAME)

!Display the reason of axis disable due to a fault.
!Output: Axis 0 was disabled due to error code 0

STOP

Example 9:

DISP "%5i\r", FPOS0, "%5i", FPOS1
!Standard format, minimum 5 positions, no decimals,
!and a carriage return between the two values.
!Output:
!711
!2024

STOP

78Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 10:

DISP "Hexadecimal format: %08X", MFLAGS(0), " and also %08x", MFLAGS(0)
!Hexadecimal format, minimum 8 positions, capital
!letters or lower case letters.
!Output: Hexadecimal format: 002A2300 and also
!002a2300

STOP

Example 11:

DISP "0 FPOS: %15.3e", FPOS0," and 1 FPOS: %15.3e", FPOS1
!Scientific format, minimum 15 positions, 3 decimals
!of FPOS0 and FPOS1.
!Output:
!0 FPOS: 5.000e-001 and
!1 FPOS: 2.865e-001

STOP

Example 12:

REAL AAA; !Standard or scientific format, small letters or
!capital letters.

AAA=10; !Assigning integer value to AAA
DISP "%g", AAA; !Output: 10
AAA=1e9 !Assigning Hex value to AAA
DISP "%g", AAA !Output: 1e+009
DISP "%G", AAA !Output: 1E+009
STOP

2.3.2 INP

Description

INP reads data values from a specified channel and stores them to an integer array. This function is
useful for creating an interface between the controller and special input devices such as a track-ball,
mouse or various sensors. INP is also used when the controller acts as a master with the MODBUS
protocol communication.

Before using INP, configure the relevant communication channel as a special communication
channel using SETCONF function, key 302.

See also OUTP.

Syntax

int INP(channel, [array,] [start_index,] [number,] [timeout])

79Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

channel

Communication channel index:

> 1 - serial communication channel COM1

> 2 - serial communication channel COM2

> 6 - Ethernet network (TCP)

> 7 - Ethernet network (TCP)

> 8 - Ethernet network (TCP)

> 9 - Ethernet network (TCP)

> 10 - Ethernet Point-to-Point (UDP)

> 12 - PCI bus

> 16 - communication channel with Modbus slave

> 36 - Ethernet network (TCP)

> 37 - Ethernet network (TCP)

> 38 - Ethernet network (TCP)

> 39 - Ethernet network (TCP)

array

User-defined integer array to which the data will be stored.

If array is omitted, the function purges formerly received characters in the
channel.

start_index

The first received character is assigned to the array element with the
specified index.

If start_index is omitted, the assignment starts from the first element of the
array.

number

The number of characters to be collected to the variable array.

If number is omitted, the function continues receiving characters until the last
element of the array is assigned, or the carriage return character is received.

timeout

The function waits for input not more than the specified number of
milliseconds.

If timeout is omitted, the waiting time is not limited.

Return Value

The number of entities that have been stored into the variable.

Error Conditions

None

80Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

GLOBAL INT MMM(10) !Defines global user array MMM with ten elements.
SETCONF(302,2,1) !Assigns COM2 as special input.
INP(2) !Purges the input buffer from old values
INP(2,MMM,0,10,1000) !INP(2)- purge the input buffer from old values

!INP(2,MMM,0,10,1000) - store values from COM2 port
!to MMM user variable, from array index 0, total of
!10 values. The data collection process will end
!within 1000 msec or when the 10 values have been
!collected.

STOP !Ends program

2.3.3 INTERRUPT

Description

INTERRUPT causes an unconditional trigger that is intercepted by the host. Once a program executes
INTERRUPT, the interrupt signal is sent to the host application. This interrupt is detected by the COM
library EnableEvent or C Library acsc_SetCallBack functions which then call interrupt type ACSC_
INTR_ACSPL_PROGRAM.

Syntax

INTERRUPT

Related ACSPL+ Commands

TRIGGER

COM Library Methods

EnableEvent, DisableEvent, SetCallbackMask, SetCallbackPriority, GetCallbackMask

C Library Functions

acsc_InstallCallback, acsc_SetCallbackMask, acsc_SetCallbackPriority, acsc_GetCallbackMask

Example 1:

INTERRUPT used in an ACSPL+ program:

ENABLE 0 !Enable axis 0
SET FPOS0=0 !Set axis 0 feedback position = 0
PTP 0, 1000 !ACSPL+ executes a PTP motion.
TILL MST(0).#MOVE=0 !The motor reaches the destination point

!and stops.
INTERRUPT !INTERRUPT is sent to the host application.
STOP

Example 2:

INTERRUPT used in a Host COM Lib application:

SET ch = New Channel !Initialize ch as a COM library object
CALL ch.EnableEvent(ch.ACSC_INTR_ACSPLPROGRAM)

!Enable INTERRUPT as an event. The host application

81Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!waits for an interrupt from the controller initiated
!by INTERRUPT from within the ACSPL+ program.

Private Sub ch_ACSPLPROGRAM(ByVal Param As Long) MsgBox ("Motion is
Stopped")

!When an interrupt occurs, launch a message box
!displaying “Motion is Stopped”

EndSub

Example 3:

INTERRUPT used in a Host C Lib application:

int WINAPI CallbackInput (unsigned __int64 Param,void* UserParameter);
// will be defined late
…
int CardIndex;//Some external variable, which contains card index
// set callback function to monitor digital inputs
if (!acsc_InstallCallback(Handle, // communication handle

CallbackInput, // pointer to the user callback function
&CardIndex, // pointer to the index

ACSC_INTR_INPUT // Type of callback
))
{
printf("callback registration error: %d\n", acsc_GetLastError());
}
…
// If callback was installed successfully, the CallbackInput function
will
// be called each time the any digital input has changed from 0 to 1.
// CallbackInput function checks the digital inputs 0 and 1
int WINAPI CallbackInput (unsigned __int64 Param,void* UserParameter)
{
if (Param & ACSC_MASK_INPUT_0 && *UserParameter == 0)
//Treat input 0 only for card with index 0
{

// input 0 has changed from 0 to 1
// doing something here

}
if (Param & ACSC_MASK_INPUT_1 && *UserParameter == 1)

//Treat input 1 only for card with index 1
{

// input 1 has changed from 0 to 1
// doing something here

}
return 0;
}

82Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.3.4 INTERRUPTEX

Description

The INTERRUPTEX command operates in a manner similar to INTERRUPT but has the following
differences:

> It triggers the dedicated callback ACSC_INTR_ACSPL_PROGRAM_EX (21)

> It accepts two mandatory integer parameters and two optional parameters. Their values
will be passed along with the interrupt to the host instead of the buffer mask passed in the
old INTERRUPT function as a 64-bit integer.

> Adjacent (“glued”) interrupts are processed differently (because parameters are not OR’ed):

> There is an internal queue of 256

> The next interrupt value will be triggered only after C Library delivers the previous one

> The maximum output rate is 1 interrupt per CTIME

> On queue overflow, the interrupt is lost

Syntax

INTERRUPTEX (32-bit_high_value,32-bit_low_value[,32-bit_high_value_second,32-bit_low_value_
second])

Arguments

32-bit_high_value Most significant value of a combined 64-bit integer

32-bit_low_value Least significant value of a combined 64-bit integer

32-bit_high_value_second Optional. High 32 bits of a combined second 64-bit integer

32-bit_low_value_second Optional. Low 32 bits of a combined second 64-bit integer

Comments

INTERRUPTEX is supported by both by SPiiPlusNT and SPiiPlusSC products. For the SPiiPlusSC-HP
products, the interrupt is passed via Shared Memory, which makes it very fast (100+(Cycle-time)/2
for the round trip on the average). For the SPiiPlusNT and the SPiiPlusSC-LT products, the interrupt is
passed via the communication channel (Ethernet/Serial RS-232).

An application that uses C Library must make sure to empty the queue, register the
callback and wait enough time until the queue is empty.

The parameters are passed to the host as a single 64-bit integer with the first parameter as the 32-
bit most significant value word and the second parameter is the 32-bit least significant word.

COM Library Methods

EnableEvent, DisableEvent, SetCallbackMask, SetCallbackPriority, GetCallbackMask

C Library Functions

acsc_InstallCallback, acsc_SetCallbackMask, acsc_SetCallbackPriority, acsc_GetCallbackMask

83Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 1:

Enable 0 ! Enable axis 0
SET FPOS0=0 ! Set axis 0 position to 0
PTP/e 0,1000 ! Move to position 1000
INTERRUPTEX (0x12, 0x34)! interrupt with parameter, host will receive

! 0x0000001200000034
Stop

Example 2:

Global integer interrupt_description (0x100)
Global integer interrupt_queue
interrupt_queue = 0
interrupt_buff =0 ! No pending interrupts
Enable 0 ! Enable axis 0
SET FPOS0=0 ! Set axis 0 position to 0
interrupt_description(interrupt_queue)= 0x1 ! Setting description to 1

! indicating pre-motion
! state

interrupt_queue = (interrupt_queue+1)&0xff ! One more pending interrupt
INTERRUPTEX (0x00, interrupt_queue) ! Interrupt description in

! interrupt_description (0)
PTP/e 0,1000 ! Move to position 1000
interrupt_description(interrupt_queue) = 0x2 ! Setting description to
2

! indicating post-motion
! state

interrupt_queue = (interrupt_queue+1)&0xff ! One more pending interrupt
INTERRUPTEX (0x00, interrupt_queue) ! Interrupt description in

! interrupt_description (1)
Stop

Example 3:

Enable 0 !Enable axis 0
SET FPOS0=0 !Set axis 0 to position 0
PTP/e 0,1000 !Move to position 1000
INTERRUPTEX (0x12, 0x34, 0x22, 0x54)

!interruptex with parameter, host will receive the following;
! 0x0000001200000034, 0x0000002200000054

2.3.5 SEND

Description

SEND is the same as DISP, but also specifies the communication channel for the output string.

Syntax

SEND channel_number, argument [, argument. . .]

84Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

channel-
number

An integer that defines the communication channel to which the message
will be sent, as follows:

-2: All channels

-1: Last used channel

1: Serial Port 1

2: Serial Port 2

6: Ethernet network (TCP)

7: Ethernet network (TCP)

8: Ethernet network (TCP)

9: Ethernet network (TCP)

10: Ethernet point-to-point (UDP)

16: MODBUS Slave

36: Ethernet network (TCP)

37: Ethernet network (TCP)

38: Ethernet network (TCP)

39: Ethernet network (TCP)

argument

An expression or string where:

Expression:

ACSPL+ expression as one or more variables

String:

"[text] [escape-sequence] [format-specifier]"
String must be enclosed with double quotation marks.

[, argument. .
.]

Optional subsequent arguments.

Command Options

For a list of Command Options, relevant Comments, and Examples, see DISP.

Related ACSPL+ Commands

DISP

Related ACSPL+ Variables

DISPCH

COM Library Methods

Send

85Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

C Library Functions

acsc_Send

2.3.6 TRIGGER

Description

TRIGGER specifies a triggering condition. Once the condition is satisfied, the controller issues an
interrupt to the host computer, as follows:

1. Sets AST<axis>.#TRIGGER = 0

2. Examines the triggering condition every MPU cycle

Once the condition is satisfied, the controller performs the following:

1. Sets AST<axis>.#TRIGGER = 1

2. Produces an interrupt to the host application (software interrupt 10, enabled by IENA.26).

The controller continues calculating the TRIGGER expression until another TRIGGER command is
executed in the same channel. Each time the expression changes its value from zero to non-zero,
the controller sets AST<axis>.#TRIGGER = 1 and causes an interrupt.

Full application of the TRIGGER command to channels greater than 7 is not currently
supported.

Syntax

TRIGGER channel, expression[, timeout]

Arguments

channel

An integer number from 0 to 7 that specifies the trigger’s sequential
number. The number defines the AST element where the triggering bit will
be set and defines the bit in the interrupt tag that is automatically sent to
the host application as an interrupt.

expression

Specifies the triggering condition. After TRIGGER is executed, the controller
checks the expression condition each MPU cycle. Triggering occurs when
the expression condition is satisfied. If the argument is omitted, triggering
in the specified channel is disabled.

timeout

Specifies triggering timeout in milliseconds. A positive number specifies
the time allowed for the triggering condition to be satisfied. If the timeout
has elapsed and the triggering condition has not been satisfied, the
controller unconditionally raises the trigger bit. After any triggering, the
controller resets timeout counting to zero. If the argument is omitted,
triggering works without timeout.

86Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Table 2-5. Channel Designation for TRIGGER

Channel Triggering Bit
Hexadecimal Interrupt Tag
(Software Interrupt 10)

0 AST0.11 0x00000001

1 AST1.11 0x00000002

2 AST2.11 0x00000004

3 AST3.11 0x00000008

4 AST4.11 0x00000010

5 AST5.11 0x00000020

6 AST6.11 0x00000040

7 AST7.11 0x00000080

Related ACSPL+ Commands

INTERRUPT

Related ACSPL+ Variables

IENA, AST

COM Library Methods

GetCallbackMask, SetCallbackMask

C Library Functions

acsc_GetCallbackMask, acsc_SetCallbackMask

Example

 TRIGGER 1, MST(0).#MOVE=0, 3000 !1 – once the triggering condition is satisfied,
!the triggering bit AST1.#TRIGGER will be set
!to "1", and the interrupt tag to the host
!application is 0x00000002.
!MST(0).#MOVE=0 – the triggering condition.
!Actuate trigger interrupt when the motor in
!the 0 axis is in position (not moving).
!3000 – check the triggering condition for
!3000 msec. If the triggering condition is not
!satisfied after 3000 msec, then set the
!triggering bit AST(1).TRIGGER to "1".

2.3.7 OUTP

Description

OUTP sends data values from an integer array to a specified channel. This function is useful to create
an interface between the controller and special input devices such as a track-ball, mouse and

87Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

various sensors. OUTP is also used when the controller acts as a master with the MODBUS protocol
communication.

Before using OUTP, configure the relevant communication channel as a special communication
channel using SETCONF function, key 302.

Each ASCII character is represented by its numerical value and is stored in a separate element of the
array.

The user might have to define communication parameters for the special communication channel
with SETCONF function keys 302, 303, 304, 309.

See also INP.

Syntax

int OUTP(channel, variable[, start_index[, number]])

Arguments

channel

Communication channel index:

> 1 - serial communication channel COM1

> 2 - serial communication channel COM2

> 6 - Ethernet network (TCP)

> 7 - Ethernet network (TCP)

> 8 - Ethernet network (TCP)

> 9 - Ethernet network (TCP)

> 10 - Ethernet Point-to-Point (UDP)

> 12 - PCI bus

> 16 - communication channel with MODBUS slave

> 36 - Ethernet network (TCP)

> 37 - Ethernet network (TCP)

> 38 - Ethernet network (TCP)

> 39 - Ethernet network (TCP)

variable User-defined integer array from which the data will be sent.

start_index

The index in the array from which to start.

If start_index is omitted, number should also be omitted (in this case, all
members of the array are transmitted).

number
The number of characters to be transmitted from the variable array.

If omitted, all members of the array starting from start_index are transmitted.

Return Value

The number of entities that have been transmitted.

88Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Error Conditions

If the function fails, an error is generated.

2.4 PEG and MARK Commands

Command Description

ASSIGNMARK Assigns MARK inputs pins to encoders.

ASSIGNPEG Assigns PEG engines to encoders.

ASSIGNPOUTS Assigns PEG outputs.

GETPEGCOUNT Returns the pulse counter of the required PEG engine

PEG_I
Activates incremental PEG, where pulses are generated at predefined,
fixed position intervals.

PEG_R
Activates random, table-based PEG where predefined pulses are
generated at pre-defined positions.

STARTPEG Starts PEG motion for specified axis.

STOPPEG Terminates PEG motion.

2.4.1 ASSIGNMARK

Description

The ASSIGNMARK function allows assignment of Mark inputs to encoder. It allows a mapping of
encoder latching to be triggered by using different physical input pins.

Syntax

ASSIGNMARK[/i] axis, mark_type, inputs_to_encoder_bit_code

In newer products the inputs_to_encoder_bit_code parameter is actually a byte code.
See IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping table.

Arguments

Axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

The axis parameter determines which node unit is used. Axis parameter can
be any axis number of the same unit.

mark_type
1 for Mark-1 assignment

2 for Mark-2 assignment

89Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

inputs_to_
encoder_
bit_code

Bit code for inputs-to-encoders mapping according to the following tables.

The bit code determines which physical input pin leads to each encoder MARK
latching.

Mark-1 Inputs to Encoder mapping for

Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD

IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping

Mark-1 Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm-
x/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv

Mark-2 Inputs to Encoder mapping for

Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD

Mark-2 Inputs to Encoders Mapping for with SPiiPlus
CMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UD
Mhv

Comments

Latching of Encoder <index> means IST(<index>).#MARK=1, and the MARK(<index>) variable value
stores the feedback position of encoder <index> (FPOS(<index>)).

The Bit Code shown in the tables affects all of the connectors in the row.

Supported products that are not listed in the tables include only the default case.

If the switch: /i is included, the MARK input signal is inverted.

In IDMxx/ECMxx products, the latching for all encoders happens simultaneously.

2.4.2 ASSIGNPEG

Description

The ASSIGNPEG function is used for engine-to-encoder assignment as well as for the additional
digital outputs assignment for use as PEG pulse outputs. It allows mapping of PEG engines to be
triggered by the feedback of a specific encoder.

Syntax

ASSIGNPEG[/f] axis, engines_to_encoders_code, gp_out_assign_code

Arguments

axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Axis parameter can be any axis number of the same unit.

The axis parameter determines the Servo Processor used.

engines_
to_
encoder
s_

Bit code for engines-to-encoders mapping according to:

SPiiPlusNT/DC-LT/HP/LD Processor 0

SPiiPlusNT/DC-LT/HP/LD Processor 1

90Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

code

SPiiPlusCMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMxa/CMhv/UDMh
v/UDMnt/UDMpa/UDMcb

UDMlc/UDIlt/UDIhp/UDMmc/PDIcl

NPMpm/NPMpc

IDMsm, ECMsm, and UDMsm

gp_out_
assign_
code

General purpose outputs assignment to use as PEG pulse outputs according to:

SPiiPlusNT/DC-LT/HP/LD SP 0

SPiiPlusNT/DC-LT/HP/LD SP 1

SPiiPlus CMnt/CMhv/UDMpm/UDMhv

UDMnt/UDMpa/UDMcb

IDMsm, ECMsm, UDMsm

The axis parameter actually serves to determine the Servo Processor used.

Comments

> ASSIGNPEG is a blocking command - the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.

> The axis parameter can be any of the axes controlled by the same servo processor, the
result will be the same.

> If the "/f" switch is included, fast loading of Random PEG arrays is activated. This feature
allows definition of state-arrays with more than 1024-members by using Random PEG. The
PEG_R command must be called with the "/d" switch.

> The Bit Code shown in the Mapping PEG Engines to Encoders tables affects all of the
connectors in the row.

HSSI devices (HSSI-IO16, HSSI-ED2, etc.) cannot be used for the same Servo Processor
when fast loading of Random PEG arrays is activated.
SPRT and SPINJECT commands cannot be used for the same Servo Processor when fast
loading of Random PEG arrays is activated.

Related ACSPL+ Commands

PEG_I, ASSIGNPOUTS, PEG_R, STARTPEG, STOPPEG

COM Library Methods

None

C Library Functions

acsc_AssignPegNT

91Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.4.3 ASSIGNPOUTS

Description

The ASSIGNPOUTS function is used for assigning PEG engine output signals to physical output pins.
In addition, the function allows assigning Fast General Purpose output pins and mapping between
FGP_OUT signals to the bits of the ACSPL+ OUT(x) variable, where x is the index that has been
assigned to the controller in the network during System Configuration.

The assignments can be obtained by running #SI in the SPiiPlus MMI Appication Studio
Communication Terminal. For example, the following is a fragment from the response
to this command:

Axes Assignment: 8,9,10,11
Inputs/Outputs Assignment:

Digital inputs (IN): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7
Digital outputs (OUT): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7

OUT is an integer array that can be used for reading or writing the current state of the General
Purpose outputs - see SPiiPlus ACSPL+ Command & Variable Reference Guide.

Each PEG engine has 1 PEG pulse output and 4 state outputs for a total of 5 outputs per PEG engine
and a total of 30 outputs for the whole PEG generator. The controller supports 10 physical output
pins that can be assigned to the PEG generator. The user defines which 10 outputs (of the 30) of the
PEG generator are assigned to the 10 available physical output pins. Some of the output pins are
shared between the PEG and the HSSI.

The tables in Appendix A.2 define how each of the 30 outputs of the 6 PEG engines can be routed to
the 10 physical output pins - 4 PEG out signals, 3 PEG state signals, and 3 HSSI signals. Note that
some of the signals cannot be routed to physical pins.

Bit Code: 111 is used for switching the physical output pins to Fast General Purpose
Outputs, see ASSIGNPOUTS.

Syntax

ASSIGNPOUTS axis, peg_output, bit_code

Arguments

axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

For controllers with firmware version 2.15 or higher, the axis parameter can be
any axis number of the unit.

peg_
output

The peg output number according to the Mapping of Engine Outputs to
Physical Output tables below

92Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

bit_code

Bit code for engine outputs to physical outputs mapping according to:

SPiiPlusNT/DC-LT/HP/LD SP 0

SPiiPlusNT/DC-LT/HP/LD SP 1

CMnt/UDMpm/UDMpc/CMhv/UDMhv

CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa (OUT0-4)

CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa (OUT5-9)

UDMnt/UDMpa/UDMcb

UDMlc/UDMmc/UDIlt/UDIhp/PDIcl

NPMpm/NPMpc

IDMsm/UDMsm/ECMsm

Comments

ASSIGNPOUTS is a blocking command in the sense that the ACSPL+ program moves to the next line
or command only after this command has been fully executed or an error is generated.

A separate ASSIGNPOUTS command should be called for every GP output or PEG output.

Examples

The following examples illustrate using the ASSIGNPOUTS in order to use PEG outputs as GP outputs

Example 1:

ASSIGNPOUTS 0, 2, 0b111

This defines the Z_PEG output as FGP_OUT2 and maps it to the bit 18 of the ACSPL+ OUT variable (see
ASSIGNPOUTS).

If you run, for example:

OUT(x).18=0

Where x is the index assigned to the controller during System Configuration, FGP_OUT2 output will
be activated.

Then if you run:

OUT(x).18=0

FGP_OUT2 will be deactivated.

Example 2:

ASSIGNPOUTS 4, 7, 0b111

This defines the X_STATE2 output as FGP_OUT6 and maps it to the bit 22 of the ACSPL+ OUT variable
(see ASSIGNPOUTS).

93Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

ASSIGNPEG, PEG_I, PEG_R, STARTPEG, STOPPEG

COM Library Methods

None

C Library Functions

acsc_AssignPegOutputsNT

2.4.4 GETPEGCOUNT

Description

The function returns the pulse counter of the required PEG engine.

Syntax

GetPEGCount(PEG_engine)

2.4.5 PEG_I

Description

The PEG_I command is used for setting the parameters for the Incremental PEG mode.

Syntax

PEG_I [/awi] peg_engine, width, first_point, interval, last_point[, time_based_pulses, time_based_
period]

Arguments

peg_engine The PEG engine number

width Width of the pulse in milliseconds.

first_point
A real scalar value in user units indicating the first point for the PEG
generation.

interval A real scalar value in user units indicating the distance between PEG events.

last_point A real scalar value in user units indicating the last point for PEG generation.

time_
based_
pulses

Optional parameter - a real scalar value indicating the number of time-based
pulses generated after each encoder-based pulse, the range is from 0 to
65,535.

time_
based_
period

Optional parameter, a real scalar in milliseconds - period of time-based pulses,
the range is from 0.00005334 to 1.7476.

The time-based period must be at least pulse width + 26.6667 nsec (minimum
distance between two pulses).

94Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

PEG is generated only after the first pre-defined start point is reached. If the current
encoder position exceeds pre-defined start point no PEG pulses are fired. It is
recommended to activate the PEG engine before the maximum current position for
movement in the positive direction and the minimum current position for movement in
the negative direction.

Comments

> If the switch: /w is included, the execution of the command is delayed until the execution of
the STARTPEG command.

> If the switch: /i is included, the PEG pulse output signal is inverted.

> If the switch: /a is included, error accumulation is prevented by taking into account the
rounding of the distance between incremental PEG events.
You must use this switch if interval does not match the whole number of encoder counts.
Using this switch is recommended for any application that uses the PEG_I command,
regardless if interval matches the whole number of encoder counts.

> Valid numbers of the peg_engine parameter can be found in the #SI report. In case of
multiple network units, the first axis number of each node indicates the first PEG engine of
the node.

Example

See the Incremental PEG example in the PEG and MARK Operations Application Note.

Related ACSPL+ Commands

PEG_R, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_PegIncNT, acsc_WaitPegReady

2.4.6 PEG_R

Description

The PEG_R command is used for setting the parameters for the Random PEG mode.

Syntax

PEG_R[/wid] peg_engine, width, mode, first_index, last_index, POS_ARRAY[, STATE_ARRAY, time_
based_pulses, time_based_period

95Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

peg_engine The PEG engine number

width Width of the pulse in milliseconds

mode

PEG state output signals configuration according to PEG_R.

Bits 0-3 relates the PEG State 0 of the specific PEG engine

Bits 4-7 relates the PEG State 1 of the specific PEG engine

Bits 8-11 relates the PEG State 2 of the specific PEG engine

Bits 12-15 relates the PEG State 3 of the specific PEG engine

The most commonly used value is 0x4444 - PEG State Outputs 0-3 are
configured with the ‘State” option (bits 2, 6, 10, 14 are ON).

first_index Index of first entry in the array for PEG generation

last_index Index of last entry in the array for PEG generation

POS_ARRAY
The Random Event Positions array, maximum of 256/1024 members. If a
longer array is required, use both PEG_R/d and ASSIGNPEG/f switches.

STATE_
ARRAY

Optional parameter - the Outputs States array defining the four PEG output
states, maximum of 256/1024 members. If a longer array is required, use both
PEG_R/d and ASSIGNPEG/f switches.

time-based-
pulses

Optional parameter - number of time-based pulses generated after each
encoder-based pulse, the range is from 0 to 65,535.

time-based-
period

Optional parameter - period of time-based pulses (milliseconds), the range is
from 0.00005334 to 1.7476.

Time-based period must be at least pulse width + 26.6667 nsec (minimum
distance between two pulses).

Table 2-6. PEG Output Signal Configuration

PEG state output types:

“Three state” - PEG state output is not in use

“State” - PEG state output will be changed according to the STATE_ARRAY values

“Pulse” - PEG state output will be changed according to PEG pulse value

“Pulse & State” - PEG state output will be changed according to the result of AND operation between
STATE_ARRAY values AND PEG pulse value

Pulse Polarity:

If positive or negative pulse is used as PEG pulse value for the specific “PEG State Output”

State Polarity:

If positive or negative state is used as PEG pulse value for the specific “PEG State Output”

96Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Comments

> If the switch /w is included, the execution of the command is delayed until the execution of
the STARTPEG command.

> If the switch /i is specified, the PEG pulse output signal is inverted.

> If the switch /d is specified, dynamic loading of positions is used. Dynamic loading can only
be implemented on a PEG engine with fast loading (ASSIGNPEG /f). In this case, , it allows
definition of a state-array which has more than 1024-members.

> The parameters that can be set by the command differ from those that could be set for
SPiiPlusCM/SPiiPlusSA/SPiiPlus3U controllers with the addition of the new first_index and
last_index parameters.

> When the PEG pulse is activated, the voltage between the two differential PEG outputs (+)
and (-) drops to -5V. When the PEG pulse is de-activated, the voltage between the two
differential PEG outputs is 5V.

> In PEG_R, the number of position-based pulses is limited to eight pulses per controller cycle
and the minimum time interval must be >200nsec.

> When using a Sin-Cos encoder, PEG is triggered at the zero crossing of the sine-cosine
waves and not at the precise interpolated position.

> The last three arguments are optional. If STATE_ARRAY is omitted, the controller generates
the PEG pulses at each position but does not change the state of any output. If time-based-
pulses and time-based-period are omitted, the controller does not generate time based
pulses.

> The dynamic loading feature is limited by the loading frequency. If a high loading frequency
is required, the loading capacity may not suffice to keep the FIFO loaded.

> If the FIFO is emptied before all data arrays have been loaded, a memory overflow fault will
be thrown.

> Valid numbers of the peg_engine parameter can be found in the #SI report. In case of
multiple network units, the first axis number of each node indicates the first peg engine of
the node.

Loading Frequency Table

CTIME (ms) Frequency (Hz)

1 200

0.5 400

0.25 800

0.2 1000

Example

See the Random PEG example in the PEG and MARK Operations Application Note.

97Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

PEG_I, ASSIGNPEG, ASSIGNPOUTS, STARTPEG, STOPPEG

Related ACSPL+ Variables

AST

COM Library Methods

None

C Library Functions

acsc_PegRandomNT, acsc_WaitPegReady

2.4.7 STARTPEG

Description

The STARTPEG command initiates the PEG process on the specified engine. The command is used in
both the Incremental and Random PEG modes by using /w switch in PEG_I or PEG_R command. If
this switch is included, the execution of the PEG_I and PEG_R commands is delayed until the
execution of the STARTPEG command.

Syntax

STARTPEG peg_engine

Arguments

peg_engine The PEG engine number

Comments

STARTPEG is a blocking command in the sense that the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.

If STOPPEG has been issued before the last PEG position, you have to use STARTPEG to resume PEG
engine firings from the current point.

Valid numbers of the peg_engine parameter can be found in the #SI report. In case of multiple
network units, the first axis number of each node indicates the first peg engine of the node.

Example

PEG_I/W 0, 0.003, 1000, 1000, 3000, 2, 0.01
PTP 0, 3000 !The program initiates synchronous PEG, with PTP
!motion on axis 0.
WAIT 2 !Two milliseconds after motion starts, PEG

!will be initiated by STARTPEG
STARTPEG 0

Related ACSPL+ Commands

ASSIGNPEG, ASSIGNPOUTS, STOPPEG

Related ACSPL+ Variables

AST

98Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

COM Library Methods

None

C Library Functions

acsc_StartPegNT

2.4.8 STOPPEG

Description

The STOPPEG command terminates the PEG process immediately on the specified engine. The
command is used in both the Incremental and Random PEG modes.

Syntax

STOPPEG peg_engine

Arguments

peg_engine The PEG engine number

Comments

STOPPEG is a blocking command in the sense that the ACSPL+ program moves to the next line or
command only after this command has been fully executed or an error is generated.

Valid values of the peg_engine parameter can be found in the #SI report. In case of multiple network
units, the first axis number of each node indicates the first peg engine of the node.

Example

PEG_I 0, 0.003, 1000, 1000, 3000, 2, 0.01
PTP 0, 3000 !The program initiates synchronous PEG, with PTP

!motion on axis 0.
WAIT 2 !Two milliseconds after motion starts, PEG

!will be terminated by STOPPEG.
STOPPEG 0

Related ACSPL+ Commands

ASSIGNPEG, ASSIGNPOUTS, PEG_I, PEG_R, STARTPEG

COM Library Methods

None

C Library Functions

acsc_StopPegNT

2.5 Miscellaneous Commands

The Miscellaneous commands are:

99Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

AXISDEF Establishes an axis alias.

DC Activates data collection.

SPINJECT
Returns the system back to the operational state if one or more slaves
underwent a reset or power cycle.

READ Reads an array from a file in the flash memory.

SPDC Activates data collection from a Servo Processor variable.

SPINJECT Initiates the transfer of MPU real-time data to the Servo Processor.

STOPINJECT Stops the transfer of MPU real-time data to the Servo Processor.

STOPSPDC Terminate SPDC data collection

SPICFG Configure SPI Interface

SPIWRITE
Issues the SPI transaction with the number of SPI words to be sent and
received in a single transaction

SPRT
Starts a real-time data transfer process from the MPU to a given Servo
Processor.

SPRTSTOP
Stops an active real-time data transfer process on the given SP (for cyclic
command only).

STOPDC Terminates data collection.

WRITE Writes an array to a file in the flash memory.

2.5.1 AXISDEF

Description

The AXISDEF command enables the user to assign an alias to one or more axes. Once assigned, the
user can use the alias throughout the program in any command requiring an axis argument.

Syntax

AXISDEF axis_alias = axis

100Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_alias

Any string with the following restrictions:

> Only one name can be defined for one axis, that is, different names
cannot be used for the same axis.

> The names must be unique, i.e., two axes cannot be defined with the
same name.

> An axis name must not be the same of any other variable name, label,
keyword, etc.

A compilation error occurs if one of the above restrictions is not satisfied.

axis

The axis number, valid numbers are: 0, 1, 2, ... up to the number of axes in

the system minus 1.

Adding (R) to the axis parameter means G-Code run on the axis will ignore the
modality entry of G20.

Comments

The AXISDEF command can be repeated many times to define all required aliases.

The axis name must be defined in the D-Buffer. In any case, the axis definition has global scope (the
definitions of the same axis in a different program must be identical as applies to all global
variables).

Although postfix indexing can be used, it is recommended using explicit indexing and providing
names as symbolic constants.

Related ACSPL+ Commands

None

COM Library Methods

None

C Library Functions

None

Example 1

An axis name can be used in expressions as a symbolic constant. For example, given the program
includes the declaration:

AXISDEF Q=3

the following command

VEL(Q)=1000;

assigns 1000 to the required velocity of axis 3.

101Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2

As user variables, axis-related standard variables accept explicit indexing. However, axis-related
standard variables also accept postfix indexing. For example, given a program that includes the
declaration:

AXISDEF Q=3, X1=1, X2= 2

Example 3

Adding (R) to the axis parameter means G-Code run on the axis will ignore the modality entry of G20
in order to support axes driving a rotational motion with G-Code commands.

AXISDEF X=0,Y=1,Z=2,A=5(R) ,B = 6(R),C=7

In this example axis 5 and axis 6 will ignore the modality entry of G20.

Explicit Indexing Postfix Indexing

VEL(3) or VEL(Q) VEL3

ACC(1) or ACC(X1) ACC1

SLVKI(2) or SLVKI(X2) SLVKI2

2.5.2 DC

Description

DC (Data Collection) accumulates data of any specified standard or user-defined variable with a
constant sampling rate. DC synchronized with motion (see Command Option /s) is called Axis Data
Collection. DC not synchronized with motion is called System Data Collection.

DC terminates due to:

> STOPDC

> The defined DC array is completed

Syntax (except for DC/s)

DC[/switch] array_name, number of points, time-interval, variable_1, [variable_2...variable_N]

Syntax for DC/s

DC/s axis, global array, number of points, time-interval, variable_1, [variable_2...variable_N]

Arguments

global array The name of a global array that stores samples

number of
points

Define the number of samples

time-interval Define the time interval between each sample

102Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

variable_1
Define variable/s to be sampled. The number of rows defined in array_name
must match the number of variables to be sampled

Switches

/switch can be one of the following:

/s
Triggers DC with the execution of the next motion command following the call to
DC/s. Motions queued before the call to DC/S will not be recorded. DC synchronized
with motion is called Axis Data Collection.

/w
Create the synchronous data collection, but do not start until GO. Command option
/w can only be used with the /s.

/c Cyclic data collection

Comments

1. DC can include up to 24 sampled variables.

2. Only one DC (system data collection) process can run at the same time.

3. Up to eight DC/s (axis data collection) processes can be simultaneously executed where
each process fills a separate array.

4. DC/c does not self-terminate. STOPDC terminates cyclic data collection.

5. DC/c uses the collection array as a cyclic buffer and can continue to collect data indefinitely.
When the array is full, each new sample overwrites the oldest sample in the array.

6. After the cyclic data collection concludes, the controller reorganizes the sample array so
that the first element represents the oldest sample and the last element represents the
most recent sample.

7. Variable S_ST.#DC = 1 when non-synchronized DC is active.

8. Variable AST<axis>.#DC = 1 when synchronized DC is active.

Related ACSPL+ Commands

STOPDC, SPDC

Related ACSPL+ Variables

S_ST, AST, S_DCN, S_DCP, DCN, DCP

COM Library Methods and .NET Library Methods

DataCollection, WaitCollectEnd, StopCollect

C Library Functions

acsc_DataCollectionExt, acsc_WaitCollectEnd, acsc_StopCollect

Example 1:

Cyclic Data Collection

GLOBAL REAL ARRAY (2)(1000)

103Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

https://www.acsmotioncontrol.com/SecureUserContent/files/Knowledge_center/KC.htm#SW/SW_ACSPLprogrammer/Document/Axis_Data_Collection.htm

!Define a real type array for two variables

!(rows) and 1000 sampling points (columns).
DC/C ARRAY,1000,3,FPOS0,TIME

!Start cyclic data collection and store 1000

!samples in ARRAY.

!The time between each sampling point is 3 msec.

!The FPOS0 standard variable samples are stored

!in the first row of ARRAY, and the TIME

!variable values are stored in the second row.
TILL ^S_ST.#DC
!Wait until S_ST.#DC = 0 (DC collection is

!finished).
STOP

Example 2

Motion Synchronized Data Collection

GLOBAL REAL SAMPLE_ARRAY(2)(1000)
!Define a real type array for two variables
!(rows) and 1000 sampling points (columns).

DC/S 0,SAMPLE_ARRAY,1000,3,FPOS0,TIME
!Start cyclic data collection when motion
!(synchronized on axis 0) begins, and store 1000
!samples in SAMPLE_ARRAY. The time
!between each sampling point is 3 msec.
!The FPOS0 standard variable samples are stored in
!the first row of SAMPLE_ARRAY, and the TIME
!variable values are stored in the second row.

TILL ^AST(0).#DC
!Wait until AST.#DC = 0 (DC collection is
!finished).

STOP

2.5.3 STOPDC

Description

Immediately terminates DC and SPDC.

Syntax

STOPDC[/switch]

104Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Switch

/switch can be:

/s Terminate synchronized data collection

Comments

> STOPDC with an argument delays termination of DC.

> STOPDC/s terminates synchronous DC initiated by DC/s.

> Multiple axis specification is not allowed.

Related ACSPL+ Commands

DC, SPDC

Related ACSPL+ Variables

S_ST, AST, S_DCN, S_DCP, DCN, DCP

COM Library Methods and .NET Library Methods

DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectEnd

Example 1

STOPDC 50 !Collect an additional 50 samples and then
!terminate DC.

Example 2

STOPDC/S 1 !Stop synchronous axis data collection for axis 1

2.5.4 READ

Description

Reads a file from the controller’s nonvolatile (flash) memory to a user defined array or variable. The
file must exist in the nonvolatile memory by previously writing it using the WRITE command.

Syntax

READ array[,filename]

or

READ/s user-variable[, filename]

Switch

/s Specifies that the user variable is a scalar and not an array

105Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

array User defined array to which the data will be imported

user-variable A scalar variable for use with the /s switch, can be either REAL or INT

filename Optional non-volatile memory file name.

Comments

1. The filename must not include a file name extension.

2. The filename maximum lenth is 100 chars.

3. The user-array name must be declared in the buffer where the command is executed.

4. The variable name may be declared in the buffer where the command is executed, or it
may be declared in the D-buffer.

5. If READ is executed from the Communication Terminal as a command, array must specify
the name of a global array.

6. If READ/s is executed from the Communication Terminal as a command, variable must
specify the name of a global variable.

7. If the optional file name is not supplied, the variable name will be used as the file name.

The following error is supported:

> Error 3333 “File name MAX length is 100 chars”

Related ACSPL+ Commands

WRITE

COM Library Methods

Transaction

C Library Functions

acsc_Transaction

Examples

GLOBAL REAL ARRAY(5) !Define a real global array
READ ARRAY,FILENAME !Read the defined file to the array

GLOBAL INT VAR !Define an integer global variable
READ/s VAR,FILENAME !Reads from file to the variable(scalar)
STOP

2.5.5 SPDC

Description

SPDC (Servo Processor Data Collection) performs fast data collection and accumulates data about
the specified Servo Processor variable with a constant maximum sampling rate of 20kHz. A typical

106Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

use for SPDC is for collecting position error (PE) and feedback position (FPOS) data at the fast Servo
Processor rate.

The Servo Processor value is different from the MPU value. The Servo Processor always uses counts
and not units. The Servo Processor position value is not affected by a SET FPOS command. An offset
is added at the MPU level only. The formula (that you can find in our manuals) is:

FPOS = FP*EFAC + EOFFS

where FPOS is the MPU variable and FP is the Servo Processor calculated value.

SPDC terminates due to:

> STOPDC

> After accumulating the defined number of samples

Syntax

SPDC[/r] Array, number_of_samples, sampling_period, SP_number, SP_Address1, [SP_Address2]

Arguments

Array

Array name, up to XARRSIZE variable value.

By default, Array is assumed to be an integer array, if the /r
switch is added, it defines the array as real.

number_of_samples
The number of samples to collect, the maximum value depends
on the size of the array.

sampling_period The time, in millisecords, that each sample is taken.

SP_number The number of the Servo Processor to be sampled

SP_Address1
The address of the Servo Processor variable in the Servo
Processor to sample.

SP_Address2
As an option, you can add another address of an other Servo
Processor variable in the Servo Processor to sample. In this case,
the array should be defined as (2)(N)

SP_Address3
As an option, you can add another address of an other Servo
Processor variable in the Servo Processor to sample, In this case,
the array should be defined as (3)(N).

SP_Address4
As an option, you can add another address of an other Servo
Processor variable in the Servo Processor to sample. In this case,
the array should be defined as (4)(N)

107Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Since memory addresses may vary between SPiiPlus products and revisions, it is highly
recommended to define a variable to represent SP_Address as the return value of
GETSPA. SPDC can then use this variable in any SPiiPlus product or revision.

Related ACSPL+ Commands

STOPDC

Comments

Only one SPDC command per Servo Processor can run at the same time.

Table 2-7. Commonly Monitored SPDC Variables

Variable Axis Servo Processor Variable

Position Error 0,1,2,3 axes[0].PE

Feedback Position 0,1,2,3 axes[0].fpos

Feedback Velocity 0,1,2,3 axes[0].fvel

Sin Analog Input 0,1,2,3 axes[0].sin

Cos Analog Input 0,1,2,3 axes[0].cos

Phase A Current 0,1,2,3 axes[0].is

Phase B Current 0,1,2,3 axes[0].it

Current Command 0,1,2,3 axes[0].command

! ------------ Declare data arrays ----------------------
GLOBAL INT DATA(15000)
!Declare global array of integer of size 15000
REAL PAR_ADDRESS
PAR_ADDRESS=GETSPA(0,"axes[0].PE")
! ------------ Define motion parameters-------------------------------
VEL(0) = 5000
ACC(0) = 100000
DEC(0) = 100000
JERK(0) =2e6
!--------------Run motion and do fast data collection ----------------
SET FPOS(0) = 0
ENABLE 0
SPDC DATA,15000,0.05,0,PAR_ADDRESS
PTP/e 0, 1000
PTP/e 0, -1000
PTP/e 0, 1000
!Use the following if you need to convert the data to one column to

108Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!export to Excel (otherwise you can collect 30000 points by SPDC above)
!Convert the array data from one row to one column to fit to export to
Excel.
!INT DATA1(15000)(1)
!INT J; J=0
!LOOP 15000;DATA1(J)(0)=DATA(J);J=J+1;END
STOP

Since memory addresses may vary between SPiiPlus products and revisions, it is highly
recommended to define a variable to represent SP_Address as the return value of GETSPA. SPDC
can then use this variable in any SPiiPlus product or revision.

SP_number may be set to 2 at most for most ACS products. The following products support sampling
of up to 4 variables:

> IMDsm
> ECMsm
> UDMsm
> IDMsa
> ECMsa
> UDMsa

Related ACSPL+ Commands

STOPDC

2.5.6 STOPSPDC

Description

The STOPSPDC function Immediately terminates the data collection of SPDC (Servo processor data
collection) for the specified servo processor.

Syntax

STOPSPDC SP_number

Arguments

SP_Number The number of the Servo Processor.

Return Value

None

Comments

The following errors are supported:

> 3034 - "Illegal index value"

NST.#SPDC bit is set to off (for the relevant server processor)

This variable is supported in version 3.10 and higher.

Related ACSPL+ Commands

SPDC

109Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Variables

NST.#SPDC

Example

STOPSPDC 1 !Stop Data Collection for Servo Processor 1

2.5.7 WRITE

Description

Writes an array or scalar (any system or user-defined variable) to a file in the controller’s nonvolatile
(flash) memory.

Syntax

WRITE user-array[, filename]

WRITE/s user-array[, filename]

Switch

/s Specifies that the user variable is a scalar and not an array

Arguments

user-array User defined array from which the data will be imported

user-variable User defined scalar variable, can be either REAL or INT

filename Optional non-volatile memory file name.

Comments

1. The nonvolatile memory filename must not include an extension.

2. The user-array or user-variable name must be declared in the buffer where the command
is executed or it may be declared in a D buffer.

3. If WRITE is executed from the Communication Terminal as a command, user-arraymust
specify the name of a global array.

4. If WRITE/s is executed from the Communication Terminal as a command, user-variable
must specify the name of a global scalar variable.

5. If filename does not exist, it is created. If the file already exists, it is overwritten.

6. If the optional file name is not supplied, the variable name will be used as the file name.

The following error is supported:

> Error 3333 “File name MAX length is 100 chars”

Related ACSPL+ Commands

READ

COM Library Methods

Transaction

110Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

C Library Functions

acsc_Transaction

2.5.8 SPINJECT

Description

SPINJECT initiates the transfer of MPU real-time data to the Servo Processor.

Syntax

SPINJECT([/switch] Array,Nsamples,Node,Addr1,[Addr2])

Arguments

Array Data source: 1 or 2 dimensional ACSPL+ array (real or integer).

Nsamples
Number of samples from the source Array to inject. If the process
is not cyclic, the injection will stop after this number of samples.
The last telegram will be padded by the last element if needed.

Node
The number of the EtherCAT node as in Servo Processor data
collection.

SP_Address1
Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program.

SP_Address2
Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 2 dimensional.

SP_Address3
Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 3 dimensional.

SP_Address4
Address inside the Servo Processor, it must correspond to a
floating or integer variable in Servo Processor program. Used
only if Array is 4 dimensional.

Switches

/switch can be one of the following:

/c
Cyclic: For each MPU cycle the FW fills CTIME*20 values from the source Array. Once
the end is reached, the process continues from the start.

/r Designates a real source.

Examples

!MYDCOM is RT control of DCOM for axis 0 inside Servo Processor 0
REAL MYDCOM(20) ! 20 values are used for CTIME = 1.0

111Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

! Initialize MYDCOM here to the desired values
! ...
SPINJECT/CR MYDCOM,20,0,getspa(0, ”axes[0].direct_command”)

2.5.9 STOPINJECT

Description

STOPINJECT stops active injection process on the given Servo Processor.

Syntax

STOPINJECT Servo_Processor

Arguments

Servo_
Processor

Identifies the Servo Processor upon which the injection process is
operating.

Example

STOPINJECT 1
!Stops the injection process on Servo Processor1

2.5.10 SPICFG

Description

SPICFG configures and initializes the SPI interface.

Syntax

SPICFG (SlaveIndex, Mode, NumberOfWords, Polarity,Size,Frequency)

Arguments

SlaveIndex
Index of the EtherCAT slave in the EtherCAT network, or 0 in case of
IDMsm/ECMsm/UDMsm

Mode

The mode of the SPI interface. The following modes are supported:

> 0 - Slave

> 1 - Master

> 2 - SlaveListenOnly

> 3 - Disable

> 4 - Master Single Transaction (Used by ACSPL+ SPIWRITE)

NumberOfWords
Number of SPI Data Words used by the application (FW to SPI).
Range: {0,8}
Not relevant in case of Master Single Transaction Mode

Polarity
Clock Polarity.

Four types are available:

112Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> Rising Edge – 0

> Rising Edge with Delay – 1

> Falling Edge – 2

> Falling Edge with Delay - 3

Size Data size in bits, the range is {1-16}.

Frequency
An integer number which defines the frequency. The range is
200KHz-10MHz, limited values are supported (defined in the table
below).

Frequency Values Supported

Value Frequencey (kHz)

2 800

3 1000

4 1500

5 2000

6 2500

7 3000

8 3500

9 4000

10 5000

Return Value

None

Comments

When the SPI interface is not required anymore, SPICFG should be called with Mode=3 (disable)
parameter.

Example

113Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.5.10.1 SPIWRITE

2.5.11 SPIWRITE

Description

SPIWRITE is a function that issues the SPI transaction with the number of SPI words to be sent and
received in a single transaction.

The function may be used in two modes: Slave and Single Master Transaction

Syntax

int SPIWRITE(SlaveIndex, NumberOfWords,SPIDataWrite,SPIDataRead,TimeOut)

Arguments

SlaveIndex
Index of the EtherCAT slave in the EtherCAT network, or 0 in case of
IDMsm/ECMsm

NumberOfWords
Number of SPI Data Words to be sent/received in the single
transaction. Range: {0,8}

SPIDataWrite INT array. Size must be number of words.

SPIDataRead INT array. Size must be number of words.

Timeout

(Optional) integer, specifies the timeout in milliseconds. Relevant
only in case of slave mode.

Default value is 5000.

Return Value

STATUS value, OK (0) or error.

Comments

Master mode behavior:

The data in the SPIDataWrite arraywritten to the SPI interface.

The SPIDataRead array contains the reply data.

The function blocks until the reply is ready (when number of received words is equal to the
NumberOfWords parameter.

Slave mode behavior:

The data in the SPIDataWrite array is written to the EXTOUT variable (and copied to the SPI
interface). The SPIDataRead array contains the reply data. The function will wait until one of the
following conditions is true:

1. SPIRXN equals to NumberOfWords parameter

2. Timeout is reached

3. Error state is returned The function returns

114Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

int SPIDataWrite(8)
int SPIDataRead(8)

int i=0

SPICFG(0,4,8,0,16,6) !Master Single Transaction Mode

loop 8
SPIDataWrite(i)=i+1
i=i+1

end
SPIWRITE(0,8,SPIDataWrite,SPIDataRead)
STOP

2.5.12 SPRT

Description

This function starts a real-time data transfer process from the MPU to a given Servo Processor.

Syntax

SPRT[/c] SP, Value_Array, Addr_Array

Switches

/c Cyclic.For each MPU cycle, the firmware fills values from the source arrays.

Arguments

SP Number of the Servo Processor to be used for real-time data transfer.

Value_
Array

Data source, 1-dimensional ACSPL+ real array

> up to 20 values for CTIME >= 0.50

> up to 12 values for 0.20 <= CTIME < 0.50

Addr_Array
Array of addresses inside that Servo Processor. It must correspond to the float
or integer variable in the Servo Processor's program, as well as to the Value_
Array values order and size.

Comments

The SPRT command cannot be used in parallel with the SPINJECT command for the
same Servo Processor.

The SPRT command can be used for simultaneous and deterministic update of 12-20 Servo
Processor variables at the controller cycle rate.

115Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

It is superior to the SETSP command that can only update one Servo Processor variable in each
controller cycle and cannot be used for continuous update (every controller cycle).

For example, assume that the PIV gains (SLPKP, SLVKP, SLIKI) need to be updated simultaneously
and frequently for gain scheduling. Even if the variables are set in the same program line, or with a
block command, the controller still updates one Servo Processor variable every controller cycle. Each
of the parameters SLVKP, SLPKP, SLVKI has three values according to the motion phase (0=motion,
1=idle, 2= settling) and the corresponding idle and settling gains.

If this is not needed, you could simply set the three values equal for each parameter. The update is
completed within several controller cycles, that can influence the system performance.

However, using SPRT, the internal Servo Processor variables can be updated simultaneously within
one cycle.

Note that SPRT affects only Servo Processor variables i.e. corresponding ACSPL+ variables don’t
change.

Example 1

GLOBAL REAL Value(9)
INT Address(9)
INT Axis
GLOBAL REAL SLPKP_value, SLVKP_value, SLVKI_value

Axis = 0
! Finding the relevant addresses can be done as one time operation
! (No need to re-use GETSPA prior to each update).

% Adress of the Servo Processor SLVKP parameter used during motion
Address(0) = getspa(0,"axes[0].params[0].SLVKP")
% Adress of the Servo Processor SLVKP parameter used in idle state
Address(1) = GETSPA(0,"axes[0].params[1].SLVKP")
% Adress of the Servo Processor SLVKP parameter used during settling
Address(2) = GETSPA(0,"axes[0].params[2].SLVKP")
Address(3) = GETSPA(0,"axes[0].params[0].SLPKP")
Address(4) = GETSPA(0,"axes[0].params[1].SLPKP")
Address(5) = GETSPA(0,"axes[0].params[2].SLPKP")
Address(6) = GETSPA(0,"axes[0].params[0].SLVKI")
Address(7) = GETSPA(0,"axes[0].params[1].SLVKI")
Address(8) = GETSPA(0,"axes[0].params[2].SLVKI")

BLOCK
! SLPKP=SLPK_value, SLVKP=SLVKP_Value, SLVKI=SLVKI_value must be set
! simultaneously.
! The following lines calculate the corresponding dsp variables:

! Desired ACSPL parameters:
! Desired SLVKP value
SLVKP_value = 100
! Desired SLPKP value
SLVKP_value = 50
! Desired SLVKI value

116Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

SLVKP_value = 10

! Translate the ACSPL+ variables to the low level Servo Processor
! variables and store them in an array
Value(0) = SLVKP_value /1024/32766*20000*SAT(POW(2,21)/XVEL(Axis)*EFAC
(Axis),0,1)
Value(1) = Value(0)
Value(2) = Value(0)
Value(3) = SLPKP_value /20000
Value(4)= Value(3)
Value(5) = Value(3)
Value(6) = SLVKI_value /POW(2,16)
Value(7)= Value(6)
Value(8) = Value(6)

! The following command performs the update:
SPRTSTOP 0;
SPRT 0, Value, Address
end
Stop

Example 2

! Real-Time MPU-Servo Processor Data Transfer (Cyclic)
REAL Value(2)
INT Address(2)
INT SP;
INT i

SP = 0;
i = 0;
Value(0) = 0; Value(1) = 19;
Address(0) = GETSPA(SP, "dummy_double[1]");
Address(1) = GETSPA(SP, "dummy_double[2]");

SPRTSTOP SP ! For making sure there is no previously running SPRT
commands for the same SP
SPRT/C SP, Value, Address

while 1
BLOCK

Value(0) = i
Value(1) = (20 - i)
i = i + 1
IF (i = 20)
i = 0
END

END
END
STOP

117Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 3

! Real-Time MPU-Servo Processor Data Transfer
REAL Value(2)
INT Address(2)
INT SP;
INT i
SP = 0;
i = 0;
Value(0) = 0; Value(1) = 19;
Address(0) = GETSPA(SP, "dummy_double[1]");
Address(1) = GETSPA(SP, "dummy_double[2]");
SPRTSTOP SP ! For making sure there is no previously running SPRT
commands for the same SP

while 1
BLOCK

Value(0) = i
Value(1) = (20 - i)
i = i + 1
IF (i = 20)

i = 0
END
SPRT SP, Value, Address

END
END

STOP

2.5.13 SPRTSTOP

Description

SPRTSTOP stops an active real-time data transfer process on the given SP (for cyclic command only).

Syntax

SPRTSTOP SP

Arguments

SP Number of the EtherCAT node as in SP data collection.

2.6 Motion Commands

The Motion commands are:

Command Description

ARC1 Adds an arc segment to MSEG...ENDS motion.

ARC1 Adds an arc segment to XSEG...ENDS motion.

118Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

ARC1 Adds an arc segment to BSEG...ENDS motion

ARC2 Adds an arc segment to MSEG...ENDS motion.

ARC2 Adds an arc segment to BSEG...ENDS motion

ARC2 Adds an arc segment to XSEG...ENDS motion

BPTP Creates a motion boost profile

BSEG...ENDS Creates a blended segmented motion.

JOG Creates a jog motion.

LINE Adds a linear segment to MSEG...ENDS motion.

LINE Adds a linear segment to XSEG...ENDS motion.

LINE Adds an liners segment to BSEG...ENDS motion

MASTER Defines a formula for calculating MPOS.

MPOINT
Adds a set of points to MPTP...ENDS, PATH...ENDS or
PVSPLINE...ENDSmotion.

MPTP...ENDS Creates a multipoint motion.

MSEG...ENDS Creates a segmented motion.

PATH...ENDS
Creates an arbitrary path motion with linear interpolation between
the specified points.

POINT
Adds a point to MPTP...ENDS, PATH...ENDS, or PVSPLINE...ENDS
motion.

PROJECTION
An expansion command to the MSEG...ENDS set of commands, that
allows the controller to perform a three dimensional segmented
motion such as creating arcs and lines on a user-defined plane.

PTP Creates a point-to-point motion.

PVSPLINE...ENDS
Creates an arbitrary path motion with spline interpolation between
the specified points.

SLAVE Creates a master-slave motion.

119Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

STOPPER Adds a segment separator to MSEG...ENDS motion.

TRACK Creates tracking motion.

XSEG...ENDS Creates an extended segment motion.

NURBS Creates NURBS motion

NPOINT Creates NURBS motion segment

SPATH Creates SmoothPath motion

SEGMENT Creates SmoothPath motion segment

SMOVE Define segment of movement with transition point smoothing

For systems having more than 15 axes, avoid using motion commands to start the
motion of all axes simultaneously as this may cause Over Usage or Servo Processor
Alarm faults

2.6.1 ARC1

Description

ARC1 must be initialized with MSEG...ENDS. Use ARC1 to specify the center point and final point
coordinates of an arc and the direction of rotation. Direction is designated by a plus sign (+) or (–) for
clockwise or counterclockwise rotation depending on the encoders’ connections.

Figure 2-5. ARC1 Coordinate Specification

Syntax

ARC1 axis_list, center-point, final-point, direction[,user-specified velocity]

120Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list

List of axes involved, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.

The ARC1 axis_list can involve two or more axes, see PROJECTION.

A minimum of two axes must be specified.

center-point Center point coordinates.

final point Last point.

direction
Use + for motion in the direction of increasing encoder counts, or - for
motion in the direction decreasing encoder counts.

user-
specified
velocity

If MSEG command option /v is used, the user-specified velocity must be the
last parameter in the ARC1 syntax.

Comments

> ARC1 and ARC2 differ only by the required arguments. ARC1 requires the coordinates of the
center point, final point, and the direction of rotation. ARC2 requires the coordinates of the
center point and the rotation angle in radians. Each command produces the same result, so
selection of either ARC1 or ARC2 depends on the available data.

> A single ARC1 command can not create a complete circle because the start point and end
point of the motion can not be the same. Use two ARC1 commands, or use ARC2.

Related ACSPL+ Commands

MSEG...ENDS, ARC2, LINE, STOPPER, PROJECTION

COM Library Methods

Arc1, ExtArc1

C Library Functions

acsc_Arc1, acsc_ExtArc1

Example

See MSEG...ENDS.

2.6.2 ARC1

Description

Use ARC1 to specify the center point and final point coordinates of an arc and the direction of
rotation. Direction is designated by a plus sign (+) or (–) for clockwise or counterclockwise rotation
depending on the encoders’ connections. When ARC1 is used for Extended Motion, it must be
initialized with XSEG...ENDS.

121Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Syntax

ARC1 [/switches] (axis_list), center_point_axis1, center_point_axis2, destination_point_axis1,
destination_point_axis2, [destination_point_axis3, … destination_point_axis6,] direction[, velocity]
[,end_velocity][,time][,values, variables[,index [,masks]]][, lci_segment_active]

Arguments

Argument Description

axis_list
Defines one or two axes, specified as axes numbers separated by
commas or as axes names separated by commas. The axes should only
be those axes specified in the corresponding XSEG command.

center_point_
axis1

Center point position for the first axis

center_point_
axis2

Center point position for the second axis

destination_
point_axis1

Destination position of the first axis

destination_
point_axis2

Destination position of the second axis

destination_
point_axis3

…

destination_
point_axis6

Mandatory only if AXIS_LIST contains more than 2 axes.

Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in the AXIS_LIST.

direction

Direction is specified as + or -. It defines clockwise or counterclockwise
rotation depending on the encoder connection: “+” for motion in the
direction of increasing encoder counts, or “-” for motion in the direction
decreasing encoder counts.

velocity

[Mandatory with /V switch].

Defines required velocity for the current and for all subsequent
segments. See Using ARC1, ARC2 and LINE Switches

.

end_velocity

[Mandatory with /F switch].

Defines required velocity at the end of the current segment. See Using
ARC1, ARC2 and LINE Switches.

time [Mandatory with /T switch].

122Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Argument Description

Defines segment processing time. See Using ARC1, ARC2 and LINE
Switches.

values

[Mandatory with /O switch].

Defines the values to be written to variables array at the beginning of
the current segment execution. values is a one-dimensional user
defined array of integer or real type with maximum size of 10 elements .

variables

[Mandatory with /O switch].

Defines the user-defined array, which will be written with values data at
the beginning of the current segment execution. variables is a one-
dimensional user defined array of the same type and size as the values
array.

index

[Optional, only used with /O switch]

Defines the first element (starting from zero) of the variables array, to
which values data will be written. If argument is omitted, values data is
written to the variables array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are
written to variables array at the beginning of the current segment
execution. masks is a one-dimensional user-defined array of integer
type and the same size as the values array. The masks are only applied
for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask
(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

lci_segment_
active

[Mandatory with /p switch]

Integer value. Fire LCI State or Pulse at the beginning of current segment.
The function is available if the LCI segment-based mode was previously
defined by the SegmentGate or SegmentPulse functions. The value
defines the state value in SegmentGate mode (1 or 0). In SegmentPulse
mode the value equal 1.

For information on optional switches for this command, see Using ARC1, ARC2 and LINE
Switches.

123Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.3 ARC1

This format of ARC1 is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and ends in the destination point with the specified center point.

Syntax

ARC1[/switches] (axis_list),
 center_point_axis1,center_point_axis2,
 destination_point_axis1,destination_point_axis2, direction

[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

Arguments

Argument Commments

axis_list

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

center_point_axis1 Center point position for the first axis

center_point_axis2 Center point position for the second axis

destination_point_axis1 Destination position of the first axis

destination_point_axis2 Destination position of the second axis

direction

Direction is specified as + or -. It defines clockwise or
counterclockwise rotation depending on the encoder
connection: “+” for motion in the direction of increasing encoder
counts, or “-” for motion in the direction decreasing encoder
counts.

segment_time Only if switch/m is specified: Segment time (Tm) in milliseconds.

acceleration_time
Only if switch/a is specified: Acceleration time (Ta) in
milliseconds.

jerk_time Only if sufswitchfix /s is specified: Jerk time (Tj) in milliseconds

dwell_time

Only if sufswitchfix /d is specified: Dwell time at the final point of
the segment in milliseconds.
With this switch no blending will be done at the segment final
point.

124Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.4 ARC2

Description

ARC2 must be initialized with MSEG...ENDS. Use ARC2 to specify the center point and rotation angle
in radians of an arc segment. Designate direction by positive or negative rotation angle, depending
on the encoders’ connections.

Figure 2-6. ARC2 Center Point and Rotation Angle Specification

Syntax

ARC2 axis_list, center-point, rotation-angle and direction [,user-specified velocity]

Arguments

axis_list

List of axes involved, valid numbers are: 0, 1, 2, ... up to the number of axes
in the system minus 1.

The ARC2 axis_list can involve two or more axes, see PROJECTION.

A minimum of two axes must be specified.

center-point center point coordinates

final point last point

rotation
angle and
direction

Rotation is in radians. Use + for motion in the direction of increasing encoder
counts, or - for motion in the direction decreasing encoder counts

user-
specified
velocity

If MSEG command option /v is used, the user-specified velocity must be the
last parameter in the ARC2 syntax.

Comments

ARC1 and ARC2 differ only by the required arguments. ARC1 requires the coordinates of the center
point, final point, and the direction of rotation. ARC2 requires the coordinates of the center point and
the rotation angle. Each command produces the same result, so selection of either ARC1 or ARC2
depends on the available data.

See Using ARC1, ARC2 and LINE Switches for details about function switches.

125Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Related ACSPL+ Commands

MSEG...ENDS, ARC1, LINE, STOPPER, PROJECTION

COM Library Methods

Arc2, ExtArc2

C Library Functions

acsc_Arc2, acsc_ExtArc2

Example

See MSEG...ENDS.

2.6.5 ARC2

Description

This format of ARC2 is used for extended segment motion and in this form must be initialized with
XSEG...ENDS . Use ARC2 to specify the center point and rotation angle in in radians of an arc
segment. Designate direction by positive or negative rotation angle, depending on the encoders’
connections.

Syntax

ARC2[/switches] (axis_list), center_point_axis1,center_point_axis2, rotation_angle, [,destination_
point_axis3, …
destination_point_axis6][,velocity][,end_velocity][,time][,values, variables[,index[,masks]]]
[,external_loop_type, external_loop_type, maximum_allowed_deviation][, lci_segment_active]

Arguments

axis_list

List of axes numbers separated by comma or as axes names separated
by comma. The axes should only be those axes specified in the
corresponding XSEG command.

A minimum of two axes must be specified.

center_point_
axis1

Center point position for the first axis

center_point_
axis2

Center point position for the second axis

destination_
point_axis3

…

destination_
point_axis6

Mandatory only if axis_list contains more than 2 axes.
Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in the axis_list.

126Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

rotation_angle
Defines central angle of the arc, signed according to rotation direction:
plus for a counter-clock-wise arc, minus for a clock-wise arc.

velocity

[Optional, only used with /v switch]

Defines required velocity for the current and for all subsequent
segments. See Switches explanation for details.

end_velocity

[Optional, only used with /f switch]

Defines required velocity at the end of the current segment. See
Switches explanation for details.

time
[Mandatory with /t switch].
Defines segment processing time.

values

[Optional, only used with /o switch]

Defines the values to be written to variables array at the beginning of
the current segment execution. values is a one-dimensional user
defined array of integer or real type with maximum size of 10 elements .

variables

[Optional, only used with /o switch]

Defines the user-defined array, which will be written with values data at
the beginning of the current segment execution. variables is a one-
dimensional user defined array of the same type and size as the values
array.

index

[Optional, only used with /o switch]

Defines the first element (starting from zero) of the variables array, to
which values data will be written. If argument is omitted, values data is
written to the variables array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are
written to variables array at the beginning of the current segment
execution. masks is a one-dimensional user-defined array of integer
type and the same size as the values array. The masks are only applied
for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask
(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

127Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

external_loop_
type

0 - Cancel external loop
1 – Smooth External loop (line-arc-line)
2 – Triangle External loop (line-line-line)

minimum_
segment_length

If the lengths of both segments are more than this value, the skywriting
algorithm will be applied.

maximum_
allowed_
deviation

The parameter limits the external loop deviation from the defined
profile. If the value is negative – no limitation.

lci_segment_
active

[Mandatory with /p switch]

Integer value. Fire LCI State or Pulse at the beginning of current
segment. The function is available if the LCI segment-based mode was
previously defined by the SegmentGate or SegmentPulse functions. The
value defines the state value in SegmentGate mode (1 or 0). In
SegmentPulse mode the value equal 1.

Switches

The following optional /switches may be used singularly or in combination with the ARC2 command:

/v

Specify required velocity.

The switch requires an additional parameter that specifies the required velocity.
The switch changes the required velocity for the current segment and for all
subsequent segments.

If the switch is not specified, the required velocity does not change.

/f

Decelerate to the end of segment.

The switch requires an additional parameter that specifies the end velocity. The
controller decelerates to the specified velocity at the end of segment. The specified
value should be less than the required velocity; otherwise the parameter is
ignored. The switch affects only one segment.

The switch also disables corner detection and processing at the end of segment.

If the switch is not specified, deceleration is not required. However, in special cases
the deceleration might occur due to corner processing or other velocity control
conditions.

/o
Synchronize user variables with segment execution. The switch requires additional
two or three parameters that specify values, user variable and mask. See details in
Arguments for explanation.

/b
Use external loops at corners. The switch requires additional parameters that
specify the external loop type, the minimum segment length, and the maximul
allowed deviation from profile.

/p Specifies that the lci_segment_active parameter is required

128Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.6 ARC2

This format of ARC2 is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path an arc segment that starts in the current point
and specified as the center point and rotation angle.

Syntax

ARC2[/switches] (axis_list),

 center_point_axis1,center_point_axis2,

 rotation_angle

[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

Arguments

Arguments Comments

axis_list

Defines one or two axes, specified as axes numbers separated
by comma or as axes names separated by comma. The axes
should only be from those axes specified in the corresponding
BSEG command.

center_point_axis1 Center point position for the first axis

center_point_axis2 Center point position for the second axis

rotation_angle
Defines central angle of the arc, signed according to rotation
direction: plus on counter-clock-wise arc, minus on clock-wise
arc.

segment_time Only if switch/m is specified: Segment time (Tm) in milliseconds.

acceleration_time
Only if switch/a is specified: Acceleration time (Ta) in
milliseconds.

jerk_time Only if switch/s is specified: Jerk time (Tj) in milliseconds

dwell_time

Only if switch/d is specified: Dwell time at the final point of the
segment in milliseconds.

With this switchno blending will be done at the segment final
point.

2.6.7 BPTP

Description

BPTP defines a motion profile using the MotionBoost Feature.

Syntax

BPTP[/switch] axis_list, destination_point, [value of Tf, value of Vf, motor_motion_delay]

129Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Switches

Arguments Comments

None
Travel time will be calculated by the MPU to achieve a the minimum
possible time

/t
Minimum travel time in seconds, The calculated travel time will be at least
the specified value. Incompatible with the /d switch.

/d

Travel Time – specifies the exact travel time for the motion in seconds.

All other considerations are ignored, which could cause a safety fault
during motion execution.

Incompatible with the /t switch.

/f User will enter final, nonzero velocity

/e Wait for motion termination before executing next command.

/r Relative motion

/v Use velocity parameter instead of default velocity parameters.

/w Create the motion, but to not start until the GO command is issued.

/z Interpret entered coordinates according to the Local Coordinate System.

/m

Use the motion profile values of the axis group as a whole, rather than
those of the leading axis, without exceeding any of the defined axes
motion VEL, ACC, DEC, JERK values. Not compatible with /2 switch. Range
is 0-25 ms.

/q

Defines actual motor movement delay in microseconds. The delay
resolution is 50 microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or
20ms for CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified
delay, while motion profile generation (APOS) starts immediately.

/2 Use 20 kHz motion mode

Use of the /d switch to specify minimum travel time overrides all other parameters
which might limit velocity and requires careful attention to safety considerations.

130Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

BPTP/2 is limited to at most 2 axes in a single function call.

The BPTP/2 command is limited to at most 2 axes per Servo Processor and at most 4
axes per system.

Arguments

axis_list

a Axis a will perform the motion

(axes)
Axes will perform a synchronized motion to the destination point along to a
straight line connecting the start to the destination point. Axes may be any
set of distinct numbers in the range 0 to 63.

destination-point

(af,bf,cf)
af is a destination point for axis a
bf is a destination point for axis b
cf is a destination point for axis c

Value of Tf

Tf Desired travel time

Value of Vf

Vf Desired final velocity

Motion Delay

motor_
movement_delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

GPHASE

Two options are available.

> Four phases (For motion in positive direction; for motion in negative direction reverse the
inequality signs)

1. Acceleration buildup

> RJERK>0, RACC>0

2. Acceleration finishing

> RJERK<0, RACC>0

3. Deceleration buildup

> RJERK<0, RACC<0

131Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

4. Deceleration finishing

> RJERK>0, RACC<0

Comments

This command is supported in ADK versions 2.70 and higher.

Examples

BPTP 0, 100

A simple example that moves axis 0 to position 100.

If the axis is moving when the command is issued, the controller creates the motion and inserts it
into the axis motion queue. The motion waits in the queue until all motions before it finish, and

only then starts.

BPTP/ed (0,1), 100, 200, 0.4

Move axes 0,1 to position 100,200.

Do not execute the next command in the program until the motion is done.

Execute the motion in exactly 0.4 seconds.

// execute a BPTP motion with 20 KHz resolution
// move axes 0,1 to absolute coordinates 1,1

BPTP/2 (0,1),1,1

2.6.8 BPTPCalc

Description

The BPTPCALC function calculates and allows the user to set the motion variables according to a
desired motion time. When the travel time and distance are known in advance, the BPTPCALC
should be used to generate new VEL, ACC and JERK values.

Syntax

BPTPCALC real Motion_duration, real Distance, int index

Arguments

Motion_duration
The desired motion time in seconds. The time will be rounded up to a
whole number of controller cycles.

Distance The travel distance in user units

Index
1 - Velocity
2 - Acceleration
3 - Jerk

132Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Comments

This command is supported in ADK versions 2.70 and higher.

Example

! Calculate the motion parameter to execute a 10 unit BPTP motion in 3 ms
VEL(0) = bptpcalc(0.003, abs(10), 1)
ACC(0) = bptpcalc(0.003, abs(10), 2)
JERK(0) = bptpcalc(0.003, abs(10), 3)

enable(0)

BPTP/R(0), 10 ! Move axis 0, 10 units, in 3 ms

STOP

2.6.9 BSEG...ENDS

Syntax

BSEG[/switches] (axis_list), initial_position_axis1, initial_position_axis2,segment_time, acceleration_
time, jerk_time[, dwell_time], [motor_motion_delay]

Arguments

Arguments Comments

axis_list
Axes involved in BSEG motion, specified as axes numbers
separated by comma or as axes names separated by comma

initial_position_axis1 Initial position of the first axis

initial_position_axis2 Initial position of the second axis

segment_time
Initial segment time (Tm) in milliseconds. The specified segment
time will be used for all segments until segment_time argument is
specified in segment LINE, ARC1 or ARC2 command.

acceleration_time
Initial acceleration time (Ta) in milliseconds. The specified
acceleration time will be used for all segments until acceleration_
time argument is specified in LINE, ARC1 or ARC2 command.

jerk_time
Initial jerk time (Tj) in milliseconds. The specified jerk time will be
used for all segments until jerk_time argument is specified in LINE,
ARC1 or ARC2 command.

133Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

dwell_time

Optional] Initial dwell time between segments in milliseconds. If
this argument is specified, no blending will be done for all
segments of the motion. That means that the motion will be
stopped at the end of each segment for the specified dwell_time
milliseconds.

motor_motion_delay
(Optional, used only with /q switch) Delay, in milliseconds, before
motor motion actually starts.

Switches

Switch Comments

/w
Do not start until the GO command is executed.
If the switch is not specified, the motion starts immediately after the first
motion segment is defined.

/r
Set the initial axis position as origin. Segment commands positions should be
declared relative to the new origin.

/z Interpret entered coordinates according to the Local Coordinate System.

/q

Defines actual motor movement delay in microseconds. The delay resolution is
50 microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay,
while motion profile generation (APOS) starts immediately.

2.6.10 JOG

Description

JOG creates a motion with constant velocity and no defined end point.

JOG motion terminates by:

> HALT , KILL/KILLALL, BREAK, DISABLE/DISABLEALL

> Execution of any other motion command for the same axis

> Limit switch activation

> Any fault activation that disables the drive or kills the motion

Syntax

JOG[/switch] axis_list [,user-specified-velocity][,user-specified-direction]

134Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

user-
specified-
velocity

Optional parameter used if the /v command option is specified

user-
specified-
direction

Optional parameter. Motion direction is designated by a plus sign (+) for
increasing feedback counts or (–) or decreasing feedback counts. If no
operator is used, motion is in the direction of increasing encoder counts.

Switches

/switch can be:

/v Use the specified velocity instead of the default velocity (VEL).

/w Create the motion, but do not start until GO.

Related ACSPL+ Commands

GO, HALT , KILL/KILLALL, BREAK, IMM

Related ACSPL+ Variables

AST, MST, MERR, VEL, ACC, JERK, FPOS, RPOS, GPHASE

COM Library Methods and .NET Library Methods

Jog, JogM

C Library Functions

acsc_Jog, acsc_JogM

Examples

Example 1:

JOG/v 0, 500 !Jog 0 axis with VEL 500

Example 2:

JOG (0,1,2), –++ !Jog axes 0, 1, and 2 where axis 0 jogs in the
!negative direction and axes 1 and 2 jog in the
!positive direction.

2.6.11 LINE

Description

LINE must be initialized with MSEG...ENDS. LINE adds a linear segment to a segmented motion.

Syntax

LINE axis_list, final-position1, final-position2[,user-specified velocity]

135Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list

List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

A minimum of two axes must be specified.

final position1 First coordinate

final position2 Second coordinate

user specified
velocity

Optional user-specified velocity if LINE was initiated by MSEG/v.

Comments

1. ENDS informs the controller that no more segments will be specified. If ENDS is omitted,
motion stops at the last point of the sequence and waits for the next point.

2. If the LINE axis_list involves two or more axes, see PROJECTION.

Related ACSPL+ Commands

MSEG...ENDS, ARC1, ARC2, STOPPER, PROJECTION

COM Library Methods

See "Points and Segments Manipulation Methods" in SPiiPlus COM Library Programmer's Guide.

C Library Functions

See "Points and Segments Manipulation Methods" in SPiiPlus C Library Reference Programmer's
Guide.

Example

See MSEG...ENDS.

2.6.12 LINE

Description

This format of LINE is used for extended segment motion and in this form must be initialized with
XSEG...ENDS . Use LINE to add a linear segment that starts at the current point and ends in the
destination point to the motion path.

Syntax

LINE [/switches] (axis_list), destination_point_axis1, destination_point_axis2
[,destination_point_axis3 … ,destination_point_axis6][,velocity][,end_velocity][,time][,values,
variables[,index[,masks]]] [,external_loop_type, external_loop_type, maximum_allowed_deviation][
,lci_segment_active]

136Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list

List of axes numbers separated by comma or as axes names separated
by comma. The axes should only be those axes specified in the
corresponding XSEG command.

A minimum of two axes must be specified.

destination_
point_axis1

Destination position of the first axis

destination_
point_axis2

Destination position of the second axis

destination_
point_axis3

…

destination_
point_axis6

Mandatory if axis_list contains more than 2 axes.
Destination position of the rest of axes. Number of destination positions
must correspond to the number of axes in axis_list.

velocity

[Optional, only used with /v switch]

Defines required velocity for the current and for all subsequent
segments. See Switches explanation for details.

end_velocity

[Optional, only used with /f switch]

Defines required velocity at the end of the current segment. See
Switches explanation for details.

time
[Mandatory with /t switch].
Defines segment processing time.

values

[Optional, only used with /o switch]

Defines the values to be written to variables array at the beginning of
the current segment execution. values is a one-dimensional user
defined array of integer or real type with maximum size of 10 elements .

variables

[Optional, only used with /o switch]

Defines the user-defined array, which will be written with values data at
the beginning of the current segment execution. variables is a one-
dimensional user defined array of the same type and size as the values
array.

index [Optional, only used with /o switch]

137Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Defines the first element (starting from zero) of the variables array, to
which values data will be written. If argument is omitted, values data is
written to the variables array starting from the first element (index 0).

masks

[Optional, only used if values and variables are integer]

Defines the masks that are applied to values before the values are
written to variables array at the beginning of the current segment
execution. masks is a one-dimensional user-defined array of integer
type and the same size as the values array. The masks are only applied
for integer values:

variables(n) = (variables(n) AND (NOT mask(n))) OR (values(n) AND mask
(n))

If argument is omitted, all values bits are written to variables.

If values is a real array, the masks argument should be omitted.

external_loop_
type

0 - Cancel external loop
1 – Smooth External loop (line-arc-line)
2 – Triangle External loop (line-line-line)

minimum_
segment_length

If the lengths of both segments are more than this value, the skywriting
algorithm will be applied.

maximum_
allowed_
deviation

The parameter limits the external loop deviation from the defined
profile. If the value is negative – no limitation.

lci_segment_
active

[Mandatory with /p switch]

Integer value. Fire LCI State or Pulse at the beginning of current
segment. The function is available if the LCI segment-based mode was
previously defined by the SegmentGate or SegmentPulse functions. The
value defines the state value in SegmentGate mode (1 or 0). In
SegmentPulse mode the value equals 1.

Switches

The following optional /switches may be used singularly or in combination with the LINE command:

/v

Specify required velocity.

The switch requires an additional parameter that specifies the required velocity.
The switch changes the required velocity for the current segment and for all
subsequent segments.

If the switch is not specified, the required velocity does not change.

/f Decelerate to the end of segment.

138Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

The switch requires an additional parameter that specifies the end velocity. The
controller decelerates to the specified velocity at the end of segment. The specified
value should be less than the required velocity; otherwise the parameter is
ignored. The switch affects only one segment.

The switch also disables corner detection and processing at the end of segment.

If the switch is not specified, deceleration is not required. However, in special cases
the deceleration might occur due to corner processing or other velocity control
conditions.

/o
Synchronize user variables with segment execution. The switch requires additional
two or three parameters that specify values, user variable and mask. See details in
Arguments for explanation.

/b
Use external loops at corners. The switch requires additional parameters that
specify the external loop type, the minimum segment length, and the maximul
allowed deviation from profile.

/p Specifies that the lci_segment_active parameter is required

2.6.13 LINE

This format of LINE is used for blended segment motion and in this form must be initialized with
BSEG...ENDS. The command adds to the motion path a linear segment that starts in the current point
and ends in the destination point.

Syntax

LINE[/switches] (axis_list),destination_point_axis1,destination_point_axis2
[,segment_time [,acceleration_time [,jerk_time [,dwell_time]]]]

Arguments

Arguments Comments

axis_list
Defines one or two axes, specified as axes numbers separated by
comma or as axes names separated by comma. The axes should only be
from those axes specified in the corresponding BSEG command.

destination_
point_axis1

Destination position of the first axis

destination_
point_axis2

Destination position of the second axis

segment_time Only if the /m switch is specified: Segment time (Tm) in milliseconds.

acceleration_time Only if /a switch is specified: Acceleration time (Ta) in milliseconds.

jerk_time Only if the /s switch is specified: Jerk time (Tj) in millisecond

139Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

dwell_time

Only if the /d switch is specified: Dwell time at the final point of the
segment in milliseconds.

With this switch no blending will be done at the segment final point.

2.6.14 MASTER

Description

MASTER defines master-slave motion by creating a dependency between an axis position or
velocity to a variable and/or an expression. MASTER always follows the (axis) MPOS variable. SLAVE
initiates the motion defined by MASTER and must follow MASTER.

Velocity Lock is the default state for MASTER. Initiate MASTER with SLAVE/p for position
lock.

The following actions terminate the master-slave dependency, however, these actions do not
necessarily terminate the motion:

> KILL or HALT to the slave axis.

> DISABLE to either axis or both axes.

> Setting the logical dependence between master and slaves axes to zero. For example,
MASTER MPOS(0) = 0.

Syntax

MASTER axis_MPOS=formula

Arguments

axis_MPOS Define master value for axis

= Assignment operator

formula A variable and/or expression

Related ACSPL+ Commands

SLAVE, GO, HALT , KILL/KILLALL, ENABLE/ENABLE ALL, DISABLE/DISABLEALL, MAP

Related ACSPL+ Variables

AST, XSACC, MFF

COM Library Methods and .NET Library Methods

SetMaster, Slave, SlaveStalled

C Library Functions

acsc_SetMaster, acsc_Slave, acsc_SlaveStalled

Examples

Example 1:

140Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

MASTER MPOS(0)=5*RVEL(1)
!Creates a master-slave dependency where
!the 0 axis velocity is slaved to five times

!the 1 axis reference velocity (RVEL)
SLAVE 0 !Initiates the 0 axis motion

Example 2:

Figure 2-7 illustrates SLAVE/pt used in the following syntax example.

MASTER MPOS(0)=FPOS(1)+MARK (1)
!Create a master slave dependency, where
!axis 0 is the slave. The master axis
!is 1, and the FPOS (feedback position)
!expression plus the MARK position
!are the references for the slaved axis 0.

SLAVE/pt 0, -500, 500 !SLAVE command with position lock
!and specified boundary switches,
!for axis 0. -500 is the left
!position boundary, and 500 is the
!right position boundary.

Figure 2-7. SLAVE /pt Illustration

In Figure 2-7, Position 1 is outside of the defined boundary and the master-slave dependency is
stalled. Position 2 is within the defined boundary and the master-slave dependency is active.

2.6.15 MPOINT

Description

MPOINT specifies an array of destination points used by MPTP...ENDS, PATH...ENDS or
PVSPLINE...ENDS motion commands. An MPOINT array must conclude with ENDS.

Syntax

MPOINT axis_list, array-name (number of rows,number of points)

141Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
List of axes involved. Axes must be in the same order as defined in
MPTP, PATH or PVSPLINE.

array (number of
rows,number of
points)

The MPOINT array must be defined as Real.

The number of rows is the first element and the number of columns is
the second element. A three-axis, five-point array is defined as follows:
real array (3)(5).

Each row defines the values for the points for each axes, and depending
on command preceding MPOINT, the defined velocities, and the defined
times. The array must contain, at least, the same number of columns
declared in the array as the number of defined points. Extra array
columns are ignored. See Array Structures for a description of various
array configurations.

Related ACSPL+ Commands

MPTP...ENDS, POINT, PATH...ENDS, PVSPLINE...ENDS

COM Library Methods and .NET Library Methods

MultiPoint, MultiPointM, Spline, SplineM, AddPVPoint, AddPVPointM, AddPVTPoint, AddPVTPointM

C Library Functions

acsc_MultiPoint, acsc_MultiPointM, acsc_Spline, acsc_SplineM, acsc_AddPVPoint, acsc_AddPVPointM,
acsc_AddPVTPoint, acsc_AddPVTPointM

Array Structures

There are different point array structures depending on the MPOINT enabling command and
switches. These structures are described below.

1. A five-point, three-axis MPOINT array enabled by MPTP or PATH without switches appears
as follows:

ARRAY (3)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

0 Axis 1000 2000 3000 4000 5000

1 Axis 5000 4000 3000 2000 1000

5 Axis 0 2000 4000 6000 8000

See Example 1, illustrating sample code based on the ARRAY (3)(5) structure.

2. If MPOINT follows MPTP/v, the point array must include an additional row to specify the
transition velocity from the previous point to the current point and appears as follows:

142Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ARRAY (4)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

0 Axis 1000 2000 3000 4000 5000

1 Axis 5000 4000 3000 2000 1000

5 Axis 0 2000 4000 6000 8000

Velocity 6000 7000 5000 4000 4000

See Example 2, illustrating sample code based on the ARRAY (4)(5) structure.

3. If MPOINT follows PATH/t, the point array must include an additional row to specify the time
interval between the previous point and the current point and appears as follows:

ARRAY (4)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

0 Axis 1000 2000 3000 4000 5000

1 Axis 5000 4000 3000 2000 1000

5 Axis 0 2000 4000 6000 8000

Time 250 250 250 250 250

Time is specified in milliseconds.

4. If MPOINT follows PVSPLINE without the /t switch, the array must include two sets of rows
for each axis:

> The first set defines the destination points

> The second set defines the velocity at the destination points

For example:

ARRAY (6)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

0 Axis 1000 2000 3000 4000 5000

1 Axis 5000 4000 3000 2000 1000

5 Axis 0 2000 4000 6000 8000

0 Axis VEL 5000 5000 5000 5000 5000

143Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ARRAY (6)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

1 Axis VEL 2500 2500 2500 2500 2500

5 Axis VEL 3000 3000 3000 3000 3000

5. If MPOINT follows PVSPLINE/t, the array must include an additional column that specifies
the time interval between the previous point and the current point. Time is in milliseconds.
For example:

ARRAY (7)(5)

Point 1 Point 2 Point 3 Point 4 Point 5

0 Axis 1000 2000 3000 4000 5000

1 Axis 5000 4000 3000 2000 1000

5 Axis 0 2000 4000 6000 8000

0 Axis VEL 5000 5000 5000 5000 5000

1 Axis VEL 2500 2500 2500 2500 2500

5 Axis VEL 3000 3000 3000 3000 3000

Time 500 500 500 500 500

See Example 3, illustrating sample code based on the ARRAY (7)(5) structure.

6. If MPTP/r enables MPOINT, the array points are relative.

Examples

Example 1

Illustrating sample code based on the ARRAY (3)(5) structure.

REAL ARRAY(3)(5) !Defines ARRAY with three rows and
!five columns as real.

INT NUMBER_of_POINTS !Defines NUMBER_of _POINTS as an integer variable.
! ------------ Fill the ARRAY array----------------------
ARRAY(0)(0)=1000;ARRAY(0)(1)=2000;ARRAY(0)(2)=3000;ARRAY(0)(3)=4000;
ARRAY (0)(4)=5000;ARRAY(1)(0)=5000;ARRAY(1)(1)=4000;ARRAY(1)(2)=3000;
ARRAY (1)(3)=2000;ARRAY(1)(4)=1000;ARRAY(2)(0)=0;ARRAY(2)(1)=2000;
ARRAY (2)(2)=4000;ARRAY (2)(3)=6000;ARRAY(2)(4)=8000
NUMBER_of_POINTS=5 !Set NUMBER_of_POINTS
ENABLE (0,1,5) !Enable axes 0, 1 and 5
PATH (0,1,5), 1 !PATH initiates simultaneous motion for axes 0, 1,

!and 5. The time interval is one millisecond between

144Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!each destination point.
MPOINT (0,1,5), ARRAY, NUMBER_of_POINTS

!Define an MPOINT array for axes 0, 1 and 5 where
!ARRAY and NUMBER_of_POINTS are called

ENDS (0,1,5) !Concludes MPOINT
STOP !End program

Example 2

Illustrating sample code based on the ARRAY (4)(5) structure.

REAL ARRAY(4)(5) !Defines ARRAY with four rows and
!five columns as real.

INT NUMBER_of_POINTS !Defines NUMBER_of _POINTS as an integer
!variable.

! ------------ Fill the ARRAY array----------------------
ARRAY(0)(0)=1000;ARRAY(0)(1)=2000;ARRAY(0)(2)=3000;ARRAY(0)(3)=4000;
ARRAY (0)(4)=5000;ARRAY(1)(0)=5000;ARRAY(1)(1)=4000;ARRAY(1)(2)=3000;
ARRAY (1)(3)=2000;ARRAY(1)(4)=1000;ARRAY(2)(0)=0;ARRAY(2)(1)=2000;
ARRAY(2)(2)=4000;ARRAY(2)(3)=6000;ARRAY(2)(4)=8000;ARRAY(3)(0)=6000;
ARRAY(3)(1)=7000;ARRAY(3)(2)=5000;ARRAY(3)(3)=4000;ARRAY(3)(4)=4000
NUMBER_of_POINTS=5 !Set NUMBER_of_POINTS
ENABLE (0,1,5) !Enable axes 0, 1 and 5
PATH (0,1,5), 1

!PATH initiates simultaneous motion for axes
!0, 1 and 5. The time interval is one millisecond
!between each destination point.

MPOINT (0,1,5), ARRAY, NUMBER_of_POINTS
!Define an MPOINT array for axes 0, 1 and 5
!where ARRAY and NUMBER_of_POINTS are called.

ENDS (0,1,5) !Concludes MPOINT
STOP !End program

Example 3

Illustrating sample code based on the ARRAY (7)(5) structure.

REAL ARRAY(7)(5) !Defines ARRAY with seven rows and
!five columns as real.

INT NUMBER_of_POINTS !Defines NUMBER_of _POINTS as an integer variable.
! ------------ Fill the ARRAY array----------------------
ARRAY(0)(0)=1000;ARRAY(0)(1)=2000;ARRAY(0)(2)=3000;ARRAY(0)(3)=4000;
ARRAY (0)(4)=5000;ARRAY(1)(0)=5000;ARRAY(1)(1)=4000;ARRAY(1)(2)=3000;
ARRAY (1)(3)=2000;ARRAY(1)(4)=1000;ARRAY(2)(0)=0;ARRAY(2)(1)=2000;
ARRAY(2)(2)=4000;ARRAY(2)(3)=6000;ARRAY(2)(4)=8000;ARRAY(3)(0)=5000;
ARRAY(3)(1)=5000;ARRAY(3)(2)=5000;ARRAY(3)(3)=5000;ARRAY(3)(4)=5000;
ARRAY(4)(0)=2500;ARRAY(4)(1)=2500;ARRAY(4)(2)=2500;ARRAY(4)(3)=2500;
ARRAY(4)(4)=2500;ARRAY(5)(0)=3000;ARRAY(5)(1)=3000;ARRAY(5)(2)=3000;
ARRAY(5)(3)=3000;ARRAY(5)(4)=3000;ARRAY(6)(0)=500;ARRAY(6)(1)=500;
ARRAY(6)(2)=500;ARRAY(6)(3)=500;ARRAY(6)(4)=500
NUMBER_of_POINTS=5 !Set NUMBER_of_POINTS

145Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ENABLE (0,1,5) !Enable axes 0, 1 and 5
PVSPLINE/t (0,1,5) !PVSPLINE/t initiates simultaneous motion for axes

!0, 1 and 5 with a user-defined time interval
!between each point.

MPOINT (0,1,5), ARRAY, NUMBER_of_POINTS
!Define an MPOINT array for axes 0, 1 and 5
!where ARRAY and NUMBER_of_POINTS are called.

ENDS (0,1,5) !Concludes MPOINT
STOP !End program

2.6.16 MPTP...ENDS

Description

MPTP initiates multipoint sequential positioning to a set of points. MPTP by itself does not specify
any point, however dwell time at each point can be optionally specified. Points are specified by the
POINT or MPOINT commands that follow MPTP.

In single axis motion, MPTP generates sequential motion between the defined array points, where
at the end of each segment, RVEL = 0, as if each segment was defined by a separate PTP command.

In group motion, where more than one axis is declared, the first axis in the axis_list is the leading
axis. The motion parameters of the leading axis become the default motion parameters for all axes
in the group. Motion on all axes in a group start and conclude at the same time. MPTP generates
sequential motion between the defined array points, where at the end of each set of points, RVEL =
0, as if each motion was defined by a separate PTP command.

Transition to the next motion in the motion queue, if it exists, will not occur until ENDS executes.

MPTP terminates with:

> HALT , KILL/KILLALL, or BREAK

> Any fault activation that disables the drive or kills the motion

> DISABLE/DISABLEALL by the user

Syntax

MPTP[/switch] axis_list[,dwell][,motor_motion_delay]

Arguments

axis_list
List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

dwell Dwell is an optional argument, expressed in milliseconds.

motor_motion_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

/switch can be:

146Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

/w Create the motion, but do not start until the GO command.

/v Use the specified velocity instead of the default velocity (VEL).

/c Use the point sequence as a cyclic array

/r Coordinates of each point are relative to the previous point’s coordinates.

/z Interpret entered coordinates according to the Local Coordinate System.

/q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

Comments

1. MPTP motion starts only after the first point is specified

2. MPTP motion with all of its points is considered as one motion command in the motion
queue.

3. An MPOINT array declaration used in MPTP must be defined as Real.

4. MPTP/c does not end automatically. Use HALT , KILL/KILLALL, or BREAKto stop cyclic
motion.

Related ACSPL+ Commands

GO, HALT , KILL/KILLALL, BREAK, IMM, MPOINT, POINT

Related ACSPL+ Variables

ACC, DEC, JERK, VEL

COM Library Methods and .NET Library Methods

ToPoint, ToPointM, ExtToPoint, ExtToPointM

C Library Functions

acsc_ToPoint, acscToPointM, acsc_ExtToPoint, acsc_ExtToPointM

Examples

Example 1:

In the following example, dwell is not required, therefore the comma and the second argument
following 1000 are omitted.

MPTP 0, 1000 !Create a multipoint motion of the 0 axis
!with a dwell of 1000 msec at each point.

Example 2:

147Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

REAL ARRAY1 (4) !Define an array called ARRAY1 with four members
!as REAL

! ------------ Fill the ARRAY1 array----------------------
ARRAY1(0)=0;ARRAY1(1)=1000;ARRAY1(2)=0;ARRAY1(3)=1000
MPTP 0, 500 !MPTP motion for 0 axis, dwell 500 msec at each point
POINT 0, 2000 !First point
MPOINT 0, ARRAY1,3 !Use three points from ARRAY1
POINT 0, 3000 !Second point
POINT 0, 5000 !Third point
ENDS 0 !Ends the point sequence for 0 axis

Figure 2-8 illustrates the above code for a single-axis motion initiated by MPTP. Note that not all of
the members defined in ARRAY1 necessarily need to be used by MPOINT. In this example, only three
of the defined members are called.

Figure 2-8. Single-Axis Motion Using MPTP

Example 3:

MPTP/v XY !Create multipoint motion in group XY with
!user defined velocity and no dwell.

POINT XY,10000,0,5000 !Move to first point at velocity 5000
POINT XY,1000,1000,5000 !Add second point at velocity 5000
POINT XY,2000,1000,5000 !Add third point at velocity 5000
POINT XY,2000,0,100 !Add fourth point at velocity 100
ENDS XY !End the point sequence for XY

Figure 2-9 illustrates the above code for two-axis group motion initiated by MPTP/v.

148Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-9. Two-Axis Group Motion Using MPTP/v

2.6.17 MSEG...ENDS

Description

MSEG initiates two-axis segmented motion. MSEG itself does not specify a line or arc segment.
Motion starts only after the first segment is specified with a motion segment command.

Segmented motion moves axes along a continuous path where the path is defined as a sequence
of line and arc segments on a plane.

Use the following commands to define segmented motion:

> ARC1 - adds an arc segment to a segmented motion and specifies the coordinates of center
point, coordinates of the final point, and the direction of rotation

> ARC2 - Adds an arc segment to a segmented motion and specifies the coordinates of center
point, rotation angle and direction.

> ENDS - terminates the point sequence

> LINE - adds a linear segment to a segmented motion.

> PROJECTION - sets a projection array for a segmented motion.

> STOPPER - provides a smooth transition between two segments of segmented motion.

MSEG motion terminates with:

> HALT , KILL/KILLALL, or BREAK

> Any fault activation that disables the drive or kills the motion

> DISABLE/DISABLEALLby the user

Syntax

MSEG[/switch] axis_list, initial-position-axis1,initial-position-axis2

149Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
Axes list, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

initial-position
axis1

Start coordinate for the first axis

initial-position-
axis2

Start coordinate for the second axis

Switches

/switch can be:

/w Create the motion, but do not start until GO.

/v Use the specified velocity instead of the default velocity (VEL).

/c Use the MSEG segment sequence as a cyclic array.

Comments

> Use command option /c to create cyclic motion where the final point of the last segment
becomes the first point of the next motion cycle. MSEG/c does not automatically finish. Use
HALT , KILL/KILLALL, or BREAK to end cyclic motion.

> If command option /v is used, specify the user-defined velocity in each instance of LINE,
ARC1, or ARC2.

> The MSEG command uses a motion que buffer of up to 50 segments.

Related ACSPL+ Commands

GO, HALT , KILL/KILLALL, BREAK, IMM

Related ACSPL+ Variables

ACC, DEC, JERK, VEL

COM Library Methods

For MSEG: Segment, Line, ExtLine, Arc1, ExtArc1, Arc2, ExtArc2, Stopper, Projection

For ENDS: FinalPoint

C Library Functions

For MSEG: acsc_Segment, acsc_Line, acsc_Arc1, acsc_Arc2, acsc_ExtLine, acsc_ExtArc1, acsc_ExtArc2,
acsc_Projection, acsc_Stopper

For ENDS: acsc_FinalPoint

150Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

MSEG (0,1), 1000, 1000 !MSEG initiates segmented motion for the 0 and 1
axes

!group with initial coordinates of (1000,1000).
ARC1 (0,1), 1000, 0, 1000, -1000, -

!Add an arc segment with a center point located at
!(1000,0) and the final point located at (1000,-1000)
!with negative movement in terms of the encoder.

LINE (0,1), -1000, -1000
!Add line segment with final point (-1000,-1000).

ARC2 (0,1), -1000, 0, -3.141529
!Add arc segment with center (-1000,0) and a
!rotation angle of -p radians.

LINE (0,1), 1000, 1000
!Add line segment with center (1000,1000).

ENDS (0,1) !Ends the point sequence for the 0 and 1 axes group.
STOP !Ends program

Figure 2-10 illustrates the motion created by the example.

Figure 2-10. Results of Example MSEG

2.6.18 PATH...ENDS

Description

PATH initiates an arbitrary path motion with linear interpolation using POINT, or MPOINT for an array
of points. The arbitrary path sequence must conclude with ENDS.

PATH motion terminates due to:

> Interruption by any new motion command before the current motion concludes terminates
the PATH motion and causes an error.

> Any fault activation that disables the drive or kills the motion

151Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> User termination by HALT , KILL/KILLALL, or DISABLE/DISABLEALL

Syntax

PATH[/switches] axis_list [,time-interval][,motor_motion_delay]

Arguments

axis_list
Axes list, valid numbers are: 0, 1, 2, ... up to the number of axes in the system
minus 1.

time interval
Optional time interval specification in milliseconds. PATH specified without \t
must have the time interval specification as the last argument. The argument
defines the time interval between all motion points.

motor_
motion_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

/w Create the motion, but do not start until the GO command.

/t Enables a user-defined time interval in a point array

/c
Use the point sequence as a cyclic array. After arriving at the last point, continue
from the first point.

/r Coordinates of each point are relative to the previous point’s coordinates.

/q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

152Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-11. PATH...ENDS Diagram

Comments

Since a time interval and the destination point are specified, variables VEL, ACC, DEC, JERK have no
effect on this motion.

Related ACSPL+ Commands

MPTP...ENDS, POINT, MPOINT, PVSPLINE...ENDS

COM Library Methods and .NET Library Methods

ToPoint, ToPointM, ExtToPoint, ExtToPointM

C Library Functions

acsc_ToPoint, acsc_ToPointM, acsc_ExtToPoint, acsc_ExtToPointM

Example

See Example 2 of MPOINT for a three axis example of MPTP...ENDS motion.

2.6.19 POINT

Description

POINT adds a destination point to multi-point or arbitrary motion paths. A sequence of destination
points can be specified with a sequence of POINT commands. POINT must follow MPTP...ENDS,
PATH...ENDS, orPVSPLINE...ENDS. Refer to each command for a list of available command options.
The sequence of specified points must conclude with ENDS.

Syntax

> POINT syntax depends on the command options used in the initializing commands, as
follows:

> POINT initiated by MPTP:
POINT axis_list, axis_list destination positions

153Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> POINT initiated by MPTP/v:
POINT axis_list, axis_list destination positions, vector velocity (GVEL)
See Example 1.

> POINT initialized by PATH:
PATH[/command options]axis_list, time-interval
POINT axis_list, axis_list destination positions
See Example 2.

> POINT initialized by PATH/t:
POINT axis_list, axis_list destination positions, time interval in milliseconds
See Example 3.

> POINT initialized by PVSPLINE:
PVSPLINE[command options]axis_list, time-interval
POINT axis_list, axis_list destination positions
See Example 4.

> POINT initialized by PVSPLINE/t:
PVSPLINE[command options]axis_list
POINT axis_list, axis_list destination positions, velocity at destination position, time interval
in milliseconds
See Example 5.

Comments

> POINT axis specifications must follow the same order as the initializing MPTP, PATH or
PVSPLINE commands.

> All arguments following the axis_list must appear as a comma separated list, and must
correspond to the number of axes.

Related ACSPL+ Commands

MPOINT, MPTP...ENDS, PATH...ENDS, PVSPLINE...ENDS

COM Library Methods and .NET Library Methods

MultiPoint, MultiPointM, Spline, SplineM, AddPVPoint, AddPVPointM, AddPVTPoint, AddPVTPointM

C Library Functions

acsc_MultiPoint, acsc_MultiPointM, acsc_Spline, acsc_SplineM, acsc_AddPVPoint, acsc_AddPVPointM,
acsc_AddPVTPoint, acsc_AddPVTPointM

Examples

Example 1

MPTP/v (0,1,5) !Initiates MPTP motion for axes 0, 1 and 5.
!simultaneously with a user-defined velocity(GVEL)
!at each point.

POINT (0,1,5), 1000,4000,6000,7000
!Defines destination points 1000, 4000, and 6000 for
!axes 0, 1, and 5 with a GVEL of 7000 units.

ENDS (0,1,5) !Ends MPTP/v point sequence for axes 0, 1, and 5.
STOP !Ends program

154Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2

PATH/r (0,1,5),1000 !Initiates PATH motion for axes 0, 1, and 5.
!simultaneously where each destination point is
!relative to the previous point and the time
!interval between each point is one second.

POINT (0,1,5), 1000,2000,3000
!Defines destination points 1000, 2000, and 3000 for
!axes 0, 1, and 5 respectively.

ENDS (0,1,5) !Ends PATH point sequence for axes 0, 1, and 5.
STOP !Ends program

Example 3

PATH/t (0,1,5) !Initiates PATH motion for axes 0, 1, and 5.
!simultaneously with a user-defined time interval
!between points.

POINT (0,1,5), 1000,2000,3000, 500
!Defines destination points 1000, 2000, 3000 for axes
!0, 1, and 5, respectively and a time interval of
!500 msec between points.

ENDS (0,1,5) !Ends PATH point sequence for axes 0, 1, and 5.
STOP !Ends program

Example 4

PVSPLINE (0,1,5), 10 !Initiates PVSPLINE motion for axes 0, 1, and 5.
!Points are given at 10 msec intervals.

POINT (0,1,5), 200, 100, 300, 1000, 2000, 1500
!Defines points for axes 0, 1, and 5 with respective
!values of 200, 100, 300 and velocities at each
!point 1000, 2000, 1500, respectively.

ENDS (0,1,5) !Ends PVSPLINE point sequence.
STOP !Ends program

Example 5

PVSPLINE/t (0,1,5) !Initiates PVSPLINE motion for axes 0, 1, and 5, with
!a user-defined time interval between points.

POINT (0,1,5), 200, 100, 300, 1000, 2000, 1500, 250
!Defines destination points for axes 0, 1, and 5
!with respective values of 200, 100, 300 and
!velocities at each respective point of 1000, 2000,
!1500. The time interval between points is 250 msecs.

ENDS (0,1,5) !Ends PVSPLINE point sequence for axes 0, 1, and 5.
STOP !Ends program

155Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.20 PROJECTION

Description

PROJECTION is an expansion command to the MSEG...ENDS set of commands, that allows the
controller to perform a three dimensional segmented motion such as creating arcs and lines on a
user-defined plane. The method for this 3D segmented motion is to set a transformation matrix that
defines a new plane for the segmented motion.

Syntax

PROJECTION axes_list, Transformation Matrix

Arguments

axes_list
List of axes, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

Transformation
Matrix

Defines the new plane

Comments

1. MSEG must precede PROJECTION.

2. Prior to using PROJECTION, the related axes must be grouped using GROUP.

3. The motion parameters of the segmented motion with PROJECTION are calculated based
on the leading axis described in the GROUP command. The other involved axes motion
parameters are not relevant. The parameters are calculated to meet a uniform travel time
to all grouped axes.

Related ACSPL+ Commands

MSEG...ENDS, LINE, ARC1, ARC2, GROUP

COM Library Methods and .NET Library Methods

Projection

C Library Functions

acsc_Projection

Example

1. This example program creates a segmented motion on a new plane (in this example - a
circle) on a plane rotated around Axis X by 70° relative to plane AX, as illustrated in Figure 2-
12.

2. ARC2 defines the circle’s center coordinates on plane AX. PROJECTION transforms these
coordinates to the new plane, based on the values in the transformation matrix (Matrix M,
in this example).

3. Populate the transformation matrix with the values from table given below. The first two
rows define the relationship between the X and Y coordinates of the last MSEG...ENDS
motion and their respective axes in the new plane. The third row defines the tangent angle
of the new plane. In this example uses a 70° angle in reference to Axis A, where
tan70=2.74.

156Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Table 2-8. Matrix Values

Axis X Coordinate A Coordinate

X 1 0

A 0 1

B 0 2.74

Matrix Values

Figure 2-12. PROJECTION of the XA Plane

Figure 2-13 illustrates the reference position of axes 0, 4, and 5 (corresponding to the XAB
coordinates illustrated in Figure 2-12).

Figure 2-13. FPOS - PROJECTION Example

157Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Figure 2-14 illustrates the circle's trajectory viewed from the XA plane.

Figure 2-14. PROJECTION Example - Final Result

REAL M(3)(2) !Defines Transformation Matrix M as real array
! ------------ Set the transformation matrix values----------------------
M(0)(0)=1;M(0)(1)=0;M(1)(0)=0;M(1)(1)=1;M(2)(0)=0;M(2)(1)=2.74
VEL(0)=1000;ACC(0)=10000;DEC(0)=10000

!Axis motion parameters
ENABLE (0,4,5) !Enable the 0, 4 and 5 axes (required)

!Corresponding to XAB coordinates shown in Figure 15.
GROUP (0,4,5) !Group the 0, 4 and 5 axes (required)
SET FPOS(0)=0;SET FPOS(4)=0;SET FPOS(5)=0

!Sets the FPOS for 0, 4 and 5, respectively, to 0.
MSEG (0,4),0,0 !Define original plane.
PROJECTION (0,4,5),M !PROJECTION of axes XAB by matrix M.
ARC2 (0,4),750,0,6,24 !ARC2 performed on new plane.
ENDS (0,4) !Concludes MSEG.
STOP !End Program

2.6.21 PTP

Description

PTP (point-to-point) generates motion for the specified axis or axes to a specified destination point.

When PTP specifies a single axis, the motion profile is calculated according to VEL, ACC, DEC, JERK
values of the axis.

In group motion, when PTP specifies multiple axes, the group motion profile is based on the leading
axis’ VEL, ACC, DEC, JERK motion values, unless PTP/m is used.

PTP terminates due to:

> Interruption by any new motion command

> Any fault activation that disables the drive or kills the motion

158Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> User termination by HALT , KILL/KILLALL, or BREAK.

Syntax

PTP[switches]axis_list, destination-point[,value for v, value for f, motor_movement_delay]

Arguments

axis_list
Single axis or axis group, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

destination
point

Final destination.

value for v Optional argument for user-defined velocity.

value for f Optional argument for user-defined velocity at a destination point

motor_
movement_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

/e Wait for motion termination before executing next command.

/f
Specify non-zero velocity at each destination point (or points) in a series of PTP
motions

/m
Use the motion profile values of the axis group as a whole, rather than those of
the leading axis, without exceeding any of the defined axes motion VEL, ACC, DEC,
JERK values.

/r The destination point is relative to the start point.

/v Use the specified velocity instead of the default velocity (VEL).

/w Create the motion, but do not start until GO.

/z Interpret entered coordinates according to the Local Coordinate System.

/q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

Comments

> Axes destination points, and relative velocity in the PTP command can also be an
expression.

159Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> PTP can be used for executing point-to-point motion for a group of axes. For example, PTP
(0,1,2) creates motion for axes 0, 1, and 2 as a group.

Related ACSPL+ Commands

MPTP...ENDS, POINT

COM Library Methods and .NET Library Methods

ToPoint

C Library Functions

acsc_ToPoint

Examples

Example 1:

PTP/v 1, 2000, 500 !PTP axis 1 to point 2000 with velocity 500

Example 2:

PTP/rw (0,1), 1000, 2000 !PTP axes 0 and 1 where the 1 target point is
1000

!and the 0 target point is 2000. The target points
!are relative to the start point. Motion will not
!commence until GO command is issued.

Example 3:

ENABLE 0 !Enables axis 0
VEL(0)=10000 !Sets the default axis 0 velocity to 10000
SET RPOS(0)=0 !Sets the current axis 0 position to 0
PTP/rf 0, 2000, 1000 !Initiates a relative axis 0 motion of 2000 with end

!velocity of 1000 at the destination point
PTP 0, 4000 !Initiates an absolute axis 0 motion to 4000
STOP !Ends program

2.6.22 PVSPLINE...ENDS

Description

PVSPLINE (position-velocity spline) creates an arbitrary motion trajectory where the controller
provides cubic spline interpolation between two points. The user specifies the end point and the
end velocity for each motion segment. ENDS must terminate the point sequence.

PVSPLINE motion terminates due to:

> Interruption by any new motion command

> Any fault activation that disables the drive or kills the motion

> User termination by HALT , KILL/KILLALL, or DISABLE/DISABLEALL

Syntax

PVSPLINE[switches]axis_list[,time-interval] [,motor_motion_delay]

160Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
Single axis or axis group, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

time-interval
Optional argument for user-defined time interval, in milliseconds, between
points.

motor_
motion_delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

/r The point coordinates are relative to the previous point

/w Create the motion, but wait to start for GO

/t
Non-uniform time interval: time interval is specified for each point along with the
point coordinates

/c
Perform the point sequence as a cyclic array-after the last point, start the motion
again from the first point.

/q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

Comments

> Since the time interval and the destination point are defined, variables VEL, ACC, DEC, and
JERK have no effect on PVSPLINE.

> If PVSPLINE motion is ended with HALT , the controller does not follow the motion trajectory
during deceleration.

> PVSPLINE specified with /t must NOT have a time-interval specification. Instead, specify the
time interval for each point as an additional argument for POINT or as an additional array
row in MPOINT, see Example 5.

Related ACSPL+ Commands

POINT, MPOINT

COM Library Methods and .NET Library Methods

Spline, SplineM, AddPVPoint, AddPVPointM, AddPVTPoint, AddPVTPointM

C Library Functions

acsc_Spline, acsc_SplineM, acsc_AddPVPoint, acsc_AddPVPointM, acsc_AddPVTPoint, acsc_
AddPVTPointM

161Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example

REAL ARRAY_NAME(4)(5) !Defines a point array of four rows and five
columns

!and a variable that defines the number of array rows
!that are part of the motion.

INT NUMBER_of_POINTS !Defines NUMBER_of _POINTS as an integer variable.
NUMBER_of_POINTS=3 !Assigns 3 to the NUMBER_of_POINTS variable.
PVSPLINE/r (0,1),10 !Initiates PVSPLINE motion for axis 0 and 1 with

!relative destination points and a time interval of
!10 milliseconds between each point.

POINT (0,1),200,100,1000,2000
!Defines values for 0 and 1 axes where:
!200, 100=destination point for the 0 and 1 axes,
!respectively; and 1000, 2000=velocity at specified
!points for the 0 and 1 axes, respectively.

MPOINT (0,1), ARRAY_NAME, NUMBER_of_POINTS
!Defines an MPOINT array for the 0 and 1 axes, where
!ARRAY_NAME is called, and where NUMBER_of_POINTS
!defines the number of array columns involved in the
!motion.

ENDS (0,1) !Ends MPOINT for 0 and 1 axes.
STOP !Ends program.

Figure 2-15 illustrates a typical PVSPLINE motion.

Figure 2-15. PVSPLINE Motion Diagram

162Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.23 SLAVE

Description

SLAVE initiates a motion based on position lock or velocity lock slaved to a master value or
expression. Only individual axes are allowed. The initiated motion starts immediately if the axis is
idle, otherwise the motion waits in the motion queue until all previously created motions finish.
SLAVE must precede MASTER.

MASTER - SLAVE dependency terminates with:

> Any fault activation that disables the drive or kills the motion

> HALT , KILL/KILLALL, BREAK

> DISABLE/DISABLEALL to the SLAVE axis.

> Setting the logical dependence between master and slave axes to zero. For example
MASTER MPOS(0)=0

Syntax

SLAVE[/switches] axis[,lower boundary, upper boundary]

Arguments

axis
Axis designation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

lower
boundary

Optional argument used for setting the lower boundary of master-
dependent SLAVE motion.

upper
boundary

Optional argument used for setting the upper boundary of master-
dependent SLAVE motion.

Switches

/w Create the motion, but do not start until GO is executed.

/p Master - Slave motion generated by position lock.

/t Create slave motion within specified position boundaries.

Comments

> When /p is used, the controller first initiates velocity lock. Only after the achieving velocity
lock the controller will engage position lock.

> If no command option is specified, the default mode is velocity lock.

Related ACSPL+ Commands

MASTER, GO, HALT , KILL/KILLALL, DISABLE/DISABLEALL

Related ACSPL+ Variables

XSACC, MFF, JERK, ACC, VEL APOS

163Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

COM Library Methods and .NET Library Methods

SetMaster, Slave, SlaveStalled
C Library Functions

acsc_SetMaster, acsc_Slave, acsc_SlaveStalled

Example

See MASTER for an example of MASTER - SLAVE syntax.

2.6.24 STOPPER

Description

STOPPER is used in conjunction with MSEG...ENDS to avoid velocity jumps at segment inflection
points. When STOPPER is specified between two segments, the controller provides smooth
deceleration to zero before STOPPER and a smooth acceleration to the default or specified velocity
after STOPPER.

Syntax

STOPPER axis_list

Arguments

axis_list
Single axis or axis group, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

Related ACSPL+ Commands

MSEG...ENDS, ARC1, ARC2, LINE, PROJECTION

COM Library Methods and .NET Library Methods

Stopper

C Library Functions

acsc_Stopper

Example

Figure 2-16 illustrates the following example. For this illustration the reference position (RPOS) for
axes 0 and 1 was set to (0,0).

MSEG (0,1), 0, 0 !MSEG initiates segmented motion for the 0 and 1 axis
!group with the point on the plane located at (0, 0).

LINE (0,1), 1000, 2500 !Add line segment with final point at (1000,
2500).
STOPPER (0,1) !Slow down to zero.
ARC1 (0,1), 0,2000, -1000,2500, +

!Add arc segment with final point (-1000, 2500) and
!center point (0, 2000).

STOPPER (0,1) !Slow down to zero.
LINE (0,1), 0, 0 !Add line segment with final point (0, 0).
ENDS (0,1) !End MSEG.
LINE (0,1), 1000, 1000 !Add line segment with final point (1000, 1000).

164Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ENDS (0,1) !Ends the point sequence for the 0 and 1 axis
!group.

Figure 2-16. Use of STOPPER

2.6.25 TRACK

TRACK initiates track motion. In TRACK motion, a new point-to-point move is generated to a new
target position whenever the variable TPOS (target position) changes. TRACK does not terminate
automatically. If TPOS is not assigned a new value, motion stops at the last TPOS and waits. If a new
TPOS value is assigned, motion continues.

TRACK terminates due to:

> Any subsequent motion command (except TRACK) for the motion axis involved in a track
motion, except the case when the next motion is a group motion.

> Any fault activation that disables the drive or kills the motion.

> User termination by HALT , KILL/KILLALL, or DISABLE/DISABLEALL

Syntax

TRACK [/switch] axis, [motor_motion_delay]

Arguments

axis
Axis designation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

motor_motion_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switch

/switch can be:

165Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

/w Create the motion, but do not start until GO.

/q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or
20ms for CTIME=0.2ms.Allows delaying actual motor movement start (RPOS) for
the specified delay, while motion profile generation (APOS) starts immediately.

Comments

> While PTP code appears shorter and simpler, there are applications where TRACK is
preferable to PTP. For example, TRACK provides an easy way to change the destination
position at any time during the motion by changing the target position (TPOS) variable. The
controller terminates the current motion and proceeds to the next destination point, on-
the-fly.

> TRACK is for single axis motion only.

> TPOS is updated every controller cycle.

Related ACSPL+ Commands

PTP

COM Library Methods and .NET Library Methods

Track

C Library Functions

acsc_Track

Example

TRACK 0 !Initiates TRACK for 0 axis.
TPOS(0) = NewTarget !The controller generates a PTP motion to the point

!designated by NewTarget.

2.6.26 XSEG...ENDS

Description

The XSEG...ENDS (Extended Segmented Motion) command block provides the following:

> Corner detection

> Detection of segments, where required velocity violates axis velocity/acceleration limits

> Velocity limitation at corners and segments where required velocity violates axis velocity,
acceleration and jerk limits

> Building a velocity profile using multi-segment look-ahead algorithm

> Corner rounding using different criteria

> Support of up to 6 axes

> Support for "Skywriting" - external loops at corners

Use the following commands to define the segmented motion:

166Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

> ARC1- adds an arc segment to a segmented motion and specifies the coordinates of center
point, coordinates of the final point, and the direction of rotation

> ARC2- Adds an arc segment to a segmented motion and specifies the coordinates of center
point, rotation angle and direction.

> LINE - adds a linear segment to a segmented motion.

> ENDS- terminates the point sequence

Syntax

XSEG

[/switches] (axis_list), initial_position_axis1,initial_position_axis2[,initial_position_axis3...,initial_
position_aixs6],
[,velocity][,end_velocity][,junction_velocity][,angle][,curvature_velocity][,deviation][,radius]
[,maximal_length]
[,starvation_margin [,segments_buffer]]
[,external_loop_type, minimal_segment_length, maximum_allowed_deviation]
[output_index, bit_number, polarity]

Segment commands (ARC1, ARC2, LINE)

ENDS

Arguments

axis_list

Axis group (specified as axes numbers separated by a comma), valid
numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

A minimum of two axes must be specified.

initial_position_
axis1

Initial position of the first axis.

initial_position_
axis2

Initial position of the second axis.

initial_position_
axis3...
initial_position_
axis6

Mandatory only if axis_list contains more than 2 axes. Number of initial
positions must correspond to the number of axes in axis_list.

velocity
[Optional, only used with /v switch]

Defines required velocity instead of default velocity (VEL).

end_velocity
[Optional, only used with /f switch]

Defines required velocity at the end of each segment.

167Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

junction_
velocity

[Optional, only used with /j switch]

Defines required velocity at the junction.

angle

[Optional, only used with /a switch]

The junction will be treated as a corner if actual junction angle is more
than defined.

curvature_
velocity

[Optional, only used with switch /d] Defines required velocity at
curvature discontinuity points. See Switches explanation for details.

deviation
[Optional, only used with /g switch] Defines maximal allowed trajectory
deviation from the corner point. See Switches explanation for details.

radius
[Optional, only used with /u switch] Defines maximal allowed rounding
radius of the additional segment. See Switches explanation for details.

maximal_length

[Optional, only used with /h switch] Defines the maximal length of the
segment for smoothing processing. If the length of a segment that
formed a corner exceeds the specified maximal length, the corner will
not be smoothed.

starvation_
margin

[Optional] Starvation margin in milliseconds. The controller sets the
AST.#NEWSEGM bit starvation_margin millisecond before the starvation
condition occurs.

By default, if the argument is not specified, the starvation margin is 500
milliseconds.

segments_
buffer

[Optional] One-dimensional user defined real array. The controller uses
this array to store adding segments. By default, if the argument is not
specified, the controller allocates internal buffer for storing 50 segments
only. The argument allows the user application to reallocate the buffer
for storing larger number of segments. The larger number of segments
may be required if the application needs to add many very small
segments in advanced.

external_loop_
type

0 - Cancel external loop
1 – Smooth External loop (line-arc-line)
2 – Triangle External loop (line-line-line)

minimum_
segment_length

If the lengths of both segments are more than this value, the skywriting
algorithm will be applied.

maximum_
allowed_
deviation

The parameter limits the external loop deviation from the defined profile.
If the value is negative – no limitation.

output_index Index of digital output port to assigned to synchronization (read by OUT)

168Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

bit_number Bit number (0 - 16) assigned to synchronization

polarity 0 or 1 - which value is considered the initial state

motor_
movement_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

There are three types of optional switches:

> General

> Velocity look-ahead

> Geometry look-ahead

The controller processes the specified switches in the following order:

1. The controller checks and applies geometry look-ahead options.

2. The controller checks and applies velocity look-ahead options.

Switches from different groups can be applied together. For example, it's possible to specify a
velocity at curvature discontinuity points (switch /d) together with permitted deviation (switch /g).
In this case, the controller first applies corner rounding for the trajectory and then calculates velocity
profile for already processed trajectory.

Optional switches are for use only with the XSEG command:

General

/w

Do not start until the GO command.

If the switch is not specified, the motion starts immediately after the first
motion segment is defined.

/v

Specify required velocity.

The switch requires additional parameter that specifies required velocity.

If the switch is not specified, the required velocity is derived from the
leading axis parameters.

/m

Use maximum velocity under axis limits.

With this switch, no required velocity should be specified.

The required velocity is calculated for each segment individually on the
base of segment geometry and axis velocities (VEL values) of the
involved axes.

169Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

/l

Velocity limitation under axis limits.
As opposed to the switch /m, with this switch the required velocity can
be specified either for all motion (switch /v for xseg command) or as
segment velocity (switch /v for line, arc1, arc2 commands). In both cases,
the controller tries to achieve the required velocity by taking into account
also velocity limits of all involved axes. If the required velocity cannot be
achieved within the axis velocity limits, the maximal velocity within the
axis velocity limits is used.
This switch cannot be specified together with switch /m.

/z

Interpret entered coordinates according to the Local Coordinate System.

With this switch, use 2 axes motion coordinate only (X,Y). Using 3 or more
coordinates causes a runtime error.

/q

Defines actual motor movement delay in microseconds. The delay
resolution is 50 microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or
20ms for CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified
delay, while motion profile generation (APOS) starts immediately.

Velocity look-ahead

/f

Decelerate to the end of each segment.

The switch requires an additional parameter that specifies end velocity.
The controller decelerates to the specified velocity in the end of each
segment. The specified value should be less than the required velocity;
otherwise the parameter is ignored.

If the switch is not specified, deceleration in each segment is not
required. However, in specific segments deceleration might occur due to
corner processing or other velocity control conditions.

/j

Decelerate to corner.

The switch requires an additional parameter that specifies corner
velocity. The controller detects corner on the path and decelerates to the
specified velocity before the corner. The specified value should be less
than the required velocity; otherwise the parameter is ignored.

If switch j is not specified while switch a is specified, zero value of corner
velocity is assumed.

If switches j, a, d, and y are not specified, the controller provides
automatic calculation of the corner processing.

170Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

/a

Do not treat junction as a corner, if junction angle is less than or equal to
the specified value in radians.

The switch requires an additional parameter that specifies negligible
angle in radians.

If switch a is not specified while switch j is specified, the controller
accepts default value of 0.01 radians that is about 0.57 degrees.

If switches j, a, d, and y are not specified, the controller provides
automatic calculation of the corner processing.

/d

Decelerate to curvature discontinuity point. The switch requires an
additional parameter that specifies velocity at curvature discontinuity
points. Curvature discontinuity occurs in linear-to-arc or arc-to-arc
smooth junctions. If the switch is not specified, the controller does not
decelerate to smooth junction disregarding curvature discontinuity in the
junction. If the switch is specified, the controller detects curvature
discontinuity points on the path and provides deceleration to the
specified velocity. The specified value should be less than the required
velocity; otherwise the parameter is ignored. The switch can be specified
together with switches j and/or a.

If switches j, a, d, and y are not specified, the controller provides
automatic calculation of the corner processing.

/y
If the switch is specified the controller provides automatic calculations as
described in Enhanced automatic corner and curvature discontinuity
points processing (switch /y).

/r
Set the initial axis position as origin. Segment commands positions
should be declared relative to the new origin.

Geometry look-ahead

/g

Use a corner rounding option with the specified permitted deviation The
switch requires additional parameter that specifies maximal allowed
deviation of motion trajectory from the corner point. The switch cannot
be specified together with switches /u and /h

/u

Use a corner rounding option with the specified permitted curvature The
switch requires additional parameter that specifies maximal allowed
rounding radius of the additional segment The switch cannot be
specified together with switches /g and /h

/h

Use a corner smoothing option. The switch requires additional parameter
that specifies the maximal length of the segment for smoothing
processing. If a length of one of the segments that built a corner exceeds
the specified maximal length, the corner will not be smoothed.
Smoothing is only applied to pair of linear segments. If one of the

171Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

segments in a pair is arc, the smoothing is not applied for this corner. The
switch cannot be specified together with switches /g and /u.

/b
Use external loops at corners. The switch requires additional parameters
that specify the external loop type, the minimum segment length, and
the maximul allowed deviation from profile.

/s Defines output bit to support external loop synchronization.

XSEG without switches does not require any additional parameters except the initial
point coordinates, for example, XSEG (0,1),0,0 creates segmented motion for axes 0 and
1 with initial point (0,0) with required velocity derived from the axis 0.

Comments

For each two adjacent segments, the controller calculates the tangent vector to each segment in
the junction point. If the two vectors are equal, the segments are tangent, and no special processing
is required. If not, the two segments build a corner. In a corner, the controller behavior follows the
corner processing option selected by the user for XSEG motion.

The following options are supported:

Exact path: no deviation from the specified path is permitted. The user specifies two additional
parameters: threshold angle and corner velocity. The controller compares the corner angle and the
threshold angle. If the corner angle is smaller, the controller ignores the corner and tries to move as
if the junction is smooth (the threshold angle cannot be large, otherwise passing the junction at
working velocity can produce mechanical jerk). If the corner angle is greater, the controller executes
deceleration to achieve the junction point with the specified corner velocity (as shown in Figure 2-
17).

Figure 2-17. Corner Processing - Exact Path Option

Permitted deviation: the user specifies the motion trajectory maximum permitted deviation from
the corner point. The controller inserts an additional segment in the corner so that the resulting path
is smooth and complies with the maximum deviation.

Permitted radius: the user specifies the additional segment maximum permitted rounding radius.
The controller inserts an additional segment in the corner so that the resulting path is smooth and
complies with the maximum permitted radius.

172Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Corner smoothing: the user specifies the smoothing maximum segment length. The controller
applies smoothing if the length of both segments in the pair is less than the maximum segment
length.

Figure 2-18 illustrates the permitted deviation, permitted radius and corner smoothing options.

Figure 2-18. Corner Processing - Permitted Deviation, Permitted Radius and Corner Smoothing
Options

XSEG updates the following motion related parameters:

> Motion and Axis Statuses: AST, MST

> Vector velocity, acceleration and jerk: GVEL, GACC, GJERK

> Axis velocity: GVEC

> Motion queue status and motion type: GMQU, GMTYPE

> Trajectory vector distance from the beginning of the first segment: GPATH

> Elapsed motion time: GETIME

> Current executed segment and segments buffer status: GSEG, GSFREE

XSEG builds the algorithm upon the following axis motion parameters as axis constraints: VEL, ACC,
and JERK.

In connection with the segments_buffer argument, for most applications the internal buffer size is
enough and should not be enlarged.

The buffer is for the internal use of the controller only and should not be used by the
user application.

The buffer size calculation rule: each segment requires about 750 bytes, so if it is necessary to
allocate a buffer for 200 segments, it should be at least 750 * 200 = 150,000 bytes. The following
declaration defines a 150,000 bytes buffer:

real buf(18750)

173Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

See XARRSIZE for details of how to declare a buffer with more than 100000 elements

Examples

Example 1:

XSEG (1,0),0,0 !Segmented motion for axes 1 and 0. Required velocity
!is derived from the axis 1, i.e., VEL(1) value. No
!deviation from the path is permitted. If the path
!contains a corner, and the junction angle is more
!than default value 0.01 radians, the velocity
!decelerates to zero in the corner point.

XSEG/vf !Segmented motion for axes 0 and 1 with initial
(0,1),0,0,100,50 !point (0,0) with required velocity 100 units/sec;

!at the end of each segment, the motion should
!decelerate to 50 units/sec.

XSEG/vja !Segmented motion for axes 1 and 2 with initial
(1,2),1000,1000, !point(1000,1000) and required velocity is 100

!units/sec.
100,20,0.05 !If the path contains a junction, and the junction

!angle is more than 0.05 radians, the velocity
!decelerates to 20 unit/sec in the junction point.

Example 2:

XSEG (0,1),1000,1000 !Create segment motion in axes XY with initial point
!(1000,1000)

ARC1 (0,1),1000,0,1000,–1000,–!Add arc segment with center (1000,0),
final point(1000,1000), clockwise rotation
LINE (0,1),–1000,-1000!Add line segment with final point (1000, 1000)
ARC2 (0,1),–1000,0,–3.141529 !Add arc segment with center (1000,0)

!and rotationangle of -π
LINE (0,1),1000,1000 !Add line segment with final point (1000,1000)
ENDS (0,1) !End the segment sequence

The XSEG command creates the segment motion. The motion does not start when processing
reaches the XSEG command. Actual motion starts once the previous motion ends and one or more
segments are added. The four segment commands in example 2 specify the following path:

174Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 3:

GLOBAL INT iXaxis, iYaxis
GLOBAL REAL buf(18750) ! For 200 segments (ARRAY SIZE = (200[SEG]*750
[BYTES/SEG])/8)
! Make sure that XARRSIZE value is bigger than ARRAY SIZE (if not, change
XARRSIZE on the terminal)

iXaxis = 0
iYaxis = 1

XSEG (iXaxis,iYaxis),0,0,,buf
LINE (iXaxis,iYaxis),1000,1000
LINE (iXaxis,iYaxis),1001,1001
LINE (iXaxis,iYaxis),1002,1002
!..... Add more segments
ENDS (iXaxis,iYaxis)

STOP

The LINE command may specify one axis that actually moves in this segment. Other
axes specified in XSEG hold their positions while the linear segment is in progress.

The ARC1 and ARC2 commands always specify two axes.

The ARC1 and ARC2 commands differ by the required arguments. The ARC1 command specifies the
coordinates of the center point, coordinates of the final point and the direction of rotation (+ for
counter-clockwise, – for clockwise rotation). The ARC2 command specifies the coordinates of the
center point and rotation angle (positive for counter clockwise, negative for clockwise rotation). The
ARC1 and ARC2 commands may produce the same result, so the user may select the one that suits
the available data. If the user knows the coordinates of the center point, coordinates of the final
point and the direction of rotation, ARC1 is preferable. If the user knows the coordinates of the
center point and rotation angle, ARC2 is preferable.

The ENDS command informs the controller that no more segments will be specified for the motion.

175Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.27 NURBS

Description

Description

Creates NURBS motion.

Syntax

NURBS[/switches] (axis_list)[,velocity][,deviation][,exc_angle][,exc_length][,segments_buffer][
,motor_motion_delay]

Arguments

axis_list

Axes involved in NURBS motion, specified as axes numbers separated by
comma or as axis names separated by comma. A minimum of two axes
must be specified. By default, the first three axes are the main axes, and
all subsequent axes, if any, are dependent axes.

velocity
Optional, only used with suffix /v.
Defines required feed rate. If not specified, the feed rate is derived from
the leading axis parameters.

deviation

Optional, only used with suffix /d.

Permitted deviation of trajectory from the specified control points. If not
specified, the controller exactly follows the spline defined by control
points, knots, and weights. If the parameter is specified, but the defined
spline deviates more than allowed, the controller tries to modify spline
geometry in order to comply with the permitted deviation.

exc_angle

Optional, only used with suffix /a.

The value defines exceptions from spline interpolation. If for an internal
control point directions to the previous and the next control points require
direction change more than the specified angle (by modulo), the control
point is processed as a corner. Actually, such points divide the spline into
two independent splines.

exc_length

Optional, only used with suffix /l.

The value defines exceptions from spline interpolation. If a distance
between two control points appears longer than the specified length, the
trajectory between the points is considered straight. Actually, two
independent splines are built before and after the segment.

segments_
buffer

[Optional] One-dimensional user-defined real array. The controller uses
this array to store added segments. By default, if the argument is not
specified, the controller allocates internal buffer for storing 50 segments
only. The argument allows the user application to reallocate the buffer for
storing larger number of segments. The larger number of segments may
be required if the spline is defined with a large number of closely specified
control points; the case is typical when NURBS is used for processing

176Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

minute segments prepared with a CAD system.
The buffer is for the controller's internal use only and should not be used
by the user application.

motor_motion_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

w

Do not start until the go command.

If the switch is not specified, the motion starts once the first three spline points are
specified.

v
Specify required velocity.
The switch requires an additional parameter that specifies required velocity. If the
switch is not specified, the feed rate is derived from the leading axis' parameters.

d

Specify permitted deviation.
The switch requires an additional parameter that specifies permitted deviation of
trajectory from the specified control points. If the switch is not specified, the
controller exactly follows the spline defined by control points, knots, and weights. If
the parameter is specified but the defined spline deviates more than allowed, the
controller tries to modify spline geometry in order to comply with the permitted
deviation.

a

Specify exception angle.
The switch requires an additional parameter that specifies the maximum angle in a
control point. The value defines exceptions from spline interpolation. If defined for
an internal control point, the directions to the previous and the next control points
require direction change more than the specified angle (by modulo) the control
point is processed as a corner. Actually, such a point divides the spline into two
independent splines.

l

Specify exception length.
The switch requires an additional parameter that specifies the maximum segment
length. The value defines exceptions from spline interpolation. If the distance
between two control points appears longer than the specified length, the trajectory
between the points is considered straight. Actually, two independent splines are
built before and after the segment.

q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

177Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Return Value

None

Example 1

NURBS/V(0,1), 100

NPOINT (0,1), 4.0, -6.0 ! the first point must be the motion
! starting position

NPOINT (0,1), -4.0, 1.0
NPOINT (0,1), -1.5, 5.0
NPOINT (0,1), 0.0, 2.0
NPOINT (0,1), 1.5, 5.0
NPOINT (0,1), 4.0, 1.0
NPOINT (0,1), -4.0, -6.0

ENDS (0,1)

Example 2

! Start an SPATH motion from current position
! velocity = 1000, go to exact corner if angle > 1RAD
NURBS/AV(0,1), 1000 , 1

NPOINT (0,1), 0, 0 ! the first point must be the motion starting
position
NPOINT (0,1), 50, 40
NPOINT (0,1), 100, 120
NPOINT/f (0,1), 120, 130 , 500 ! velocity for segment = 500
NPOINT/c (0,1), 180, 130 ! come to an exact stop at this point, start

! a new spline after this point

NPOINT/v (0,1), 200, 120, 2000 ! change motion vel to 2000
NPOINT (0,1), 220, 80 ! will be treated as a corner because of

! angle between points
NPOINT (0,1), 200, 60
NPOINT (0,1), 0, 0

ENDS(0,1)
STOP

2.6.28 NPOINT

Description

Add next control point and knot

Syntax

NPOINT[/switches](axis_list),coordinates,[,velocity][,knot][,weight][,required_velocity]

178Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

axis_list
The list of axes must be the same as in the corresponding NURBS
command.

coordinates
The list of coordinate values separated by commas. The list must specify
one value for each axis in axis_list. The list defines coordinates of one
control point of the spline.

velocity
Optional, only used with switch /v or /f. The value changes the required
feed rate. The new value is valid for all spline segments after the
corresponding control point.

knot (Not
supported in
ALPHA)

Optional, only used with switch /k.

The value specifies a delta for the new knot calculation. The delta must
be positive or zero. Each npoint command adds a new knot to the knot
vector. The new knot is calculated as a previous knot plus delta (positive
or zero). If suffix k is not specified, the delta default value is one; a new
knot is calculated as the previous knot plus one. A special case occurs in
the very first npoint command, if knots command was not specified, so
that the previous knot does not exist. In this case, the knot parameter
specifies the absolute value of the first knot; if switch /k is omitted, a zero
value is assumed as the first knot. If none of the npoint commands
specifies a /k switch and knots commands are omitted, the controller
builds a uniform spline with evenly spread knots (except for the
duplicated knots at the beginning and end).

Weight (Not
supported in
ALPHA)

Optional, only used with /w switch.

The value specifies control point weight. Only positive weights are
accepted. If a /w switch is not specified, the default value of weight is
one.

If none of the point commands specifies a /w switch, all control points
have the same weight (one); in this case, the spline is actually a non-
rational B spline.

Required_
velocity

Optional, only with /f switch
The required velocity for this segment only

Switches

/v

Specify new required velocity.

The switch is not compatible with /f.
The switch requires an additional parameter that specifies the required
velocity. The value is used as the required velocity for the current and all
subsequent points.

/f Specify required velocity.

179Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

The switch is not compatible with /v.
The switch requires an additional parameter that specifies required
velocity.
The value is used as the required velocity for the current point, but does
not change the required velocity for subsequent points.

/k (not
supported in
Alpha version)

Specify knot delta.
The switch requires an additional parameter that specifies the knot delta
from the previous knot.
The new knot is calculated as the previous knot plus delta.

/w (not
supported in
Alpha version)

Specify control point weight.
The switch requires an additional parameter that specifies the weight of
the control point.

/d

Mark the point specification as dummy.
Dummy point specifications can either precede the first control point
specification, or follow the last control point specification. Dummy points
specification is required in rare cases where default calculation of
starting/trailing knots is not appropriate.

/c
Mark the current point as a corner.
The control point is processed as a corner. Actually, such a point divides the
spline into two independent splines.

Return Value

None

2.6.29 SPATH

Description

Initiate a path smoothing motion.

Syntax

SPATH [/switches] (axis_list)),coordinates[,velocity][,exc_angle][,exc_length][,segments_buffer][
,motor_motion_delay]

Arguments

axis_list

Axes involved in the path smoothing motion, specified as axes numbers
separated by comma or as axes' names separated by comma. A minimum
of two axes must be specified. By default, the first three axes are main
axes, and all subsequent axes (if any) are dependent axes.

velocity
Optional, only used with /v switch
Defines required feed rate. If not specified, the feed rate is derived from
the leading axis parameters.

180Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

exc_angle

Optional, only used with /a switch

The value defines exceptions from spline interpolation. If for an internal
control point directions to the previous and the next control points require
direction change more than the specified angle (by modulo), the control
point is processed as a corner. Actually, such point divides the spline into
two independent splines.

exc_length

Optional, only used with /l switch.
The value defines exceptions from spline interpolation. If a distance
between two control points appears longer than the specified length, the
trajectory between the points is considered straight. Actually, two
independent splines are built before and after the segment.

segments_
buffer

[Optional] One-dimensional user-defined real array.
The controller uses this array to store added segments. By default, if the
argument is not specified, the controller allocates internal buffer for
storing 50 segments only. The argument allows the user application to
reallocate the buffer for storing a larger number of segments. The larger
number of segments may be required if the spline is defined with a large
number of closely specified control points; the case is typical when path
smoothing is used to process minute segment prepared with a CAD
system.

The buffer is for the controller's internal use only and shouldn’t be used by
the user application

motor_motion_
delay

(Optional, used only with /q switch) Delay, in milliseconds, before motor
motion actually starts.

Switches

w
Do not start until the go command.
If the switch is not specified, the motion starts once the first three spline points are
specified.

v

Specify required velocity.
The switch requires an additional parameter that specifies the required velocity. If
the switch is not specified, the feed rate is derived from the leading axis
parameters.

a

Specify exception angle.
The switch requires an additional parameter that specifies maximum angle in a
control point. The value defines exceptions from spline interpolation. If for an
internal control point, directions to the previous and the next control points require
direction change more than the specified angle (by modulo), the control point is
processed as a corner. Actually, such point divides the spline into two independent
splines.

181Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

l

Specify exception length.
The switch requires an additional parameter that specifies maximum segment
length. The value defines exceptions from spline interpolation. If a distance
between two control points appears longer than the specified length, the trajectory
between the points is considered straight. Actually, two independent splines are
built before and after the segment.

G
Acceleration consideration.
Allow the motion generator to deviate from the specified axes acceleration
parameter during velocity profile generation.

q

Defines actual motor movement delay in microseconds. The delay resolution is 50
microseconds.

The maximum delay is 100 controller cycles: 100ms for CTIME=1ms or 20ms for
CTIME=0.2ms.

Allows delaying actual motor movement start (RPOS) for the specified delay, while
motion profile generation (APOS) starts immediately.

Return Value

None

Comments

This command is supported in version 3.10 and higher.

Example

! Start an SPATH motion from current position (0,0),
! velocity = 1000, wait for go command before starting motion
SPATH/VW(0,1), 0, 0, 1000

SEGMENT (0,1), 50, 0
SEGMENT (0,1), 100, 0
SEGMENT/f (0,1), 100, 100 , 500 ! velocity for segment = 500
SEGMENT/c (0,1), 200, 200 ! come to an exact stop at this point,

! start a new spline after this point

SEGMENT/v (0,1), 300, 200, 2000 ! change motion vel to 2000
SEGMENT (0,1), 300, 300
SEGMENT (0,1), 400, 300
SEGMENT (0,1), 400, 400

GO (0,1) !start motion

ENDS(0,1)
STOP

182Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.6.30 SEGMENT

Description

Add a new control point to the SPATH motion generator

Syntax

SEGMENT[/switches](axis_list),coordinates[,velocity][,required_velocity]

Arguments

axis_list
The list of axes must be the same as in the corresponding
SPATH command.

coordinates
The list of coordinate values, separated by commas
The list must specify one value for each axis in axis_list. The list defines
coordinates of one control point of the spline.

velocity

Optional, only used with /v switch.

The value changes required feed rate. The new value is valid for all spline
segments after the corresponding control point.

required_
velocity

Optional, only with the /f switch
The required velocity for this segment only.

Switches

/v

Specify new required velocity
The switch is not compatible with /f. The switch requires an additional parameter
that specifies required velocity. The value defines the required velocity in the
current and all subsequent points.

/f

Specify required velocity
The switch is not compatible with /v. The switch requires an additional parameter
that specifies required velocity. The value defines the required velocity at the
current point, but does not change the required velocity for subsequent points.

/c
Mark the current point as a corner
The control point is processed as a corner. Actually, such point divides the spline
into two independent splines.

Return Value

None

Comments

This command is supported in version 3.10 and higher.

2.6.31 SMOVE

The SMOVE command provides for positioning to specific target. SMOVE commands work in
sequence and the next SMOVE command changes the previous target and provide a smooth

183Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

transition from one motion direction to another, based on ACC, DEC and JERK values. The motion
profile is optimized to pass on a rounded path near the breaking point, minimizing changes in speed
and direction that would cause unwanted vibrations in the system.

Syntax

SMOVE[/switch] axis_list, target_point[, velocity]

Arguments

axis_list Motion axes. 2 or 3 Cartesian axes can participate in the motion.

Target_point Destination point coordinates

velocity Optional argument for user-defined velocity

All SMOVE commands in the sequence must have the same axis_list parameter.

Switches

/v Use the specified velocity instead of the default velocity (VEL).

/z Move relative to Local Coordinate System

Example

SMOVE (X,Y,Z), 100, 100, 300

2.6.32 Using ARC1, ARC2 and LINE Switches

The following optional switches may be used singularly or in combination with ARC1, ARC2 and LINE:

/f

Decelerate to the end of segment.

The switch requires an additional parameter that specifies the end velocity. The
controller decelerates to the specified velocity at the end of segment. The specified
value should be less than the required velocity; otherwise the parameter is
ignored. The switch affects only one segment.

The switch also disables corner detection and processing at the end of segment.

If the switch is not specified, deceleration is not required. However, in special cases
the deceleration might occur due to corner processing or other velocity control
conditions.

/v

Specify required velocity.

The switch requires an additional parameter that specifies the required velocity.
The switch changes the required velocity for the current segment and for all
subsequent segments.

If the switch is not specified, the required velocity does not change.

184Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

/o
Synchronize user variables with segment execution. The switch requires additional
two or three parameters that specify values, user variable and mask.

/t

Specify segment processing time The switch requires an additional parameter that
specifies the segment processing time in milliseconds. Unlike the required velocity
specification, the segment processing time defines velocity at the current segment
only, and has no effect on the subsequent segments. The switch cannot be
specified together with /V.

/b

Use external loops at corners. The switch requires additional parameters that
specify the external loop type, the minimum segment length, and the maximum
allowed deviation from profile.
The /b switch may be defined with other corner processing options (/u, /g, etc.) .
If the Skywriting algorithm is applied, other corner processing options are skipped.
If Skywriting is skipped, other defined corner options will be applied.
This switched is used for Extended Motion only (initialized with XSEG...ENDS)

/p
Specifies that the lci_segment_active parameter is required.
This switched is used for Extended Motion only (initialized with XSEG...ENDS)

For ARC1, ARC2, and LINE some switches require an additional parameter to be specified. If more
than one parameter is required, the parameters should be separated by a comma, and the order of
parameters is fixed in the following order:

1. Required velocity (used with /V)

2. Final velocity (used with /F)

3. Segment processing time (used with /T)

4. /O requires specification of the values, variables, and mask parameters

5. /B requires specification of the External Loop Type, Minimum Segment Length, and
Maximum Allowed Deviation parameters

6. /P requires specification of the lci_segment_active parameter

Examples:

LINE/v (1,0), 1000, -
1000, 500

Add line segment with end point (1000, -1000) and segment velocity
500.

arc1/vf (0,1), 0, 0,
100, 100, +, 500,
100

Add arc segment with center (0,0), end point (100,100), clockwise
direction, segment velocity 500 and end velocity 100

185Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

int Value(1)

int Mask(1)

Value(0) = 1; Mask
(0) = 5

ARC2/o (0,1), 0, 0,
3.141529, Value,
OUT, 2, Mask

Add arc segment with center (0,0) and 180 degree (π) angle. At the
beginning of the segment execution, sets bit 0 and reset bit 2 of digital
outputs OUT(2).

2.7 Program Flow Commands

Command Description

Assignment
Command

Assigns values

BLOCK...END Executes a group of commands in one MPU cycle

CALL Calls subroutine.

GOTO Transfers program execution to another point in the program.

IF, ELSEIF,
ELSE...END

IF command structure.

INPUT Suspends program execution pending user input

LOOP...END Loop command structure.

ON...RET Defines an autoroutine

TILL
Delays program execution until a specified expression produces a non-
zero (true) result.

WAIT Delays program execution for a specified number of milliseconds.

WHILE...END While command structure.

2.7.1 Assignment Command

Description

The Assignment command (=) is used to assign a value to ACSPL+ standard or user-defined
variables with read/write options.

Syntax

variable_name = value

186Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

variable_
name

Can be:

> Name of ACSPL+ standard or user-defined variable

> An element of an ACSPL+ or user array

> One bit of integer variable or integer array element (applicable only
to those variables having specifically named bits, for example,
IMASK)

value

Can be of integer or real type. The value argument can either be:

> A specific value

> An expression that during runtime calculates to a value

Comments

Assigning to an ACSPL+ variable is limited by the following rules:

> Assignment to read-only variable (for example, FPOS) is prohibited

> Assignment to a protected variable (for example, ERRI) is allowed in only in the
Configuration mode.

After assignment, the previous value of the variable is replaced by the new value.

User local and global variables must be declared before they can be used in an assignment
command.

> Explicit indexing only is allowed for user array variables.

> If a user variable is scalar, no indexing is required.

> If a user variable is one-dimensional array, it requires one index. Two-dimensional arrays
require two indexes.

A bit can have only two possible values: 0 (false) or 1 (true), while the value result, which defines the
bit value, can be any value. Assignments convert the value as follows:

> If the value is zero, the bit is set to zero

> If the value is non-zero, the bit is set to one

Although bit assignments are applicable to any integer variable or array element, they are mainly
used for changing flag variables and output bits.

The controller executes assignment commands in the following order:

1. Calculate value

2. Convert the type of calculated value to the type of variable_name (if the types differ)

3. Assign the result to variable_name

Examples

VEL(0) = 1000 !Assign 1000 to axis 0 default velocity -
!explicit indexing.

VEL0 = 1000 !Assign 1000 to axis 0 default velocity -

187Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

!postfix indexing.
Var1 = FPOS(0) !Assign value of ACSPL+ variable to user variable.
Var2(0)(5) = 200 !Assign to element of user array.
OUT0.5 = 1 !Assign to digital output 5

2.7.2 BLOCK...END

Description

Commands specified within the BLOCK...END structure are executed in one MPU cycle.

Syntax

BLOCK

command-list

END

Arguments

command-list List of commands, separated by semi-colons.

Comments

> The structure provides an alternative to specifying command-list commands in one line. The
commands within the structure can be specified in several lines. However, the controller
executes all commands in one controller cycle, as if they were written in one line.

> Commands and functions that may cause delay (WAIT, TILL, GETSP, WHILE...END, LOOP...END
etc.) provide delay even if they are used within the BLOCK...END structure.

Example

INT XX,YY,ZZ !Defines variables as integers
BLOCK !BLOCK command

XX=TIME !XX is assigned the TIME standard variable
YY=TIME !(controller timer from power-up, in mSec.

!One execution line later, YY is also
!assigned the TIME standard variable.
!Because both lines were written in the
!BLOCK…END block, they are both executed
!during the same controller cycle hence the
!difference between the two values =0
!(ZZ=0).
!If both lines were NOT written within the
!BLOCK structure, the difference would be
!one controller cycle (ZZ=1).

END !End the BLOCK command
ZZ=YY-XX !The result in this example is ZZ=0.

188Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.7.3 CALL

Description

CALL calls a subroutine according to a specified label. All subroutines must begin with a label and
conclude with RET.

Syntax

CALL label

…

STOP

label:

…

RET

Arguments

label Unique name identifier.

Related ACSPL+ Commands

GOTO

Comments

> A label specified by CALL must be defined somewhere in the same program buffer. The
subroutine starts after the label and spans all commands up to RET.

> CALL transfers program execution to the start of the subroutine and stores the return point
in the stack. When RET executes, the return point is extracted from the stack and execution
continues from the next command after CALL.

> Subroutines can be nested; a subroutine can call another subroutine, and so on.

> CALL can only call a sub-routine located in the same buffer

Example

! ------------ Start subroutine labeled CHECK_PE ----------------------
CALL CHECK_PE !Call a subroutine named CHECK_PE.
DISABLE 0 !This line will be executed when the

!subroutine is terminated by the RET command.
STOP !Ends program.
CHECK_PE: !Subroutine label name.
WHILE (ABS(PE(0)>20)) !Subroutine command lines.
DISP "PE is :", PE(0)
END !End WHILE loop.
RET !Terminate subroutine and return to main program.

2.7.4 GOTO

Description

GOTO transfers program execution to a particular point in the program specified by a unique label.

189Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Avoid using GOTO to enter or exit a subroutine. Failure to do so will result in program
termination due to a stack violation error. As an alternative see CALL.

Syntax

GOTO label

Arguments

label A unique label defined in the program buffer.

Comments

> A label specified by GOTO must be defined somewhere in the same program buffer.

> The next executed command is located after the label.

Related ACSPL+ Commands

CALL

Example

GOTO ARR !Go to a label named ARR

2.7.5 IF, ELSEIF, ELSE...END

Description

IF, ELSEIF, ELSE, and END are building blocks used in the IF control structures. These commands
specify a condition which must be met before executing a list of commands. IF control structures
must conclude with END.

If the condition result is none-zero (true), the command list in the corresponding clause executes
and all subsequent conditions are not validated and all other command lists are skipped. After
executing the command list, the program continues from the next line after END.

If a condition result is zero (false), the command list is skipped. The program then checks subsequent
ELSEIF conditions. If no condition result is true, the command list following ELSE executes, if it exists.
The program then continues from the command following END.

Table 2-9 describes the IF control structure syntax using these building blocks.

Table 2-9. IF Control Structures

Syntax

Syntax IF Structure

IF expression command listEND IF-END

IF expression command listELSE command listEND IF-ELSE-END

IF expression command listELSEIF sequenceEND IF-ELSEIF-END

190Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Syntax IF Structure

IF expression command listELSEIF sequenceELSEcommand listEND IF-ELSEIF-ELSE-END

Comments

> The IF -ELSE -END control structure has two command lists. One follows IF and the second
follows ELSE. Only one command list executes, depending on the result of the expression
following IF.

> The IF-ELSEIF-END, and IF-ELSEIF- ELSE -END forms provide validation of a sequence of
conditions.

> IF control structures may contain any number of ELSEIF clauses. Each ELSEIF clause
specifies its own condition. The conditions are validated in the following order:

> Condition after IF

> Condition after first ELSEIF

> Condition after second ELSEIF

Examples

Example 1:

This example program fragment activates either output 5 or 6 and shuts off the other, depending on
the state of input 3.

IF IN0.3 !Check if the third bit of IN0 is 1.
OUT0.5 = 1 !Set the 5th bit of OUT0 to 1.
OUT0.6 = 0 !Set the 6th bit of OUT0 to 0.

ELSE !Execute the next commands only if the IF
!condition was false

OUT0.5 = 0 !Set the 5th bit of OUT0 to 0.
OUT0.6 = 1 !Set the 6th bit of OUT0 to 1.

END !End of the IF body.
STOP !Ends program

Example 2:

The following program fragment implements a saturation effect by limiting variable V0 to a range
from -256 to +256.

IF V0 < -256 !Check if V0 is less than -256
V0 = -256 !Assign -256 to V0 (low saturation)

ELSEIF V0 > 256 !If V0 is not less than -256, check if it
!is greater than 256

V0 = 256 !Assign 256 to V0 (high saturation)
END !End of the IF body (no saturation if

!V0 is equal to or more than 256)
STOP !Ends program

191Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.7.6 INPUT

Description

INPUT suspends program execution in a specific buffer until the host or the user (via the Terminal
option) provides a specific value or values.

Syntax

INPUT(array)

Arguments

array User defined array.

Comments

> The INPUT command accepts arguments as an array variable. The command delays
program execution until the host provides an input. The input from the host is expected to
consist of one or more numbers separated by spaces or commas and followed by a carriage
return. The INPUT command scans the numbers in the input and stores them in the
argument variable.

> If the argument variable is scalar, INPUT takes the first number in the input and stores it in
the argument variable.

> If the argument is an array, INPUT fills the array argument with the values from the input.

> The function execution is completed when the scalar is stored or the array is filled or a
carriage return is encountered.

COM Library Methods and .NET Library Methods

SuspendBuffer

C Library Functions

acsc_SuspendBuffer

Related ACSPL+ Commands

None

Examples

Example 1:

INT ARR(10) !Declares a ten-element array.
… !Other program commands.
INPUT (ARR) !Wait for user to enter values in ARR array.

Program execution halts until input is received from the host.

Assume that a user enters: 20 30 40 <ENTER>, the program stores the three values in ARR(0), ARR
(1), and ARR(2) and resumes execution. Since the user has entered only three numbers, the program
will store 0 (zero) as the value in the elements: ARR(3) through ARR(9).

192Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

The user may enter the value of a keyboard function key, 0 (zero) followed by an
integer from 1 to 12, in which case the value is stored separately in the standard variable:
FK.

Example 2:

INT ARR(2) !Declares a two-element array.
DISP "[FILL AXIS NUMBER],[FILL DISTANCE TO GO]"

!Display the text in the Terminal
INPUT (ARR) !This command stops the program until the two

!variables are entered into the ARR array.
SET FPOS(ARR(0))=0 !Set the feedback position to zero.
ENABLE (ARR(0)) !Enable the drive specified by the value of ARR(0).
PTP/RE (ARR(0)), (ARR(1))

!Move the ARR(0) axis to position ARR(1)

2.7.7 LOOP...END

Description

The LOOP command structure provides a fixed number of command list repetitions set by the
definition of an exact value, or any expression. LOOP control structures must conclude with END.

Syntax

LOOP expression

command_list

END

Arguments

expression Defines the number of loops. It can also be a specific integer number.

command_list Any set of commands that are to be repeated.

Comments

> If the expression result is zero or negative, the command list is not executed and the
program continues from the next line after END.

> If the expression result is not an integer the command rounds-off the number to the closest
integer.

Examples

Example 1:

LOOP 10 !Do 10 repetitions.
J=J+1 !J is increased by 1 for each repetition.
END !End LOOP.
STOP !Ends program.

193Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2:

LOOP ARR !Do repetitions equal to value labeled by ARR.
J=J+1 !J is increased by 1 for each repetition.
END !End LOOP.
STOP !Ends program.

Example 3:

LOOP YY*325/TT !Do repetitions equal to the value of the
!expression YY*325/TT

J=J+1 !J is increased by 1 for each repetition.
END !End LOOP.
STOP !Ends program.

2.7.8 ON...RET

Description

ON...RET defines an autoroutine. An autoroutine consists of a condition, and a body. Autoroutines
must conclude with RET. The autoroutine condition is checked every MPU cycle. Once the
autoroutine condition is met, the autoroutine interrupts, executes the lines in the body (until RET),
and then transfers execution control back to the interrupted program line.

The controller should never directly execute ON. If the program execution flow comes to
ON, the controller asserts a runtime error and aborts the program. To avoid this error,
use ON after STOP/STOPALL.

Syntax

ON condition

auto_routine body

RET

Comments

> Once the buffer in which an autoroutine is compiled, that autoroutine is enabled.

> The controller implements edge-detection in autoroutine condition verification. If a
condition becomes true, the controller activates the autoroutine only once. If afterwards
the condition remains true, the controller does not activate the autoroutine again. The
condition must become false and then become true again in order to activate the
autoroutine again.

> Only one autoroutine can be active in a buffer at a time.

Related ACSPL+ Commands

ENABLEON, DISABLEON

Examples

Example 1:

194Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Demonstrates a typical use of an autoroutine for processing controller faults. The autoroutine
provides an error message when a drive alarm on 0 axis occurs.

STOP !STOP must precede the autoroutine.
ON FAULT(0).#DRIVE !Activate autoroutine when bit

!FAULT(0).#DRIVE changes from 0 to 1
DISABLE 0 !Disable drive X
DISP "0 Axis Drive Alarm" !Display message
RET !End of autoroutine

Example 2:

Illustrates how all variables, not only faults, can be used in autoroutine conditions. Assuming that
output OUT0.6 is connected to a LED indicator, the following autoroutine signals the motion state bit
to activate the indicator, and deactivate it when the 0 axis is no longer in motion.

STOP !STOP must precede the autoroutine.
ON MST(0).#MOVE !When MST(0).#MOVE bit changes from 0 to

!1 (signaling that the axis is moving)
OUT0.6 = 1 !Set output 6 to 1 (turn on the LED)
RET !End of autoroutine
ON ^MST(0).#MOVE !When MST(0).#MOVE bit changes from 1 to

!0 (signaling that the axis is no longer
!moving)

OUT0.6 = 0 !Set output 6 to 0 (turn off the LED)
RET !End of autoroutine

2.7.9 TILL

Description

TILL delays program execution until the result of a specified expression is met, or the return value is
non-zero.

Syntax

TILL expression [,time_out]

Arguments

expression Defines how long to pause the program execution

time_out
Used to specify a time-out in milliseconds. Use time_out to limit the time
that an expression can return zero.

Related ACSPL+ Commands

WAIT

Examples

Example 1:

TILL ^MST(0).#MOVE !Wait for 0 axis termination

195Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Example 2:

TILL IN0.0=1, 2000 !Wait until input #0 =1 or 2000 milliseconds

Example 3

TILL RPOS(0)<>0 !Wait until RPOS(0) is not equal to 0

2.7.10 WAIT

Description

WAIT delays program execution for the specified number of milliseconds.

Syntax

WAIT wait_time

Arguments

wait_time
Defines how long to delay the program execution. wait_time can also be
defined by an expression.

Related ACSPL+ Commands

TILL

Examples

Example 1:

WAIT 2000 !Wait 2000 milliseconds

Example 2:

WAIT YY=65/TT !Milliseconds defined by an expression

2.7.11 WHILE...END

Description

The WHILE command structure provides repetitive execution of commands list as long as a
condition is satisfied. If the condition was not satisfied when checked for the first time, program
execution continues from the command following END.

WHILE control structures must conclude with END.

Syntax

WHILE condition

command_list

END

196Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

condition Condition controlling the execution of the WHILE command_list.

command_list List of commands to be executed.

Related ACSPL+ Commands

IF, ELSEIF, ELSE...END, TILL

Examples

Example 1:

WHILE S_ST.#DC !Indicate data collection active.
OUT0.0=^OUT0.0 !Blink LED.
WAIT 200 !Blink period is 200msec.
END

Example 2:

WHILE (ABS(PE(0)>20)) !Do if the 0 axis Position Error is greater
!than 20.

DISP "PE is :", PE(0)
Display the 0 axis Position Error
END

Example 3:

WHILE 1 !Run forever
PTP/e 0, 1000
PTP/e 0, -1000
END

2.8 Program Management Commands

The Program Management commands are:

Command Description

DISABLEON Disables autoroutine activation in a buffer.

ENABLEON Enables autoroutine activation in a buffer.

PAUSE Suspends program execution in a buffer.

RESUME Resumes program execution in a buffer.

START Activates program execution in a buffer.

197Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Command Description

STOP/STOPALL
Terminates program execution in a buffer. STOPALL terminates all
programs.

2.8.1 DISABLEON

Description

DISABLEON disables autoroutine activation in a buffer. The command has the same functionality as
PFLAGS.#NOAUTO=1.

Syntax

DISABLEON [(buffer-number)]

Arguments

buffer-
number

Optional argument, if no buffer number is mentioned, the command disables
autoroutines in all buffers.

Related ACSPL+ Commands

ON...RET, ENABLEON

2.8.2 ENABLEON

Description

ENABLEON enables autoroutine activation in a buffer. The command has the same functionality as
PFLAGS.#NOAUTO=0.

Syntax

ENABLEON [(buffer-number)]

Arguments

buffer-
number

A number between 0 and 63 specifying the buffer in which the autoroutine is
to be enabled.. If no buffer number is given, the command enables
autoroutines in all buffers.

Related ACSPL+ Commands

ON...RET, DISABLEON

2.8.3 PAUSE

Description

PAUSE suspends program execution in a specific buffer.

Syntax

PAUSE buffer-number

198Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

buffer-
number

A number between 0 and 63 specifying the buffer in which the program is to
be suspended.

Related ACSPL+ Commands

RESUME

Example

PAUSE 5 !Pauses buffer five

2.8.4 RESUME

Description

RESUME resumes the program execution in a specific buffer after the execution was paused.

Syntax

RESUME buffer-number

Arguments

buffer-
number

A number between 0 and 63 specifying the buffer in which the program
execution that was suspended by the PAUSE command is to resumed.

Related ACSPL+ Commands

PAUSE

Example

RESUME 5 !Resume buffer five

2.8.5 START

Description

START activates program execution at a specified line number, or a specific label in a specified buffer
that is different from the buffer where START is enabled.

Syntax

START[/s] buffer-number, line-number | label

Arguments

buffer-
number

A number between 0 and 63 specifying the buffer.

line-number
| label

The line number of the program within the buffer where execution is to
begin, or a label identifying the line number.

199Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Switches

Switch Comments

/s

The "/s" switch causes the program to execute from the beginning in
simulation mode up to the indicated line or label, after which execution
continues normally. No motion is executed up to that point, but G-Code
modality changes are registered. Execution continues normally from the
indicated line or label, including motion commands.

Comments

> Unless line #1 is used in the START command, it is recommended to use a label since line
numbers are prone to change if programs lines are deleted or inserted.

> START executes successfully if the target buffer is loaded with a program, compiled, but not
running. Otherwise, START causes a run-time error and aborts the current program.

> The program activated by START executes concurrently with the program containing the
START command, and other active programs.

> If the whole program needs to be run in simulation mode, for early run-time problem
detection for example, the START/s command can be used without specifying a line
number or label argument.

> Simulation mode does not affect ACSPL+ lines, which will run normally.

Related ACSPL+ Commands

STOP/STOPALL, BREAK

Examples

Example 1:

START 8,15 !Start program in buffer 8 line 15

Example 2:

START 8,Start_here !Start program in buffer 8, at the line identified
!by the Start_here label.

Example 3 (simulation mode):

1 !Buffer 0
2 ENABLE(X,Y)
3 N20 G00 X0
4 N30 G01 X20 F2000
5 N40 G01 X10
6 N50 G01 X20
7 !Radius compensation
8 N10 G42 D10
9 RC:
10 N60 G01 X0

200Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

11 N30 G01 X20 F4000
12 N40 G01 X10
13 N50 G01 X20
14 N60 G01 X0
15 N70 M02
!Buffer 1
START/s 0,10 !Execution of buffer 0 in simulation mode until line 10
STOP

2.8.6 STOP/STOPALL

Description

STOP terminates program execution in the specified buffer. STOPALL terminates program execution
in all buffers.

Syntax

STOP buffer-number

Arguments

buffer-
number

A number between 0 and 63 specifying the buffer in which the program
execution is to be halted.

COM Library Methods and .NET Library Methods

StopBuffer

C Library Functions

acsc_StopBuffer

Example

STOP 5 !Terminate program execution in buffer five.

2.9 Ethernet/IP ACSPL+ Support Commands

The following ACSPL+ functions set assembly configuration and get existing assembly configuration.

For more information refer to SPiiPlus EtherNet/IP User Guide.

2.9.1 EIPGETATTR

Description

EIPGETATTR returns value of a specific attribute. It can be a class attribute or an instance attribute.

Syntax

int eipgetattr(int class, int instance, int attr)

201Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

Class

The following classes are supported:

Class Code Class Name

0x01 Identity

0x02 Message Router

0x06 Connection Manager

0xF4 Port

0xF5 TCP/IP Interface

0xF6 Ethernet Link

0x04 Assembly

0x64 ACSPL+ Command

0x65 ACSPL+ Variable

Instance

For the class attribute, this parameter should 0. Otherwise, the specific
instance should be specified as follows

Class Code Supported Instances

0x01 1

0x02 1

0x06 1

0xF4 1,2,3

0xF5 1

0xF6 1

0x04

0x64

0x65

202Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Attr

Specifies the attribute as follows:

Class Code Class Supported Instance Supported

Attributes Attributes

0x01 1 1,2,3,4,5,6

0x02 1 2

0x06 1 1..8

0xF4 1,2,3 1

0xF5 1 1,2

0xF6 1 1,7,8

0x04 1

0x64 1,100

0x65 1

Return Value

Returns value of a specific attribute.

-1 is returned in case of illegal parameters.

2.9.2 EIPGETIND1

Description

EIPGETIND1returns the first index of the requested ACSPL+ standard or user-defined variable in a
one-dimensional array. The indexes start from 0.

Syntax

int eipgetind1(int instance, int element)

Arguments

instance

Assembly instance. The following instances are supported:

Instance Instance Name

> 0x64 (100) Input Integer Assembly

> 0x65 (101) Output Integer Assembly

> 0x66 (102) Input Real Assembly

> 0x67 (103) Output Real Assembly

element
The index of element in the corresponding assembly. Only indexes 0 to 123
are supported.

203Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Return Value

0 is returned in case of scalar variable.

-1 is returned in case of illegal index parameter.

2.9.3 EIPGETIND2

Description

EIPGETIND2 returns the first index of the requested ACSPL+ standard or user-defined variable in a
two-dimensional array. The indexes start from 0.

Syntax

int eipgetind2(int instance, int element)

Arguments

instance

Assembly instance. The following instances are supported:

Instance Instance Name

> 0x64 (100) Input Integer Assembly

> 0x65 (101) Output Integer Assembly

> 0x66 (102) Input Real Assembly

> 0x67 (103) Output Real Assembly

element
The index of element in the corresponding assembly. Only indexes 0 to 123
are supported.

Return Value

0 is returned in case of scalar variable or one-dimensional array.

-1 is returned in case of illegal index parameter.

2.9.4 EIPGETTAG

Description

EIPGETTAG returns the tag number of requested ACSPL+ standard or user-friendly variable. User-
friendly variables tags start from index 1000.

Syntax

int eipgettag(int instance, int element)

204Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

Arguments

instance

Assembly instance. The following instances are supported:

Instance Instance Name

> 0x64 (100) Input Integer Assembly

> 0x65 (101) Output Integer Assembly

> 0x66 (102) Input Real Assembly

> 0x67 (103) Output Real Assembly

element
The index of element in the corresponding assembly. Only indexes 0 to 123
are supported.

Return Value

-1 is returned in case of illegal index parameter.

2.9.5 EIPSETASM

Description

EIPSETASM sets the assembly configuration.

Syntax

eipsetasm(int instance, int element,int tag, int first, int second)

Arguments

instance

Assembly instance. The following instances are supported:

Instance Instance Name

> 0x64 (100) Input Integer Assembly

> 0x65 (101) Output Integer Assembly

> 0x66 (102) Input Real Assembly

> 0x67 (103) Output Real Assembly

element
The index of element in the corresponding assembly. Only indexes 0 to 123
are supported.

tag
The tag number of required ACSPL+ standard or user-defined variable. User-
defined variables tags start from index 1000.

first
The first index of required ACSPL+ standard or user-defined variable. The
indexes start from 0. Used only if variable is one or two-dimension array.
Should be 0 for scalar variable.

second
The first index of required ACSPL+ standard or user-defined variable. The
indexes start from 0. Used only if variable is two-dimensional array. Should
be 0 for scalar variable or one-dimensional array.

205Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.10 Laser Control Commands

The laser commands are:

Command Description

LCENABLE Enables a pulse generation process with current set parameters.

LCDISABLE Stops a pulse generation process, including tickle pulses.

2.10.1 LCENABLE

The LCENABLE command enables a pulse generation process with current set parameters. If initially
frequency or duty cycle is set to zero, than pulse generation will be pending till positive value will be
set. This approach allows synchronize the pulse generation with actual motion, when, for example,
frequency or duty cycle is updated as a function of motion reference velocity.

Syntax

LCENABLE(Index)

Arguments

Arguments Comment

Index Refers to any of the axis that are allocated for the laser.

2.10.2 LCDISABLE

The LCDISABLE command stops a pulse generation process, including tickle pulses.

Syntax

LCDISABLE(Index)

Arguments

Arguments Comment

Index Refers to any of the axis that are allocated for the laser.

2.11 Input Shaping Commands

The input shaping commands are as follows.

Command Description

INSHAPEON Activate input shapping

INSHAPEOFF Terminate input shaping

206Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

2.11.1 INSHAPEON

Description

The INSHAPEON function starts Input Shape algorithm for specified axis. The result is a dynamic
output signal equal to the convolution of the input signal and the convolution pulses.

Syntax

INSHAPEON Axis_Index, T_array, A_array

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

T_array
One-dimensional array specifying the times of each
convolution in milliseconds.

A_array
One-dimensional array specifying the amplitudes of each
convolution pulse

Return Value

None

Comments

Vectors T_array and A_array define characteristics of the convolution pulses. The array sizes should
be identical.

Vector T_array contains real numbers, so fractional numbers may be specified. However, the
position of each pulse is rounded to a multiple of the controller cycle. If the controller cycle is one
millisecond, the numbers in T_array are rounded to integers. The elements of T_array must be
arranged in ascending order.

The sum of A_array entries must equal 1.

See the Using the Convolve Web Site chapter in the ACSPL+ Programmers Guide to get the
explanation how to calculate the T_array and A_array parameters.

This function is supported in version 3.00 and higher..

Examples

global real CnvT(5), CnvA(5), CnvB(420)
VEL(0) = 120
ACC(0) = VEL(0)*10
JERK(0) = ACC(0)*10

CnvT(0)=0; CnvT(1)=64 ; CnvT(2)=68 ;CnvT(3)=72; CnvT(4)=139
CnvA(0)=25345/1e5; CnvA(1)=160/1e5; CnvA(2)=30987/1e5; CnvA(3)=18949/1e5;
CnvA(4)=24559/1e5

enable 0
InShapeOn 0, CnvT, CnvA

207Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

ptp/e 0,0
ptp/e 0,50
till ^MST(0).#MOVE
InShapeOff 0
stop

!INPUTSHAPE EXAMPLE: IF CTIME < 1

!In this case we need to multiply CnvT array by CTIME. Here CTIME = 0.5
global real CnvT(5), CnvA(5), CnvB(420)
CnvT(0)=0*CTIME; CnvT(1)=1*CTIME ; CnvT(2)=214*CTIME ;CnvT(3)=253*CTIME;
CnvT(4)=501*CTIME
CnvA(0)=22960/1e5; CnvA(1)=10361/1e5; CnvA(2)=3186/1e5; CnvA
(3)=45767/1e5;
CnvA(4)=17726/1e5
enable 0
InShapeOn 0, CnvT, CnvA
ptp/e 0,0
ptp/e 0,30
till ^MST(0).#MOVE
!InShapeOff 0
stop

2.11.2 INSHAPEOFF

Description

The INSHAPEOFF function stops the Input Shape algorithm for the specified axis.

Syntax

INSHAPEOFF Axis_Index

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

Comments

This variable is supported in version 3.00 and higher.

Return Value

None

208Version 3.12

ACSPL+ Commands & Variables Reference Guide
2. ACSPL+ Commands

3. ACSPL+ Variables
ACSPL+ supports data types of integer, real, and matrix. Matrix variables are a two-dimensional
array of real values.

This chapter covers the ASCPL+ variables. ACSPL+ has a complete set of built-in variables for use in
setting values that control ACSPL+ programs. The ACSPL+ variables are divided into the following
categories:

> Axis Configuration Variables

Along with the following subgroups:

> Brake Variables

> Feedback Variables

> Safety Limits Variables

> Axis State Variables

> Data Collection Variables

> Input and Output Variables

> Monitoring Variables

> Motion Variables

> Program Execution Control Variables

> Safety Control Variables

> Induction Motor Variables

> Nanomotion Variables

> Servo-Loop Variables

Along with the following subgroups:

> Servo-Loop Current Variables

> Servo-Loop Velocity Variables

> Servo-Loop Velocity Notch Filter Variables

> Servo-Loop Velocity Low Pass Filter Variables

> Servo-Loop Velocity Bi-Quad Filter Variables

> Servo-Loop Position Variables

> Servo-Loop Compensations Variables

> Servo-Loop Miscellaneous Variables

> Commutation Variables

> System Configuration Variables

> Communication Variables

> Miscellaneous

The ACSPL+ programming variables are:

209Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-1. Alphabetical Listing of All ACSPL+ Variables

Name Description Variable Group

ACC Acceleration Motion

AFLAGS Axis Flags Axis Configuration

AIN Analog Inputs Input and Output

AOUT Analog Outputs Input and Output

APOS Axis Position Motion

AST Axis State Axis State

BAUD Serial Communication Baud Rate Communication

BOFFTIME Brake Deactivation Time
Axis Configuration -
Brake

BONTIME Brake Activation Time
Axis Configuration -
Brake

CERRA Critical Position Error in Accelerating
Axis Configuration -
Safety Limits

CERRI Critical Position Error in Idle
Axis Configuration -
Safety Limits

CERRV Critical Position Error in Moving
Axis Configuration -
Safety Limits

CFG Configuration Mode
System
Configuration

COMMCH Communication Channel Communication

COMMFL Communication Flags Communication

CONID Controller Identification Communication

CTIME Controller Cycle Time
System
Configuration

DAPOS Delayed Axis Position Motion

DCN Axis DC, Number of Samples Data Collection

210Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

DCOM Drive Command Servo-Loop

DCP Axis DC, Period Data Collection

DEC Deceleration Motion

DELI Delay on Transition to Idle State
Axis Configuration -
Safety Limits

DELV Delay on Transition to Velocity State
Axis Configuration -
Safety Limits

DISPCH Default Communication Channel Communication

E_AOFFS Sets user-defined offset for absolute encoder.
Axis Configuration -
Feedback

E2_AOFFS
Sets user-defined offset for absolute encoder
secondary feedback

Axis Configuration -
Feedback

E_FREQ Primary Encoder Frequency
Axis Configuration -
Feedback

E_SCMUL Primary Encoder Sin-Cos Multiplier
Axis Configuration -
Feedback

E_TYPE Primary Encoder Type
Axis Configuration -
Feedback

E2FAC Secondary Encoder Factor
Axis Configuration -
Feedback

E2_FLAGS
Contains configuration bits for secondary
feedback absolute encoder.

Axis Configuration -
Feedback

E2_FREQ
Defines the maximum encoder pulse frequency
(in MHz) for secondary feedback.

Axis Configuration -
Feedback

E2OFFS Secondary Encoder Offset
Axis Configuration -
Feedback

E2_PAR_A Sets the encoder data transmission frequency
Axis Configuration -
Feedback

E2_PAR_B Sets the encoder data control CRC code
Axis Configuration -
Feedback

211Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

E2_PAR_C
Sets the interval (in microseconds) of encoder
position reading

Axis Configuration -
Feedback

E2_PAR_D
Defines number of status bits (LSB) in the real-
time position data

Axis Configuration -
Feedback

E2_PAR_E Defines a mask for setting error bits
Axis Configuration -
Feedback

E2_SCMUL
Specifies the Sin-Cos multiplication factor for the
secondary feedback encoder

Axis Configuration -
Feedback

ECERR Contains EtherCAT Error Code Safety Control

ECHO Echo Communication Channel Communication

ECST Contains EtherCAT Status Safety Control

EFAC Primary Encoder Factor
Axis Configuration -
Feedback

ENTIME Enable Time Axis Configuration

EOFFS Primary Encoder Offset
Axis Configuration -
Feedback

E_PAR_A Feedback Variables

E_PAR_B Feedback Variables

E_PAR_C Feedback Variables

EPOS Shows the encoder feedback Feedback

ERRA Position Error in Accelerating
Axis Configuration -
Safety Limits

ERRI Position Error in Idle
Axis Configuration -
Safety Limits

ERRV Position Error in Moving Axis Configuration

EXTIN Extended Inputs (HSSI) Input and Output

EXTOUT Extended Outputs (HSSI) Input and Output

212Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

F2ACC
Defines the feedback acceleration value of the
axis in secondary feedback.

Feedback

F2POS Secondary Feedback Position Motion

F2VEL Secondary Feedback Velocity Motion

FACC Primary Feedback Acceleration Motion

FAULT Faults
Safe

ty Control

FDEF Default Response Mask Safety Control

FK Function Key Miscellaneous

FMASK Fault Mask Safety Control

FPOS Primary Feedback Position Axis State

FVEL Primary Feedback Velocity Motion

FVFIL Primary Feedback Velocity Filter
Axis Configuration -
Feedback

G_01WCS...G_
12WCS

Used for defining one of the 12 work-piece
coordinate systems

System
Configuration

GACC Group Acceleration Motion

GATEWAY Gateway Address for 1st Ethernet Communication

GJERK Group Jerk Motion

GMOT Motion Number Motion

GMQU Motion Queue Motion

GMTYPE Motion Type Motion

GPATH Group Path Motion

GPEXL Indicates the GSP program executed block
System
Configuration

GPHASE Motion Phase Motion

213Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

GRTIME Remaining Motion Time Motion

GSEG Motion Segment Motion

GSFREE Free Motion Segments Motion

GUFAC
Holds the conversion factor from 'Common
Physical Units' in [mm] to 'Controller Units'

System
Configuration

GVEC Group Vector Motion

GVEL Group Velocity Motion

IENA Interrupt Enable/Disable
System
Configuration

IMASK Interrupt Mask
System
Configuration

IN Digital Inputs Input and Output

IND Primary Index Position Axis State

ISENA Specific Interrupt Enable/Disable
System
Configuration

IST Index State Axis State

JERK Jerk Motion

JITTER
Time difference between physical timer interrupt
and start of SC real-time task

SPiiPlusSC

KDEC Kill Deceleration Motion

M2ARK Secondary Mark Position Axis State

MARK Primary Mark Position Axis State

MERR Motor Error Safety Control

MFF Master Feed Forward Axis Configuration

MFLAGS Motor Flags Axis Configuration

MFLAGSX Extended Motor Flags Axis Configuration

214Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

MPOS Master Position Motion

MSSYNC Difference between master clock and bus clock SPiiPlusSC

MST Motor State Axis State

NST
Reads the status of EtherCAT Sync and GPRT
errors for each axis in the system.

Axis State

NVEL Minimal Velocity Motion

ONRATE Autoroutine Rate
Program Execution
Control

OUT Digital Outputs Input and Output

PCHARS Program Size in Characters
Program Execution
Control

PE Non-Critical Position Error Motion

PERL Program Error Line
Program Execution
Control

PERR Program Error
Program Execution
Control

PEXL Program Executed Line
Program Execution
Control

PFLAGS Program Flags
Program Execution
Control

PLINES Program Size in Lines
Program Execution
Control

PRATE Program Rate
Program Execution
Control

PST Program State
Program Execution
Control

RACC Reference Acceleration Motion

RMS current of axis Axis State

215Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

ROFFS Reference Offset Axis State

RPOS Reference Position Axis State

RVEL Reference Velocity Motion

RVFIL Reference Velocity Filter
Axis Configuration -
Feedback

S_DCN System DC, Number of Samples Data Collection

S_DCP System DC, Period Data Collection

S_ERR System Error Safety Control

S_FAULT System Faults Safety Control

S_FDEF System Default Response Mask Safety Control

S_FLAGS System Flags
System
Configuration

S_FMASK System Fault Mask Safety Control

S_SAFIN System Safety Inputs Safety Control

S_SAFINI System Safety Inputs Inversion Safety Control

S_SETUP Bit mask defining various system settings
System
Configuration

S_ST State of System Data Collection Data Collection

SAFIN Safety Inputs Safety Control

SAFINI Safety Inputs Inversion Safety Control

SC2COFFS
Defines the Sin-Cos Sine offset in secondary
feedback

Axis Configuration -
Feedback

SC2GAIN

Sin-Cos encoder gain compensation variable
used to compensate the Cosine signal for an
improper amplitude relative to the Sine signal in
secondary feedback

Axis Configuration -
Feedback

216Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

SC2PHASE

Sin-Cos encoder phase compensation variable
and is used to compensate the Cosine signal for
an improper phase difference relative to the Sine
signal in secondary feedback.

Axis Configuration -
Feedback

SC2SOFFS
Defines the Sin-Cos Sine offset in secondary
feedback.

Axis Configuration -
Feedback

SCCOFFS Sin-Cos Offset (Cosine)
Axis Configuration -
Feedback

SCGAIN Cosine gain compensation
Axis Configuration -
Feedback

SCPHASE Cosine phase compensation
Axis Configuration -
Feedback

SCSOFFS Sin-Cos Offset (Sine)
Axis Configuration -
Feedback

SETTLE Settling Time Axis Configuration

S2LABITS
Used for setting the total number of absolute
position bits for an absolute encoder connected
to a secondary feedback

Axis Configuration -
Feedback

SLABITS Absolute Position Bits
Axis Configuration -
Feedback

SLAFF Acceleration Feed Forward
Servo-Loop -
Compensations

SLBIASA Current Phase A Bias
Servo-Loop -
Current

SLBIASB Current Phase B Bias
Servo-Loop -
Current

SLCFIELD Induction Motor Excitation Induction Motor

SLCHALL Hall Shift Commutation

SLCNP Number of Motor Poles Commutation

SLCOFFS Commutation Offset Commutation

217Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

SLCORG Commutation Origin Commutation

SLCPRD Commutation Period Commutation

SLCROUT Commutation Feedback
Servo-Loop -
Miscellaneous

SLCSLIP Induction Motor Slip Factor Induction Motor

SLDRAIF DRA frequency
Servo-Loop -
Position

SLDRAIF Provides an Idle Factor to the SLDRA variable.
Servo-Loop -
Position

SLDRX Maximum DRA correction
Servo-Loop -
Position

SLDZMAX Maximum Dead Zone position
Servo-Loop -
Nanomotion

SLDZMIN Minimum Dead Zone position
Servo-Loop -
Nanomotion

SLEBIASA Defines encoder hardware Sine offset
Axis Configuration -
Feedback

SLEBIASB Defines encoder hardware Cosine offset
Axis Configuration -
Feedback

SLEBIASC
Defines the Sin-Cos encoder’s hardware
compensation for the Sine offset in secondary
feedback

Axis Configuration -
Feedback

SLEBIASD
Defines the Sin-Cos encoder’s hardware
compensation for the Cosine offset in secondary
feedback

Axis Configuration -
Feedback

SLFRC Static Friction
Servo-Loop -
Compensations

SLFRCD Dynamic Friction
Servo-Loop -
Compensations

SLHROUT Sets the Hall state routing Commutation

218Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

SLIFILT Internal Current filter
Servo-Loop -
Current

SLIKI Integrator Gain
Servo-Loop -
Current

SLIKP Integrator Proportional Gain
Servo-Loop -
Current

SLIFILT Internal Current filter
Servo-Loop -
Current

SLILI Determines output voltage
Servo-Loop -
Current

SLIOFFS Current Command Offset
Servo-Loop -
Current

SLLIMIT Soft Left Limit Safety Limits

SLLROUT Sets the HW limits routing for the specified axis Commutation

SLP2ROUT
Sets the feedback routing of the secondary
feedback position for the specified axis

Servo Loop -
Miscellaneous

SLPKITF Increases position loop integrator coefficient
Servo-Loop -
Position

SLPKP Proportional Position Gain
Servo-Loop -
Position

SLPKPIF Provides an Idle Factor to the SLPKP variable
Servo-Loop -
Position

SLPKPSF Provides a Settling Factor to the SLPKP variable
Servo-Loop -
Position

SLPKPTF Increases position loop proportional coefficient
Servo-Loop -
Position

SLPMAX Modulo Axis Upper Limit Axis Configuration

SLPMIN Modulo Axis Lower Limit Axis Configuration

SLPROUT Position Feedback Routing
Servo-Loop -
Miscellaneous

219Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

SLSTHALL The hall state of each axis Commutation

SLTFWID
Determines distance to target at which position
and velocity loops gains increase by 50% Servo-
Loop - Miscellaneous SLVB0DD Bi-Quad filter

Servo-Loop -
Miscellaneous

SLVB0DD Bi-Quad filter damping ratio denominator Servo-Loop - Filter

SLVB0DF Bi-Quad filter algorithm denominator Servo-Loop - Filter

SLVB0ND Bi-Quad filter damping ratio numerator Servo-Loop - Filter

SLVB0NF Bi-Quad filter algorithm numerator Servo-Loop - Filter

SLVKI Velocity Integrator Coefficient
Servo-Loop -
Velocity

SLVKIIF Provides an Idle Factor to SLVKI variable
Servo-Loop -
Velocity

SLVKISF Provides a Settle Factor to the SLVKI variable
Servo-Loop -
Velocity

SLVKITF Increases velocity loop integrator coefficient
Servo-Loop -
Velocity

SLVKP Proportional Velocity Gain
Servo-Loop -
Velocity

SLVKPIF Provides an Idle Factor to the SLVKP variable
Servo-Loop -
Velocity

SLVKPSF Provides a Settle Factor to the SLVKP variable
Servo-Loop -
Velocity

SLVKPTF
Increases the velocity loop proportional
coefficient

Servo-Loop -
Velocity

SLVLI Integrator Velocity Limit
Servo-Loop -
Velocity

SLVNATT Notch Filter Attenuation Servo-Loop - Filter

SLVNFRQ Notch Filter Frequency Servo-Loop - Filter

SLVNWID Notch Filter Width Servo-Loop - Filter

220Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

SLVRAT Velocity Feed Forward Ratio
Servo-Loop -
Velocity

SLVROUT Velocity Feedback
Servo-Loop -
Miscellaneous

SLVSOF Low-Pass Filter Bandwidth Servo-Loop - Filter

SLVSOFD Low-Pass Filter Damping Servo-Loop - Filter

SLZFF Defines zero velocity feed forward position
Servo-Loop -
Nanomotion

SRLIMIT Soft Right Limit Safety Limits

STEPF Stepper Factor Axis Configuration

STEPW Stepper Pulse Width Axis Configuration

STODELAY
Configures the delay time between the STO fault
indication and the default response (disable) to
the fault

Safety Control

SUBNET Subnet Mask for 1st Ethernet Communication

SYNC Slave Sync counter Safety Control

TARGRAD Target Radius Axis Configuration

TCPIP IP Address for 1st Ethernet Communication

TCPIP2 IP Address for 2nd Ethernet Communication

TCPPORT TCP Port Number Communication

TIME Elapsed Time Monitoring

TPOS Target Position Motion

UDPPORT UDP Port Number Communication

USAGE MPU Usage Monitoring

VEL Velocity Motion

221Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description Variable Group

VELBRK Brake Velocity
Axis Configuration -
Brake

XACC Maximum Acceleration
Axis Configuration -
Safety Limits

XARRSIZE Maximum Array Size Miscellaneous

XCURI Maximum Current in Idle
Axis Configuration -
Safety Limits

XCURCDB Threshold of the current vector peak
Axis Configuration -
Safety Limits

XCURV Maximum Current in Moving
Axis Configuration -
Safety Limits

XRMS RMS Current Limit
Axis Configuration -
Safety Limits

XRMST RMS Current Time Constant
Axis Configuration -
Safety Limits

XSACC Maximum Slave Acceleration
Axis Configuration -
Safety Limits

XVEL Maximum Velocity
Axis Configuration -
Safety Limits

3.1 Axis Configuration Variables

The Axis Configuration variables are:

Name Description

AFLAGS Axis Flags

ENTIME Enable Time

ESTBITS
ESTBITS represents the single turn resolution

(number of bits) of the absolute encoder.

E2STBITS
E2STBITS represents the single turn resolution (number
of bits) of the absolute encoder for the secondary
feedback

222Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

EMTBITS
EMTBITS represents the multi-turn resolution (number of
bits) of the absolute encoder.

E2MTBITS
E2MTBITS represents the multi-turn resolution (number
of bits) of the absolute encoder for the secondary
feedback

MFF Master Feed forward

MFLAGS Motor Flags

MFLAGSX Extended Motor Flags

MSTIMEA
Time elapsed from start of motion up to first entering the
settled zone

MSTIMEB
Time elapsed from start of motion up to first entering the
settled zone

MSTIMEC
Time elapsed from start of motion up to first entering the
settled zone

PEGQUE Count of PEG FIFO, one entry per axis

SETTLE Axis Settling Time Parameter

SETTLE Axis Settling Time Parameter

SLCFIELD Defines magnetic field component of an induction motor

SLCSLIP
Defines the slip constant component of an induction
motor

SLPMAX Specifies the upper limit of modulo axis

SLPMIN Specifies the lower limit of modulo axis

STEPF Stepper Factor

STEPW Stepper Pulse Width

TARGRAD Axis settling target envelope parameter

223Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.1.1 AFLAGS

Description

AFLAGS is an integer array, with one element for each axis in the system, each element of which
contains a set of 4 bits.

Syntax

AFLAGSaxis_index.bit_designator = 1|0

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator
The meanings of bit_designator are given in AFLAGS.meanings of bit_
designator

Table 3-2. AFLAG Bit Description

Bit Name No. Description

#NOS 0 No S-Profile

#SEMIS 1 Semi-S-Profile

#AUX 2 Auxiliary Axis

#NOGROUP 3 Disable Group

Tag

3

Comments

Currently, only AFLAGS(axis_index).#NOGROUP can be set in the variable. AFLAGS(axis_
index).#NOGROUP disables the axis in a group, so that any group or motion command that includes
the axis in a group will fail.

Other bits are reserved for future use, and must be set to zero.

Accessibility

Read-Write

AFLAGS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection.

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

224Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.1.2 ENTIME

Description

ENTIME is a real array, with one element for each axis in the system, and is used for controlling the
execution of ENABLE/ENABLE ALL.

Syntax

ENTIME(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 50.

Tag

37

Comments

Since the drive enable process is relatively long, (50 - 100msec) ENTIME defines a time duration in
msec between ENABLE/ENABLE ALL and the moment the controller considers the drive as enabled
and all faults as FAULT(axis_index).#PE, FAULT(axis_index).#CPE, FAULT(axis_index).#DRIVE are
triggered.

Exact usage of the variable depends on the flag bit MFLAGS(axis_index).#ENMODE (bit 19). See
MFLAGS.

Accessibility

Read-Write

ENTIME values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

ENABLE/ENABLE ALL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.3 ESTBITS

Description

ESTBITS is an integer array with one element for each axis. It represents the single turn resolution
(number of bits) of the absolute encoder.

225Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

ESTBITS(axis_index)

Arguments

index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value Value ranges from 0 to 64.

Tag

Comments

The ESTBITS variable can only be set by the ENCINIT() function.

Related ACSPL+ Variables

EMTBITS, SLABITS

Accessibility

Read-only

SLABITS compatibility is ensured.
If EMTBITS and ESTBITS are 0, SLABITS is still a Read-Write variable.
If ESTBITS is not 0 or EMTBITS is not 0 (in other words, it was changed by a call to
ENCINIT()),SLABITS cannot be assigned a new value, and the firmware will return an
error if an assignment is attempted.

3.1.4 E2STBITS

Description

E2STBITS is an integer array with one element for each axis. It represents the single turn resolution
(number of bits) of the absolute encoder for the secondary feedback.

Syntax

E2STBITS(axis_index)

Arguments

index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value Value ranges from 0 to 64.

Tag

Comments

The E2STBITS variable can only be set by the ENCINIT() function.

226Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

E2MTBITS, SLABITS

Accessibility

Read-only

3.1.5 EMTBITS

Description

EMTBITS is an integer array with one element for each axis. It represents the multi-turn resolution
(number of bits) of the absolute encoder.

Syntax

EMTBITS(axis_index)

Arguments

index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value Value ranges from 0 to 64.

Tag

Comments

The EMTBITS variable can only be set by the ENCINIT() function.

Related ACSPL+ Variables

ESTBITS, SLABITS

Accessibility

Read-only

SLABITS compatibility is ensured.
If EMTBITS and ESTBITS are 0, SLABITS is still a Read-Write variable.
If ESTBITS is not 0 or EMTBITS is not 0 (in other words, it was changed by a call to
ENCINIT()),SLABITS cannot be assigned a new value, and the firmware will return an
error if an assignment is attempted.

3.1.6 E2MTBITS

Description

E2MTBITS is an integer array with one element for each axis. It represents the multi-turn resolution
(number of bits) of the absolute encoder for the secondary feedback.

Syntax

E2MTBITS(axis_index)

227Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value Value ranges from 0 to 64.

Tag

Comments

The E2MTBITS variable can only be set by the ENCINIT() function.

Related ACSPL+ Variables

E2STBITS, SLABITS

Accessibility

Read-only

3.1.7 MFF

Description

MFF is a real array, with one element for each axis in the system, and is used for specifying the feed
forward time, in milliseconds, for MPOS calculations.

Syntax

MFF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 10, Default = 2.

Tag

87

Comments

The controller calculates the MPOS value according to a formula supplied by the MASTER command.
A non-zero MFF value provides additional extrapolation of the calculated value to the predicted
value at the current time plus MFF. The purpose is to compensate delay introduced by the controller
and the external circuits.

The default value of MFF depends on the controller model so that it compensates the delay
introduced by the controller itself. Increase the MFF value if you want to compensate additional
delay introduced by sensor or other circuits.

Accessibility

Read-Write

228Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

MFF values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

MASTER

Related ACSPL+ Variables

ENTIME

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.8 MFLAGS

Description

MFLAGS is an integer array, with one element for each axis in the system, each element of which
contains a set of bits used for configuring the motor.

Syntax

MFLAGS(axis_index).bit_designator = 0|1

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator The MFLAGS bit designators are given in MFLAGS Bit Designators.

229Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-3. MFLAGS Bit Designators

Name No. Description

#DUMMY 0

0 (default) = The axis is defined as non-dummy.

1 = The axis is defined as dummy. A
dummy axis is an inactive axis which is
not connected to a drive and a motor.
When an axis is defined as a dummy the
following apply:

> In SPiiPlus controllers, excluding Control
Modules, the two analog outputs of the
axis can be used as General Purpose
outputs.

> In all SPiiPlus products: all faults of the
axis are disabled.

> In all SPiiPlus products ENABLE/ENABLE
ALL is disabled.

#OPEN 1

0 (default): Closed-loop control - for servo motors
only.

1: Open-loop control. In open loop control the user
defines the value of the command/s to the drive
with variable DCOM.

#MICRO 2

0 (default): If MFLAGS.#PHASE2 = 1 – motor
operated in full step mode.

If MFLAGS.#PHASE2 = 0 – bit is ignored

1: If MFLAGS.#PHASE2 = 1 – motor operated in
micro step mode.

If MFLAGS.#PHASE2 = 0 – #MICRO bit should be
cleared

#HOME 3

0 (default): Axis homing procedure not done.

1: Axis homing procedure done.

This bit is changed by the ACSPL+ HOME command
after a successful homing process.

E_TYPE and other encoder initialization processes
will reset the bit.

The controller clears the bit during power-up.

230Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#STEPPER 4

#STEPPER is applicable only for PDMnt products.

0 (default): Axis is defined as a servo motor.

1: Axis is defined as a pulse-direction stepper
motor in open loop.

#ENCLOOP 5

#ENCLOOP is not applicable for NT products.

0 (default): Stepper feedback loop is not active.

1: The axis provides a stepper feedback loop. In
this case the FPOS(axis_index) variable will
indicate the number of pulses that were sent to
the pulse-direction stepper drive and not the
encoder counts - if an encoder is connected and
#STEPENC (bit 6 = 1). #ENCLOOP is effective only if
#STEPPER (bit 4) = 1.

#STEPENC 6

0 (default): Stepper encoder feedback loop is not
active.

1: The controller provides an encoder feedback to
the pulse-direction stepper. In this case, the FPOS
(axis_index) variable will indicate the quadrature
encoder counts, and not the stepper pulse-
direction pulses if #ENCLOOP (bit 5 = 1).

#STEPENC is effective only if #STEPPER (bit 4) = 1.
The encoder feedback is used for monitoring the
axis position by a user application, and does not
affect the open loop control of the stepper motor.

#NANO 7

#NANO is applicable only for UDMnt-x (new
revision) and UDIhp-x products.

0 (default): Defines the axis as a servo or stepper
motor.

1: Defines the axis as a Nanomotion piezo ceramic
motor.

#BRUSHL 8

0 (default): The motor is a non-DC brushless type
or the amplifier provides commutation itself and
uses one ±10V input from the controller.

1: The controller provides commutation for the DC
brushless motor. The bit must be set only if the
controller is connected to a three-phase amplifier
with two-phase input commands.

231Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#BRUSHOK 9

#BRUSHOK is applicable only for DC Brushless
motors when #BRUSHL(bit 8)=1.

0 (default): DC brushless motor is not
commutated.

1: DC brushless motor is commutated. After
power-up the controller clears the bit. The
controller automatically sets this bit =1 only after a
successful commutation or auto-commutation
processes.

#PHASE2 10
0 (default): Two phase motor is not selected.

1: Two phase motor is selected.

#DBRAKE 11

0 (default): Dynamic brake is disabled

1: The controller will apply dynamic braking to stop
the motor when the axis is disabled and the
feedback velocity is less than the predefined value
of VELBRK. See the SPiiPlus Setup Guide, Dynamic
Brake for a complete explanation.

#INVENC 12

0 (default): Encoder counting is non-inverted.

1: The controller inverts the direction of encoder
counting. This does not affect the motion
direction.

#INVDOUT 13

0 (default): Drive output command/s are not
inverted.

1: The controller inverts the drive output
command/s. This effectively inverts the direction
of the motion and the sign of the feedback.

#NOTCH 14
0 (default): Notch filter is disabled.

1: Notch filter is active

#NOFILT 15

0 (default): The control algorithm includes a
second-order filter specified by bandwidth
SLVSOF.

1: The control algorithm by-passes the second-
order filter.

232Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#BI_QUAD 16
0 (default): First BiQuad Filter is disabled.

1: First BiQuad Filter is active.

#DEFCON 17

0: CONNECT is allowed. See CONNECT.

1 (default): The controller applies the default
connection between APOS and RPOS (RPOS).
While #DEFCON = 1, the controller does not accept
CONNECT for the axis.

The bit is reset to 1 every time the controller is
restarted.

#FASTSC 18

0 (default): not available

1: For working with 5mHz SIN-COS encoders

Bit must be set to 1 in the middle of
quadrant.

#ENMOD 19

0: Enable time is defined by ENTIME, or when the
drive switches its drive alarm signal to the inactive
state - whichever comes first. If the signal remains
active more than ENTIME milliseconds,
ENABLE/ENABLE ALL fails.

1 (default): The value of ENTIME defines the enable
time.

#DUALLOOP 20

0 (default): The control algorithm implements a
regular single-loop scheme.

1: The control algorithm implements a dual-loop
scheme.

See SPiiPlus Setup Guide, Appendix B for further
details.

#LINEAR 21
0 (default): The axis is defined as rotary.

1: The axis is defined as linear.

233Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#ABSCOMM 22

0 (default): Controller doesn’t automatically
retrieve the commutation phase according to the
absolute encoder after powerup.

1: The axis is using absolute encoder feedback for
commutation and the controller automatically
retrieves the commutation phase after powerup.

#BRAKE 23

0 (default): The controller does not provide
mechanical brake control.

1: The brake is deactivated when the motor is
enabled and activated when the motor is disabled.
For detailed description, see commands
ENABLE/ENABLE ALL and DISABLE/DISABLEALL,
and variables BOFFTIME, BONTIME variables.

#HSSI 24

#HSSI is not currently supported by NT products.

0 (default): Direct drive connection.

1: Remote drive connection via HSSI.

#GANTRY 25
0 (defaults): standard (SISO) PIV control scheme.

1: gantry control (MIMO) scheme.

#BI_QUAD1 26
(default): Second BiQuad Filter is disabled.

1: Second BiQuad Filter is active.

#HALL 27

#HALL applies only to DC brushless
motors when #BRUSHL (bit 8) =1.

0 (default): Commutation is not based on Hall
signals.

1: Commutation is based on Hall signals.

234Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#INVHALL 28

#INVHALL applies only for DC
brushless motors when #BRUSHL (bit
8) =1.

0 (default): Motor Hall signals counting direction is
not inverted.

1: Motor Hall signals counting direction is inverted.

#MODULO 29

0 (default): Axis is defined as non-modulo.

1: Axis is defined as MODULO. In MODULO mode,
physically, the motion of the axis is not limited, but
each time RPOS goes out of the defined
SLPMIN...SLPMAX range, the controller brings
RPOS into range by changing the internal offset
EOFFS.

See SLPMAX and SLPMIN.

#USER1 30

The functionality of this bit can be defined by the
user.

0 (default): Functionality not defined

1: User defined functionality

#USER2 31

The functionality of this bit can be defined by the
user.

0 (default): Functionality not defined

1: User defined functionality

Tag

88

Comments

MFLAGS is typically configured using the SPiiPlus MMI Application Studiog Toolboxg Setupg
Adjuster when setting the Dynamic Brake.

Use direct bit assignment for on-the-fly changes, for example, from closed-loop operation to the
open-loop and vice versa.

Accessibility

Read-Write

235Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

MFLAGS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

CONNECT, ENABLE/ENABLE ALL, GETCONF

Related ACSPL+ Variables

SLPROUT, APOS, RPOS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.1.9 MFLAGSX

Description

MFLAGSX is an integer array with one element for each axis in the system, each element of which
contains a set of bits used for configuring the motor. It is an extension of the MFLAGS variable.

Syntax

MFLAGSX(Axis_Index).bit_designator = 0|1

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Bit_designator An MFLAGSX bit designator as described below

MFLAGSX Bit Designators

Bit Name No. Description

#STCLFULL 0

0 (default): Do not use position correction for Stepper
motors working under closed loop.

1: Activate Full mode of the stepper closed loop position
correction mechanism .

This bit is mutually exclusive to #STCLEND and #STCLSP, as
such only one of them may be 1 at a time.

#STCLEND 1

0 (default): Do not use position correction for Stepper
motors working under closed loop

1: Activate End mode of the stepper closed loop position
correction mechanism

236Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No. Description

This bit is mutually exclusive to #STCLFULL and #STCLSP, as
such only one of them may be 1 at a time.

#STCLSP 2

0 (default): Do not use servo processor closed-loop stepper
algorithm

1: Use servo processor closed-loop stepper algorithm
Mutually exclusive to #STCLFULL,#STCLEND.

#VOLTMODE 3

0: Use current mode for control

1: Use voltage mode instead of current mode to
compensate for low resolution

#HLIMSWAP 4
0: Left/Right limit signal swapping is disabled

1: Left/Right limit signal swapping is enabled

#SATPROT 5
1: Saturation Protection enabled (default)
0: Saturation Protection disabled

Tag

357

Comments

When saturation protection (MFLAGSX.#SATPROT=1) is currently available for the following
products: NPMpm, UDMxx, IDMxx.

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKI, SLSKP, SLSDZ

Accessibility

Read-Write

MFLAGSX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

237Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.1.10 MODULOMD

Description

MODULOMD is an integer array, with one element for each axis in the system, the elements of which
are used for storing the mode of a modulo axis.

Syntax

MODULOMD(axis_index) = mode

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

mode

Valid values are:

> 0(default) – The axis feedback changes between the specified minimal
(SLPMIN) and maximal(SLPMAX) positions. The reference
position RPOS of the modulo axis changes in the range
from SLPMIN to SLPMAX inclusively. Physically, the motion of
the modulo axis is not limited, but each time when the RPOS comes
out from range SLPMIN…SLPMAX, the controller brings RPOS into the
range by changing the internal offset EOFFS. In the case of a default
connection, the modulo operation also affects the APOS value
(APOS=RPOS).

> 1 (No-Pass-Through-Rollover) - Every Motion from will avoid moving
through the Rollover point (where SLPMIN and SLPMAX are
topologically united). This also applies to Motion Commands that
exceed the Modulo range as set by SLPMAX($) and SLPMIN($).

Example:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a Relative point-to-point command
is issued:

PTP/r axis_index, 570

Internal calculations will determine that the target position is (30 + 570)
% 360 = 240, motion will be in positive direction passing through 180
point to 240.

238Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

> 2 (Positive motion only) - Every Motion Command (excluding Jog) will
cause the Axis to move in the positive Direction to the modulo of the
Target Position. This also applies to motion commands that exceed the
range set by SLPMAX(axis_index) and SLPMIN(axis_index).

Example 1:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a relative point to point command is
issued:

PTP/r axis_index, 540

Internal calculations will determine that the target position is (30 +
540) % 360 = 210, motion will be in positive direction passing through
180 to 210.

Example 2:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a point-to-point command is issued:

PTP axis_index, 20

Internal calculations determine that the target position is 20 % 360 =
20, the motion will be in positive direction passing through 180 and

239Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

360 point to 20 point.

> 3 (Negative motion only) - Every Motion Command (excluding Jog) will
cause the Axis to move in the negative direction to the modulo of the
target position. This also applies to motion commands that exceed the
Modulo range as set by SLPMAX(axis_index) and SLPMIN(axis_index).

Example:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a Relative point-to-point command
is issued:

PTP/r axis_index, 540

Internal calculations will determine that the target position is (30 +
540) % 360 = 210, motion will be in negative direction passing through
0 and 270 point to 210.

> 4 (Shortest-Path) - Each motion command will be analyzed to
determine the shortest rotational distance between current position
and target position, possibly moving through the Roll-Over point. This
also applies to motion Commands that exceed the modulo range as
set by SLPMAX(axis_index) and SLPMIN(axis_index).

Example 1:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a relative point-to-point command

240Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

is issued:

PTP/r axis_index, 510

Internal calculations determine that the target position is (30 + 510) %
360 = 180, motion will be in positive direction passing through 120
point to 180.

Example 2:

Assume SLPMIN(axis_index)=0 and SLPMAX(axis_index)=360, FPOS
(axis_index) is reported as 30, and a point-to-point command is issued:

PTP axis_index, 0

Internal calculations determine that the target position is 0 % 360 = 0,
motion will be in negative direction passing through 15 point to 0.

Tag

417

Comments

The MFLAGS(axis).#MODULO bit needs to be set(1) for the axis to operate as a modulo axis.

All motion commands are calculated such that the resulting motion spans less than the Modulo
range (SLPMAX(axis) – SLPMIN(axis)).

Axis modulo mode will not change the EPOS value as it does for RPOS and FPOS.

241Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

If an axis modulo mode has been turned off (MFLAGS(axis).#MODULO=0), then, EPOS is updated
with the current FPOS value (by definition, EPOS = FPOS in a non-modulo mode).

Related ACSPL+ Variables

SLPMIN, SLPMAX, MFLAGS.#MODULO

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.1.11 PEGQUE

Description

PEGQUE is an integer array with one element for each PEG engine in the system, the elements of
which store the current state of PEG FIFO for that engine (the items count in the FIFO) . The
parameter is updated as long as its value is different from 0.

Syntax

PEGQUE

Arguments

Tag

371

Comments

This variable is supported in version 3.00 and higher.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger

3.1.12 SETTLE

Description

SETTLE is a real array, with one element for each axis in the system, and is used for setting the
Settling Time, it controls MST(axis_index).#INPOS.

Syntax

SETTLE(axis_index) = value

242Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 1.79769e+308, Default = 0.

Tag

123

Comments

When the motor is not moving, the controller compares the position error (PE value) and the target
envelope (TARGRAD value) every MPU cycle. #INPOS is raised when PE drops to within the range (-
TARGRAD, +TARGRAD) and remains within the range for a period of time equal or greater than
SETTLE.

If the motor starts to move or PE goes out of the range, MST(axis_index).#INPOS is cleared.

Accessibility

Read-Write

SETTLE values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

TARGRAD, MST, PE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.13 SLPMAX

Description

SLPMAX is a real array, with one element for each axis in the system, the elements of which are
used for storing the maximum range of a modulo axis.

Syntax

SLPMAX(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 8000.

243Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

194

Comments

SLPMAX stores the maximum range of a modulo axis, see MFLAGS. #MODULO (bit 29). SLPMAX can
be changed only when the motor is disabled.

Accessibility

Read-Write

SLPMAX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

SLPMIN, EOFFS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.14 SLPMIN

Description

SLPMIN is a real array, with one element for each axis in the system, the elements of which are used
for storing the minimum range of a modulo axis.

Syntax

SLPMIN(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 0.

Tag

195

Comments

SLPMIN stores the minimum range of a modulo axis, see MFLAGS. #MODULO (bit 29). SLPMIN can be
changed only when the motor is disabled.

Accessibility

Read-Write

244Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLPMIN values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

SLPMAX, EOFFS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.15 STEPF

Description

STEPF is a real array, with one element for each axis in the system, and is used for defining the ratio
between one stepper pulse and user units. See the SPiiPlus Setup Guide , Stepper Drive section for
more information.

Syntax

STEPF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 1e-015 to 1e+015, Default = 1.

Tag

129

Comments

STEPF = 1 (default) means that motion is performed in motor steps. For example,

PTP/R 0,320

will move the motor by 320 steps from the current position.

If another unit is required for motion programming, the user must configure an appropriate value
for STEPF. For example, a controlled plant provides a gear ratio of 500 motor pulses per inch. If the
motion programming unit must be provided in inches, the configured STEPF value must be 0.002
(1/500).

Accessibility

Read-Write

245Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

STEPF values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.1.16 STEPW

Description

STEPW is a real array, with one element for each axis in the system, and is used for defining the
pulse width, in milliseconds, for the stepper motor. See the SPiiPlus Setup Guide , Stepper Drive
section for more information.

Syntax

STEPW(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value ranges from 12.0*10-6 (120 nanoseconds) to 0.050 (50 microseconds),
Default = 0.001.

Tag

130

Comments

The value defines the width of the pulses generated on the pulse output for stepper control.

Accessibility

Read-Write

STEPW values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

246Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.1.17 TARGRAD

Description

TARGRAD is a real array, with one element for each axis in the system, and is used for defining the
parameters for MST(axis_index).#INPOS.

Syntax

TARGRAD(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308, 1.79769e+308, Default = 1.

Tag

132

Comments

When the motor is enabled but in a standstill position, the controller compares PE to the target
envelope (TARGRAD) each MPU cycle. #INPOS = 1 when PE moves into the defined range (-
TARGRAD, +TARGRAD) and remains within that range for a period of time equal or greater than
defined by SETTLE.

If the motor starts to move or goes out of range, #INPOS is cleared.

Accessibility

Read-Write

TARGRAD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

SETTLE, MST(axis_index).#INPOS, PE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.2 Brake Variables

The Brake variables are:

247Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

BOFFTIME Brake Deactivation Time

BONTIME Brake Activation Time

MBRKROUT
Set the supplier for the mechanical break output signal of an axis as a
specified digital output bit

VELBRK Braking Velocity

3.2.1 BOFFTIME

Description

BOFFTIME is a real array, with one element for each axis in the system, and is used for specifying the
brake release time in milliseconds.

Syntax

BOFFTIME(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 50.

Tag

9

Accessibility

Read-Write

BOFFTIME values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Comments

See the ACSPL+ Programmer's Guide for information about using a mechanical brake on system
startup.

Related ACSPL+ Commands

ENABLE/ENABLE ALL - The brake is deactivated automatically when the ENABLE command is
executed.

Related ACSPL+ Variables

MFLAGS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

248Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.2.2 BONTIME

Description

BONTIME is a real array, with one element for each axis in the system, and is used for specifying the
brake engagement time in milliseconds.

Syntax

BONTIME(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 50.

Tag

10

Accessibility

Read-Write

BONTIME values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Comments

See the ACSPL+ Programmer's Guide for information about using a mechanical brake on system
startup.

Related ACSPL+ Commands

DISABLE/DISABLEALL, FCLEAR, DISABLEALL

The brake is activated automatically when the DISABLE command is executed.

Related ACSPL+ Variables

MERR, FPOS, RPOS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

249Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.2.3 MBRKROUT

Description

MBRKROUT is an integer array, with one element for each axis in the system, and is used for setting
the supplier for the mechanical brake output signal of an axis as a specified digital output bit(ACSPL+
OUT).

Syntax

MBRKROUT(Axis_Index) = value

Arguments

Axis
Designates the specific axis. Valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value

Value is a 4-digit number (decimal): <NNOO> where:

> NN - digital output index (00-99)

> OO – specified input bit (00-31)

The default value is -1, in which case the mechanical brake default assignment
will be used.

If Value is set to -2, the assignment for the axis is canceled and the output
reverts to standard digital output behavior

Tag

381

Comments

This variable can be saved to flash memory. In other words, the mapping of a mechanical brake
output using this variable will automatically occur on controller boot without the need to
reconfigure it .

The following errors are supported:

> Error 3330: “Invalid value, digital output index should range between 0-99 and bit index
should range between 0-31”

> Error 3332: “This output is already mapped as a mechanical brake to a different axis”

> The ACSPL+ variable bit MFLAGS(Axis_Index). #BRAKE should be set to 1 in order to enable
the mechanical brake for the specified axis.

This variable is supported in V3.03 and higher.

Examples

MBRKROUT(0) = 1000 ! output index 10 and bit 0
! supplies the mechanical brake signal for axis 0.

MBRKROUT(0) = -2 ! Cancels assignment for axis 0. In other words,
! the output reverts to general purpose digital output

250Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

MFLAGS

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.2.4 VELBRK

Description

VELBRK is a real array, with one element for each axis in the system, and is used for defining
dynamic braking.

Syntax

VELBRK(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 1.79769e+308, Default = 0.

Tag

140

Comments

If MFLAGS(axis_index).#DBRAKE is = 1, the controller will apply dynamic braking to stop the motor
when the axis is disabled and the feedback velocity is less than the predefined value of VELBRK.

Accessibility

Read-Write

VELBRK values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

MFLAGS(axis_index).#DBRAKE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

251Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.3 Feedback Variables

The Feedback variables are:

Name Description

E_AOFFS Sets user-defined offset for absolute encoder

E_FLAGS Configuration bits for absolute encoder.

E2_AOFFS
Sets user-defined offset for absolute encoder
secondary feedback

E2_FLAGS Defines the Encoder Direction Inverse

E_FREQ Encoder frequency

E2_FREQ
Defines the maximum encoder pulse
frequency (in MHz) for secondary feedback.

E_PAR_A Data transmission actual frequency.

E2_PAR_A
Sets the encoder data transmission frequency
in MHz

E_PAR_B Data control CRC code.

E2_PAR_B Sets the encoder data control CRC code

E_PAR_C
The interval (in microseconds) of encoder
position reading.

E2_PAR_C
Sets the interval (in microseconds) of encoder
position reading.

E_PAR_D
Number of status bits (LSB) in the real-time
position data (SLABITS).

E2_PAR_D
Defines the number of status bits (LSB) in the
real-time position data

E_PAR_E MASK for setting error bits.

E2_PAR_E Defines a mask for setting error bits.

E_SCMUL Encoder Sin-Cos Multiplier

E2_SCMUL
Specifies the Sin-Cos multiplication factor for
the encoder

252Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

E_TYPE Encoder Type

E2_TYPE
Defines the encoder type for the secondary
feedback

EFAC Encoder Factor

E2FAC Secondary Encoder Factor

EOFFS Axis Encoder Offset

E2OFFS Axis Encoder Offset for Secondary Encoder

EPOS Shows the encoder feedback

HOMEDEF
Integer array defining homing method for each
axis

HOMEVELI
Array of doubles defining the default homing
velocity used by each axes for index search
during ACPSL+ HOME command

HOMEVELL
Array of doubles defining the default homing
velocity used for limit search during ACPSL+
HOME command

FVFIL Primary Feedback Velocity Filter

F2ACC
Defines the feedback acceleration value of the
axis

RVFIL Reference Velocity Filter

SCSOFFS Defines the sine offset.

SCCOFFS Defines the cosine offset.

SC2COFFS Defines the Sin-Cos Cosine offset

SC2GAIN
A Sin-Cos encoder gain compensation variable
used to compensate the Cosine signal for an
improper amplitude relative to the Sine signal

253Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SC2PHASE

A Sin-Cos encoder phase compensation
variable and is used to compensate the Cosine
signal for an improper phase difference relative
to the Sine signal

SC2SOFFS Defines Sin-Cos Sine offset

SLEBIASA Defines firmware sine offset.

SLEBIASB Defines hardware cosine offset.

SLEBIASC
Defines the Sin-Cos encoder’s hardware
compensation for the Sine offset

SLEBIASD
Defines the Sin-Cos encoder’s hardware
compensation for the Cosine offset

SLABITS
Total number of absolute position bits for an
absolute encoder

S2LABITS
Sets the total number of absolute position bits
for an absolute encoder connected to a
secondary feedback

SCGAIN Feedback gain compensation variable

SCPHASE Feedback phase compensation variable

3.3.1 E_AOFFS

Description

E_AOFFS is an integer array, with one element for each axis in the system, and is used for setting
user-defined offset for absolute encoder.

Comments

Modifying E_AOFFS causes absolute encoder initialization.

The EOFFS variable is being modified according to E_AOFFS’ value:

EOFFS=EOFFS-E_AOFFS.

Tag

300

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

254Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.2 E_FREQ

Description

E_FREQ is an integer array, with one element for each axis in the system, and is used for defining the
maximum encoder pulse frequency (in MHz).

Syntax

E_FREQ(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value

value of each member can be one of:

> 2 (shown as 2MHz but practically is 2.5MHz, default for an analog Sin-
Cos encoder)

> 20 (default for a digital encoder)

> 60

Tag

27

Comments

The encoder is represented in the controller as a synchronous state machine that is activated by a
clock, with programmable frequency in the SPiiPlus processor.

E_FREQ provides three optional clock rates that define the maximum encoder pulse frequency (in
MHz) measured after an internal 4x multiplication.

In general, using a higher E_FREQ enables to read a higher rate of encoder input. However, the
electrical noise immunity is reduced and Encoder Error FAULT might occur. Per case, it is
recommended to use the lowest possible E_FREQ that does not generate an Encoder Error FAULT. In
case of an Encoder Error, do FCLEAR (axis_index) and try a higher E_FREQ value.

For more information, see the "Encoder Input Clock" section in the SPiiPlus Setup Guide.

Accessibility

Read-Write

E_FREQ values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

255Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.3 E2_AOFFS

Description

E2_AOFFS is an integer array, with one element for each axis in the system, and is used for setting
user-defined offset for absolute encoders for the secondary feedback.

Comments

Modifying E2_AOFFS causes absolute encoder initialization.

The E2OFFS variable is modified according to E2_AOFFS’ value:

E2OFFS=EOFFS-E2_AOFFS.

Tag

377

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.4 E2_FREQ

Description

E2_FREQ is an integer array, with one element for each axis in the system, and is used for defining
the maximum encoder pulse frequency (in MHz) for secondary feedback.

Syntax

E2_FREQ(axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value

Value of each member can be one of the following:

> 2 (shown as 2MHz but practically is 2.5 MHz, default for an analog Sin-
Cos encoder)

> 20 (default for a digital encoder)
> 60

Tag

303

256Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The encoder is represented in the controller as a synchronous machine that is activated by a clock,
with programmable frequency in the SPiiPlus processor.

E2_FREQ provides three optional clock rates that define the maximum encoder pulse frequency (in
MHz) measured after an internal 4x multiplication.

In general, using a higher E2_FREQ enables to read a higher rate of encoder input. However, the
electrical noise immunity is reduced and Encoder Error FAULT might occur. Per case, it is
recommended to use the lowest possible E2_FREQ that does not generate an Encoder Error FAULT.
In case of an Encoder Error, FCLEAR(axis_index) command should be executed and a higher E2_FREQ
value should be set.

For more information, see the "Encoder Input Clock" section in the SPiiPlus Setup Guide.

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.5 E_FLAGS

Description

E_FLAGS is an integer array, with one element for each axis in the system. Each element contains
different configuration bits for absolute encoder.

Syntax

E_FLAGS(axis_index) = value Arguments

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator The meanings of bit_designator are given in Table 3-4.

Table 3-4. E_FLAGS Bit Description

Bit Name No. Description

#ERRLOGIC 0 Encoder Error Logics

#UNSIGND 1 Unsigned Mode

#INVERSE 2 Encoder Direction Inverse

#HALLCORR 3
0: continuous commutation correction is disabled

1: continuous commutation is enabled

257Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No. Description

#GRAYCODE 4
0: Gray Code mode is disabled

1: Gray Code mode is enabled

Comments

#ERRLOGIC defines the status bits logic (0 or 1). The default value is 0. The Encoder 1 Error (#ENC) bit
of the ACSPL+ FAULTS variable is triggered if the error is latched (based on the error bit logics).

If E_PAR_E is not set (0), #ERRLOGIC’s value has no meaning.

#UNSIGNED defines the Absolute Encoder Position mode. It can be unsigned (1) or signed (0). The
default mode is signed for backward compatibility.

#INVERSE

When the bit is ON, the DSP is being notified and sends the position inverted. FW inverts the EOFFS
variable as well.

The bits applies for all types of encoders.

The bit change event causes the FW to reinitialize the absolute encoder.

The bit cannot be changed if the axis is enabled.

Changing this bit may require changing the drive polarity (MFLAGS bit 13) or repeat commutation.

In case of a brushless motor, after the bit is changed the commutation will no longer be correct and
the user should repeat the Adjuster commutation.

In case of a brush motor, the user should re-verify the drive polarity in the Adjuster by running Open
Loop Verification.

Failure to repeat the Adjuster Commutation and Open Loop Verification may result
critical position error, over current faults and in certain cases motor run away.

Tag

268

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteg

3.3.6 E2_FLAGS

Description

E2_FLAGS is an integer array, with one element for each axis in the system. Used for the secondary
feedback. Each element contains different configuration bits for absolute encoder, in current version

258Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

it includes 3 bits.

E2_FLAGS Bit Description

Bit Name Number Description

#ERLOGIC 0 Encoder Error Logics

#UNSIGND 1 Unsigned Mode

#INVERSE 2 Encoder Direction Inverse

#ERRLOGIC defines the logics of the status bits – can be 0 or 1. If E2_PAR_E is not set (value equals to
0), ERRLOGIC value has no meaning. The default value is 0. Encoder 1 Error (#ENC) bit of the ACSPL+
FAULTS variable is triggered if error is latched (based on the error bit logics).

#UNSIGNED defines the Absolute Encoder Position mode – can be unsigned (1) or signed (0). The
default mode is signed for backwards compatibility.

#INVERSE defines if the position is inverted on the DSP level. If the bit is set, the DSP sends the
position inverted. FW inverts EOFFS variable.

Arguments

axis
The specific axis index. Valid numbers are: 0,1… up to the number of axes
in the system, minus 1.

bit_designator The meanings of bit_designator are defined in the table above.

Tag

268

Comments

The bits applies for all types of encoders.

The bit change event causes the FW to reinitialize the absolute encoder.

Accessibility

Read-Write

Com Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.7 E_PAR_A

Description

E_PAR_A is used for setting the encoder data transmission actual frequency in MHz. It is a double
array, with one element for each axis in the system.

Syntax

E_PAR_A(axis) = value

259Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis
The specific axis index. Valid numbers are: 0, 1... up to the number of axes in the
system, minus 1.

value The encoder data transmission actual frequency in MHz ranging from 1.25 to 10.

For the IDMsm/ECMsm/UDMsm products using the EnDAT encoder, only the following
values are allowed for the value parameter: 0.1, 0.2, 1, 2, 4, 8, 16.

This variable is supported only for BiSS encoders (in all products) and EnDAT encoders
(IDMsm/ECMsm/UDMsm products only).

Tag

248

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.8 E2_PAR_A

Description

E2_PAR_A is used for setting the encoder data transmission actual frequency in MHz. it is a double
array, with one element for each axis in the system. Used for Secondary Feedback.

Syntax

E2_PAR_A (axis_index)=value

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value The encoder data transmission actual frequency in MHz ranging from 1.25 to 10.

For the IDMsm/ECMsm/UDMsm products using the EnDAT encoder, only the following
values are allowed for the value parameter: 0.1, 0.2, 1, 2, 4, 8, 16.

260Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

This variable is supported only for BiSS encoders (in all products) and EnDAT encoders
(IDMsm/ECMsm/UDMsm products only).

Tag

304

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.9 E_PAR_B

Description

E_PAR_B is used for setting the encoder data control CRC code. It is an integer array, with one
element for each axis in the system.

Syntax

E_PAR_B(axis) = value

Arguments

axis
The specific axis index. Valid numbers are: 0, 1... up to the number of axes in the
system, minus 1.

value The encoder data control CRC code ranging from 0 to 255.

Tag

267

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.10 E2_PAR_B

Description

E2_PAR_B is used for setting the encoder data control CRC code. it is an integer array, with one
element for each axis in the system. Used for Secondary Feedback.

261Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

E2_PAR_B (axis_index)=value

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value The encoder data control CRC ranging from 0 to 255.

Tag

305

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.11 E_PAR_C

Description

E_PAR_C is used for setting the interval (in microseconds) of encoder position reading. It is an
integer array, with one element for each axis in the system. The default value is 0 which means 50
microseconds.

Syntax

E_PAR_C(axis) = value

Arguments

axis
The specific axis index. Valid numbers are: 0, 1... up to the number of axes in the
system, minus 1.

value The interval of encoder position reading in microseconds, valid range [0,..3]

Valid Values

0 50 microseconds

1 100 microseconds

2 200 microseconds

3 400 microseconds

Tag

258

262Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.12 E2_PAR_C

Description

E2_PAR_C is used for setting the interval (in microseconds) of encoder position reading. it is an
integer array, with one element for each axis in the system. Used for Secondary Feedback. The
default value is 0 which means 50 microseconds.

Syntax

E2_PAR_C (axis_index)=value

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value The interval of encoder position reading in microseconds valid range [0,..3]

Valid Values

0 50 microseconds (default)

1 100 microseconds

2 200 microseconds

3 400 microseconds

Tag

306

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

263Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.3.13 E_PAR_D

Description

E_PAR_D defines number of status bits (LSB) in the real-time position data (SLABITS). The status bits
include warning and error bits. These bits are not part of the real-time position.

E_PAR_D is represented as an integer array with the size of maximum axes; each element for each
axis in the system. The default value is 0 which means no status bits at all. Maximum value is 16.

Syntax

E_PAR_D(axis) = value

Arguments

axis
The specific axis index. Valid numbers are: 0, 1... up to the number of axes in the
system, minus 1.

value Number of status bits; the range is [0, 16].

Tag

266

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.14 E2_PAR_D

Description

E2_PAR_D defines number of status bits (LSB) in the real-time position data. The status bits include
warning and error bits. These bits are not part of the real-time position. it is an integer array, with
one element for each axis in the system. Used for Secondary Feedback. The default value is 0 which
means no status bits at all. Maximum value is 16.

Syntax

E2_PAR_D (axis_index)=value

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value Number of status bits; the range is [0,16].

Tag

307

264Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.15 E_PAR_E

Description

E_PAR_E defines a mask for setting error bits. It is an integer array, with one element for each axis in
the system. The default value is 0, which means no error bit is set. All bits that are not defined in the
mask but covered by E_PAR_D are considered as warning bits.

Syntax

E_PAR_E(axis) = value

Arguments

axis
The specific axis index. Valid numbers are: 0, 1... up to the number of axes in the
system, minus 1.

value
Error bits MASK; minimum value is 0 (default – no error bits). The range is [0,2E_
PAE_D-1]

Tag

267

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.16 E2_PAR_E

Description

E2_PAR_E defines a mask for setting error bits. It is an integer array, with one element for each axis
in the system. Used for the secondary feedback.The default value is 0, which means no encoder
error will be triggered. All bits that are not set in the mask but covered by E2_PAR_D are defined as
warning bits.

Syntax

E2_PAR_E (axis_index)=value

265Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value
Error bits MASK; minimum value is 0 (default – no error bits). The range is
[0,2E2_PAR_D-1]

Tag

308

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.17 E_SCMUL

Description

E_SCMUL is an integer array, with one element for each axis in the system, and is used for specifying
the Sin-Cos multiplication factor for the encoder.

Syntax

E_SCMUL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2 to 16, Default = 10.

Tag

28

Comments

E_SCMUL specifies the Sin-Cos multiplication factor as a power of 2. The maximum value of 16
corresponds to a multiplication of 65536 = 216. The minimum value of 2 corresponds to a
multiplication of 4 = 22.

Accessibility

Read-Write

266Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

E_SCMUL values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.18 E2_SCMUL

Description

E2_SCMUL is an integer array, with one element for each axis in the system, and is used for
specifying the Sin-Cos multiplication factor for the encoder. Used for secondary feedback.

Syntax

E2_SCMUL (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value Value ranges from 2 to 16, default=10.

Tag

30

Comments

E2_SCMUL specifies the Sin-Cos multiplication factor as a power of 2. The maximum value of 16
corresponds to a multiplication of 65536 = 216. The minimum value of 2 corresponds to a

multiplication of 4 = 22

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.19 E_TYPE

Description

E_TYPE is an integer array, with one element for each axis in the system, and is used for defining the
encoder type.

267Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

E_TYPE(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value

value of each element can be one of:

> 0 - Up-down counter

> 1 - Clock direction counter

> 2 - Quadrature single-ended encoder

> 3 - Quadrature encoder (Default)

> 4 - 250 KHz / 500 KHz Sin-Cos encoder multiplier

> 5 - HSSI encoder

> 9 - Resolver

> 10 - EnDat 2.2

> 11 - Smart-Abs

> 12 - Panasonic

> 13 - BiSS-A/B/C

> 14 - Hiperface

> 17 - BiSS-SSI

> 18 - 10 MHz Sin-Cos encoder multiplier

> 19- Sanyo Denki

Tag

29

Comments

The most common encoder type is quadrature, which corresponds to the default value 3.

A value of 2 is supported by the following products:

> UDMlc-x-048 (where x is either 2 or 4)

> UDIlt-x / UDIhp-x (where x is either 2 or 4)

A value of 9 is supported only by the following products:

> SPiiPlus CMnt-x-320 (where x is either 1 or 2)

> UDMpm-x-320 (where x is either 1 or 2)

A value of 18 is supported by the following products:

> UDMnt-x (where x is either 1 or 2)

> UDIhp-x (where x is either 2 or 4)

268Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

As a configuration variable, the variable can be changed only if the controller is in configuration
mode.

Accessibility

Read-Write

E_TYPE values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

None

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.20 E2_TYPE

Description

E2_TYPE is an integer array, with one element for each axis in the system, and is used for defining
the encoder type for the secondary feedback.

Syntax

E2_TYPE(axis_index)=value

Arguments

axis
Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value

value of each member can be one of the following:

> 0 – not defined
> 1 - Clock direction counter
> 2 - Quadrature single-ended encoder
> 3 - Quadrature encoder (Default)
> 4 - 250 KHz / 500 KHz Sin-Cos encoder multiplier
> 5 - HSSI encoder
> 9 - Resolver
> 10 - EnDat 2.2
> 11 - Smart-Abs
> 12 - Panasonic
> 13 - BiSS-C
> 14 – Hiperface
> 17 - SSI
> 18 - 10 MHz Sin-Cos encoder multiplier
> 19 – Sanyo Denki

269Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

31

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.21 EFAC

Description

EFAC is a real array, with one element for each axis in the system, and is used for defining a factor
between the raw feedback in encoder counts and the FPOS value calculated by the controller.

Syntax

EFAC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value of each member ranges between 1e-15 to 1e+15, Default = 1.

Tag

36

Comments

When reading the feedback position from the SP, the controller executes feedback transform
according to the formula:

FPOS = FP*EFAC + EOFFS

where FPOS is the controller feedback position in user units, FP is an SP-calculated feedback position
in encoder counts, EFAC is a user-defined value of the corresponding EFAC factor, and EOFFS
represents an offset.

As a configuration variable, the EFAC value is normally defined by SPiiPlus MMI Application Studiog
Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

EFAC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

270Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

All standard variables that are based on position units.

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.22 E2FAC

Description

E2FAC is a real array, with one element for each axis in the system, and is used for defining a factor
between the secondary raw feedback in encoder counts and the F2POS value calculated by the
controller.

Syntax

E2FAC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value of each member ranges between 1e-15 to 1e+15, Default = 1.

Tag

32

Comments

When reading the secondary feedback position from the SP, the controller executes feedback
transform according to the formula:

F2POS = FP2*E2FAC + E2OFFS

where F2POS is the secondary controller feedback position in user units, FP2 is an SP-calculated
secondary feedback position in encoder counts, E2FAC is a user-defined value of the corresponding
E2FAC factor, and E2OFFS represents an offset.

As a configuration variable, the E2FAC value is normally defined by SPiiPlus MMI Application Studio
g Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

E2FAC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

F2POS, EOFFS

271Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.23 EOFFS

Description

EOFFS is a real array, with one element for each axis in the system, and is used for defining the
offset between the raw feedback from the encoder counts and the FPOS value calculated by the
controller.

Syntax

EOFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value can be any integer.

Tag

38

Comments

EOFFS provides the offset between the raw feedback in encoder counts and the FPOS value
calculated by the controller. The value of EOFFS changes when the set command defines a new
origin for an axis.

When reading the feedback position from the SP, the controller executes feedback transform
according to the formula:

FPOS = FP*EFAC + EOFFS

where FPOS is the controller feedback position in user units, FP is an SP-calculated feedback position
in encoder counts, EFAC is a user-defined value of the corresponding EFAC factor, and EOFFS
represents an offset.

Accessibility

Read-Only

Related ACSPL+ Variables

EFAC, FPOS

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

272Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.3.24 E2OFFS

Description

E2OFFS is a real array, with one element for each axis in the system, and is used for defining the
offset between the raw feedback from the secondary encoder counts and the FPOS value calculated
by the controller.

Syntax

E2OFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value can be any integer.

Tag

34

Comments

E2OFFS provides the offset between the raw feedback from the secondary encoder (in encoder
counts) and the F2POS value calculated by the controller. The value of E2OFFS changes when the set
command defines a new origin for the axis's secondary feedback.

When reading the secondary feedback position from the SP, the controller executes feedback
transform according to the formula:

F2POS = FP2*E2FAC + E2OFFS

where F2POS is the secondary controller feedback position in user units, FP2 is an SP-calculated
secondary feedback position in encoder counts, E2FAC is a user-defined value of the corresponding
E2FAC factor, and E2OFFS represents an offset.

Accessibility

Read-Only

Related ACSPL+ Variables

E2FAC, F2POS

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.3.25 EPOS

Description

EPOS is a real array, one element for each feedback, and is used for showing the encoder feedback.
Not affected by Gantry mode.

273Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

EPOS value is affected by ACSPL+ SET command only when applied to FPOS variable with the same
index (a relevant offset is being added to EPOS value).

EPOS variable can be useful for displaying the encoder position in Gantry mode.

Tag

299

Accessibility

Read only

Com Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.3.26 FVFIL

Description

FVFIL is a real array, with one element for each axis in the system, and is used for setting the
intensity (in %) of the filter that the controller uses when calculating FVEL.

Syntax

FVFIL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 100, Default = 30.

Tag

54

Comments

FVFIL = 0 corresponds to no filtering. In this case the controller calculates FVEL as the derivative of
the FPOS variable:

∆ = (FPOSn - FPOSn-1)*K

FVELn = ∆

where K is a scaling factor that reduces FVEL to user units per second.

As the FPOS value is supplied by a discrete physical sensor, the FVEL value calculated without
filtering contains a considerable amount of noise.

Non-zero value of FVFIL provides additional filtering in the FVEL calculation according to the
formula:

FVELn = ∆*((1 - FVFIL)/100) + FVELn-1*(FVFIL/100)

274Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

FVFIL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FVEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.27 F2ACC

Description

F2ACC is a real array, with one element for each axis in the system, and is used for defining the
feedback acceleration value of the axis. Used for secondary feedback.

Tag

317

Accessibility

Read-Only

Com Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.3.28 HOMEDEF

Description

HOMEDEF is an integer array with one element for each axis in the system, and defines the default
homing method for an axis used by the ACPSL+ HOME command.

Default value is 0, and should be set to a valid homing method number.

Syntax

HOMEDEF(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

275Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Homing Methods

Table 3-5. Homing Methods

Method Number Explanation

1 Homing Method 1: Homing on the negative limit switch and index pulse

2 Homing Method 2: Homing on positive limit switch and index pulse

17 Homing Method 17: Homing on Negative Limit Switch

18 Homing Method 18: Homing on Positive Limit Switch

33/34 Homing Method 33 and 34: Homing on the index pulse

37 Homing Method 37: Homing on current position

50 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)

51 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)

52 Homing Method 52: Negative Hard Stop (ACS Specific)

53 Homing Method 53: Positive Hard Stop (ACS Specific)

TAG

358

Comments

HOMEDEF should be used with the HOME command. HOME(<axis>) will use the homing method
based on HOMEDEF variable.\

Related ACSPL+ Commands

HOME

Accessibility

Read-Write

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.3.29 HOMEVELI

Description

HOMEVELI is a double array with one element for each axis in the system, and defines the default
homing velocity used for index search during ACPSL+ HOME command.

Default value is 0. If the value is 0, the velocity is calculated based on the HomingVel parameter.

276Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

HOMEVELI(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 0 to 1e100.

Tag

360

Comments

HOMEVELL should be used with the HOME command. The following homing methods are affected
by this parameter: 17,18,33,34,50,51

This variable is supported in version 3.00 and higher.

Related ACSPL+ Commands and Variables

HOME, HOMEDEF, HOMEVELL

Accessibility

Read-Write

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.3.30 HOMEVELL

Description

HOMEVELL is a double array with one element for each axis in the system, and defines the default
homing velocity used for limit search during ACPSL+ HOME command. Default value is 0.

If the value is 0, the velocity is calculated based on the HomingVel parameter.

Syntax

HOMEVELL(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 0 to 1e100.

277Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

359

Comments

HOMEVELL should be used with the HOME command. The following homing methods are affected
by this parameter: 1,2,17,18

This variable is supported in version 3.00 and higher.

Related ACSPL+ Commands and Variables

HOME, HOMEDEF, HOMEVELI

Accessibility

Read-Write

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.3.31 RVFIL

Description

RVFIL is a real array, with one element for each axis in the system, and is used for specifying the
power of the filter that the controller uses to calculate RVEL.

Syntax

RVFIL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value is a percent ranging from 0 to 100, Default = 0.

Tag

110

Comments

The value is specified as a percent where 0 means no filtering. In this case the controller calculates
RVEL as the first difference of RPOS as follows:

∆ = (RPOS - RPOSn-1) * K

RVELn = ∆

where K is a scaling factor that translates RVEL to position units per second.

A non-zero value for RVFIL provides additional filtering in the RVEL calculation according to the
formula:

RVELn = ∆ * (1- (RVFIL/100)) + (RVELn-1 * (RVFIL/100))

278Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The default value of RVFIL is zero. No filtering is required as long as the axis motion is not a MASTER-
SLAVE motion. In this case RPOS is a calculated value and the first difference provides a smooth
approximation of velocity.

If an axis is involved in a MASTER-SLAVE motion, RPOS usually contains a signal from a discrete
physical sensor that causes a certain amount of noise in the first difference. Increase the value of
RVFIL if a smoother approximation is required.

Accessibility

Read-Write

RVFIL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

MASTER

Related ACSPL+ Variables

RVEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.32 SCSOFFS

Description

SCSOFFS is a real array, with one element for each axis in the system, and is used for defining a Sin-
Cos encoder’s software compensation for the Sine offset.

Syntax

SCSOFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the offset ranging from -32766 to 32766.

Tag

202

Comments

The digital range corresponds to ±0.5 Volts. This number is used to modify the offset of the Sin-Cos
encoder signal related to the axis. The ratio between this number and the offset is 9.6.

279Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

SCSOFFS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.33 SCCOFFS

Description

SCCSOFFSis a real array, with one element for each axis in the system, and is used for defining a Sin-
Cos encoder’s software compensation for the Cosine offset.

Syntax

SCCOFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the offset ranging from -32766 to 32766.

Tag

203

Comments

The digital range corresponds to ±0.5 Volts. This number is used to modify the offset of the Sin-Cos
encoder signal related to the axis. The ratio between this number and the offset is 9.6.

Accessibility

Read-Write

SCCOFFS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

280Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.3.34 SC2COFFS

Description

SC2COFFS is a real array, with one element for each axis in the system, and is used for defining the
Sin-Cos Cosine offset. Used for secondary feedback.

Syntax

SC2COFFS (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value designates the offset ranging from -32766 to 32766.

Tag

311

Comments

The digital range corresponds to ±0.5 Volts. This number is used to modify the offset of the Sin-Cos
encoder signal related to the axis. The ratio between this number and the offset is 9.6.

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.35 SC2GAIN

Description

SC2GAIN is a real array, with one element for each axis in the system, and is a Sin-Cos encoder gain
compensation variable used to compensate the Cosine signal for an improper amplitude relative to
the Sine signal. Used for secondary feedback.

Syntax

SC2GAIN (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value ranges between 0.5 and 1.5; Default: 1.

Tag

312

281Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.36 SC2PHASE

Description

SC2PHASE is a real array, with one element for each axis in the system, and is a Sin-Cos encoder
phase compensation variable and is used to compensate the Cosine signal for an improper phase
difference relative to the Sine signal. Used for Secondary Feedback.

Syntax

SC2PHASE (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value in degrees, the value ranges between -15 and 15; default is 0.

Tag

313

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.37 SC2SOFFS

Description

SC2SOFFS is a real array, with one element for each axis in the system, and is used for defining the
Sin-Cos Sine offset. Used for secondary feedback.

Syntax

SC2SOFFS (axis_index)=value

282Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value designates the offset ranging from -32766 to 32766.

Tag

314

Comments

The digital range corresponds to ±0.5 Volts. This number is used to modify the offset of the Sin-Cos
encoder signal related to the axis. The ratio between this number and the offset is 9.6.

Accessibility

Read-Write

Com Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.38 SLEBIASA

SLEBIASA is a real array, with one element for each axis in the system, and is used for defining a Sin-
Cos encoder’s hardware compensation for the Sine offset.

Syntax

SLEBIASA(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the offset ranging from -50 to 50; Default: 0.

Tag

164

283Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLEBIASA performs the same function as SCSOFFS with the difference beng that it
corresponds to hardware offset compensation of encoder signals. Only certain SPiiPlus
products: SPiiPlusNT-HP, CMnt, and UDMpc have an option for hardware offset
compensation. Hardware compensation has some advantages over software
compensation, such as, the possibility to get analog signals out of saturation, and
making hardware based features like PEG more accurate.

SLEBIASA is normally set as part of the SPiiPlus MMI Application Studio Sin-Cos Encoder
Analyzer tool routine. The tool first calculates the software compensation variable
(SCSOFFS), and then writes the final value to the hardware variable SLEBIASA and resets
the software one. Then during verification phase new value for SCSOFFS is found and
stored along with previously found SLEBIASA.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.39 SLEBIASB

SLEBIASB is a real array, with one element for each axis in the system, and is used for defining a Sin-
Cos encoder’s hardware compensation for the Cosine offset.

Syntax

SLEBIASB(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the offset ranging from -50 to 50; Default: 0.

Tag

165

284Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLEBIASB performs the same function as SCCOFFS with the difference beng that it
corresponds to hardware offset compensation of encoder signals. Only certain SPiiPlus
products: SPiiPlusNT-HP, CMnt, and UDMpc have an option for hardware offset
compensation. Hardware compensation has some advantages over software
compensation, such as, the possibility to get analog signals out of saturation, and
making hardware based features like PEG more accurate.

SLEBIASB is normally set as part of the SPiiPlus MMI Application Studio Sin-Cos encoder
analyzer tool routine. The tool first calculates the software compensation variable
(SCCOFFS), and then writes the final value to the hardware variable SLEBIASB and resets
the software one. Then during verification phase new value for SCCOFFS is found and
stored along with previously found SLEBIASB.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.40 SLEBIASC

Description

SLEBIASC is a real array, with one element for each axis in the system, and is used for defining the
Sin-Cos encoder’s hardware compensation for the Sine offset. Used for secondary feedback.

Syntax

SLEBIASC (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value designates the offset ranging from -50 to 50; default: 0.

Tag

315

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

285Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.41 SLEBIASD

Description

SLEBIASD is a real array, with one element for each axis in the system, and is used for defining the
Sin-Cos encoder’s hardware compensation for the Cosine offset. Used for secondary feedback.

Syntax

SLEBIASD (axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0,1,2,… up to the number of
axes in the system minus 1.

value value designates the offset ranging from -50 to 50; default: 0.

Tag

316

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.3.42 SLABITS

Description

SLABITS is an integer array, with one element for each axis in the system, and is used for setting the
total number of absolute position bits for an absolute encoder.

Syntax

SLABITS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 16 to 50, Default = 49.

Tag

220

286Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLABITS is used for setting the total number of absolute position bits for an absolute encoder. This is
the sum of the multi-turn resolution bits and the turn resolution bits. For example, for an encoder
with 17 bits turn resolution and 16 bits multi-turn resolution, SLABITS should be set to 33.

Accessibility

Read-Write

SLABITS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

E_TYPE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.43 S2LABITS

Description

S2LABITS is an integer array, with one element for each axis in the system, and is used for setting
the total number of absolute position bits for an absolute encoder connected to a secondary
feedback.

Syntax

S2LABITS(axis_index)=value

axis_index Specific axis, range: 0 up to number of axis in the system minus 1.

value Value ranges between 16 to 50, default is 49.

Comments

S2LABITS is used for setting the total number of absolute position bits for an absolute encoder. This
is the sum of the multi-turn resolution bits and the turn resolution bits. For example, for an encoder
with 17 bits turn resolution and 16 bits multi-turn resolution, SLABITS should be set to 33.

Tag

310

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, Write Variable

287Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.44 SCGAIN

SCGAIN is a real array, with one element for each axis in the system, and is a Sin-Cos encoder gain
compensation variable used to compensate the Cosine signal for an improper amplitude relative to
the Sine signal.

Syntax

SCGAIN(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.5 and 1.5; Default: 1.

Tag

204

Comments

The value of SCGAIN is normally set by the SPiiPlus MMI Application Studio Sin Cos Encoder Analyzer
tool routine when calculating the optimum encoder compensation.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.3.45 SCPHASE

SCPHASE is a real array, with one element for each axis in the system, and is a Sin-Cos encoder
phase compensation variable and is used to compensate the Cosine signal for an improper phase
difference relative to the Sine signal.

Syntax

SCPHASE(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value in degrees, the value of which ranges between -15 and 15; Default: 0.

Tag

205

288Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The value of SCPHASE is normally set by the SPiiPlus MMI Application Studio Sin Cos Encoder
Analyzer tool routine when calculating the optimum encoder compensation.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.4 Axis State Variables

The Axis State variables are:

Name Description

AST Axis State

IND Index Position

IST Index State

AFLAGS Mark Position

MARK Secondary Mark Position

MST Motor State

NST Status of EtherCAT Sync and GPRT errors for each axis in the system.

RMS current

ROFFS Reads the offset calculated by the controller in the connect formula.

3.4.1 AST

Description

AST is an integer array, with one element for each axis in the system, the elements of which contain
a set of bits used for displaying the current axis state.

Syntax

[command] AST(axis_index).bit_designator

289Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

command Typical commands are DISP and the like.

axis_index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

In the case of bit 2 (#PEGREADY) this parameter designates the PEG
engine, not the axis.

bit_designator A description of the AST bit designators is given in Table 3-6.

Table 3-6. AST Bit Descriptions

Bit Name No. Description

#LEAD 0 1 = axis is leading in a group

#DC 3 1 = Axis data collection is in progress

#PEGREADY 4

1 = all values are loaded and the Incremental/Random PEG
is ready to respond to movement

When referring to this bit, axis_index designates the
PEG engine rather than the axis.

#MOVE 5 1 = Axis is involved in a motion

#ACC 6 1 = Axis in accelerating motion state

#BUILDUP 7 1 = Segments build-up

#VELLOCK 8
1 = Slave is synchronized to master in velocity lock mode -
slave velocity strictly follows the master velocity.

#POSLOCK 9
1 = Slave is synchronized to master in position lock mode -
slave position strictly follows the master position.

#TRIGGER 11
1 = Produces an interrupt to the host application,
enabled by IENA.26

#NEWSEGM 16

The controller sets the bit to inform that a new segment is
required to be provided by the application. The bit is set
starvation_margin ms before the starvation condition
occurs. The starvation condition is indicated by #STARV bit.

290Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No. Description

#STARV 17

The controller sets the bit to indicate starvation condition.
The starvation condition means that there are not enough
further segments to continue the motion with required
velocity. In this case, the controller starts decelerating the
motion with ½ JERK in order to prevent motion
discontinuity and avoid mechanical jerks. Once the
application begins supplying segments at a sufficient rate,
the controller returns the motion back to normal condition.

Note, that often the starvation condition causes inefficient
velocity generation and increases the time required for
completing the required motion path.

#ENCWARN 18
Indicates if there is an encoder warning. Cleared by the
ACSPL+ FCLEAR command.

#ENC2WARN 19
Indicates if there is an secondary encoder warning. Cleared
by the ACSPL+ FCLEAR command.

#INRANGE 20 Laser In Range

#LCTICKLE 21
0: tickle mode is off

1: tickle mode is active

#LCMODUL 22
0: modulation is off

1: modulation is active

#FOLLOWED 23

0: Axis in regular mode

1: Axis in slave mode and follows the profile generated by
RTC6

#HOLD 24
0: hold is off

1: hold is in progress

#INHOMING 25
0: homing is not in process

1: homing is in process

#DECOMPON 26

0: dynamic error compensation is switched off

1: dynamic error compensation is switched on

The bit is set to 0 in the following cases:

> Calling ERRORMAPOFF function

> Calling ERRORUNMAP function (in case there are
no other active dynamic error compensation

291Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No. Description

zones of the specified axis)

> During homing process initiated by HOME
command (switched ON back at the end of the
process

> Encoder Error / Encoder Not Connected faults

> Changing one of the encoder-related parameters
(E_TYPE, E_FREQ, E_SCMUL, SLPBITS, E_AOFSS)

> Changing encoder routing (SLPROUT)

#INSHAPE 27
0: Input Shaping not Active

1: Input Shaping Active

#ENCPROC 29
0: Encoder Initialization not in process
1: Encoder Initialization in process

Tag

7

Accessibility

Read-Only

Related ACSPL+ Commands

MASTER, SLAVE

Related ACSPL+ Variables

MST

COM Library Methods and .NET Library Methods

ReadVariable, GetAxisState

C Library Functions

acsc_ReadInteger, acsc_GetAxisState

3.4.2 IND

Description

IND is a real array, with one element for each axis in the system, the elements of which store the
position of the last encountered encoder index in user-defined units.The variable operates in
connection with IST(axis_index).#IND.

Tag

72

292Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

After power-up, IST(axis_index).#IND is reset and the value of IND is undefined because an index
capture has not yet occurred. When the motor encounters an encoder index, IST(axis_index).#IND is
raised and the current FPOS position is latched to IND.

Subsequent index values are ignored as long as #IND remains raised.

To resume the latching logic IST(axis_index).#IND must be explicitly cleared by the command IST
(axis_index).#IND=0.

Accessibility

Read-Only

IND values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

IST, FPOS

COM Library Methods and .NET Library Methods

ReadVariable, GetIndexState, ResetIndexState

C Library Functions

acsc_ReadReal, acsc_GetIndexState, acsc_ResetIndexState

3.4.3 IST

Description

IST is an integer array, with one element for each axis in the system, the elements of which contain
a set of bits that indicate the state of the IND and the MARK variables for the given axis.

Syntax

IST(axis_index).bit_designator = value

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator

The IST has four bit designators:

> #IND (bit 0) - Primary encoder index

> #IND2 (bit 1) - Secondary encoder index

> #MARK (bit 2) - Mark 1

> #MARK2 (bit 3) - Mark 2

value value can be zero or non-zero.

293Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

79

Comments

The controller processes Index/Mark signals as follows: when an Index/Mark signal is encountered
for the first time, the controller latches FPOS or F2POS to one of the variables IND, MARK, M2ARK and
sets the corresponding IST bit = 1.

When finding an Index for the first time, the correct procedure is:

1. Start by setting the index flag to 1: IST(axis).#IND=1.

Then reset the flag to 0: IST(axis).#IND=0.

This puts the system in the correct mode for finding the Index.

As long as an IST bit is raised, the controller does not latch another value to the corresponding
variable. To resume the latching logic, the user application must explicitly reset the corresponding
IST bit to 0.

Accessibility

Read-Write

Related ACSPL+ Variables

FPOS, F2POS, IND, MARK, M2ARK

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetIndexState, ResetIndexState

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetIndexState, acsc_ResetIndexState

3.4.4 M2ARK

Description

M2ARK is a real array, with one element for each axis in the system, the elements of which store the
position of the last encountered MARK2 signal in IST(axis_index).#MARK2.

Tag

84

Comments

After power-up IST(axis_index).#MARK2 is reset and the value of M2ARK is undefined. When the
motor encounters a MARK2 signal, the bit is raised and the current FPOS position is latched to IST
(axis_index). #MARK2.

If the motion continues and the motor encounters another M2ARK signal, the new value is ignored
as long as IST(axis_index). #MARK2 = 1.

To resume the latching logic, IST(axis_index). #MARK2 must be explicitly cleared with the command
IST(axis_index). #MARK2=0.

294Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Example

ON IST(Axis).#MARK2 ! When axis MARK is tripped
DISP "MARK Position:",M2ARK(Axis) ! Display the MARK position
IST(Axis).#MARK2=0 ! Reset MARK flag
RET

Accessibility

Read-Only

Related ACSPL+ Variables

IST, FPOS,F2POS, MARK

IST, FPOS, F2POS, MARK

COM Library Methods and .NET Library Methods

ReadVariable, GetIndexState,

C Library Functions

acsc_ReadReal, acsc_GetIndexState

3.4.5 MARK

Description

MARK is a real array, with one element for each axis in the system, the elements of which store the
position of the last encountered MARK1 signal in IST(axis_index).#MARK.

Tag

85

Comments

After power-up, IST(axis_index).#MARK is reset and the value of MARK is undefined. When the
motor encounters a MARK1 signal, the bit is raised and the current FPOS position is latched to IST
(axis_index).#MARK.

If the motion continues and the motor encounters another MARK1 signal, the new value is ignored
as long as IST(axis_index).#MARK= 1.

To resume the latching logic, IST(axis_index).#MARK must be explicitly cleared with the command
IST(axis_index).#MARK=0.

MARK values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection.

Example

ON IST(Axis).#MARK ! When axis MARK is tripped
DISP "MARK Position:",MARK(Axis) ! Display the MARK position
IST(Axis).#MARK=0 ! Reset MARK flag
RET

295Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

Related ACSPL+ Variables

IST, FPOS, F2POS, IND, M2ARK, IENA

COM Library Methods and .NET Library Methods

ReadVariable, GetIndexState

C Library Functions

acsc_ReadReal, acsc_GetIndexState

3.4.6 MST

Description

MST is an integer array, with one element for each axis in the system. The elements of which contain
a set of bits that display the current motor state, as given in Table 3-7, for the given axis.

Syntax

MST(node_index).bit_designator = 1|0

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator The meanings of bit_designator are given in 3.4.6.

Table 3-7. MST Bit Descriptions.

Bit Name No Description

#ENABLED 0
0: motor is disabled

1: motor is enabled.

#OPEN 1
0: motor is operating with closed loop control

1: motor is operating with open loop control.

#INPOS 4

0: Motor is moving or is out of range

1: Motor is not moving and has reached the target position
(see variables TARGRAD and SETTLE

#MOVE 5
0: = Axis is not involved in a motion

1 = Axis is involved in a motion

#ACC 6
0 = Motor is not accelerating

1 = Motor is accelerating.

#INTARGA 25 0 = No motion has settled in Target Radius A

296Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No Description

1 = Motion has settled in Target Radius A

#INTARGB 26
0 = No motion has settled in Target Radius B

1 = Motion has settled in Target Radius B

#INTARGC 27
0 = No motion has settled in Target Radius C

1 = Motion has settled in Target Radius C

Tag

90

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands.

Related ACSPL+ Variables

FPOS, F2POS, APOS, RPOS

COM Library Methods and .NET Library Methods

ReadVariable, GetMotorState

C Library Functions

acsc_ReadInteger, acsc_GetMotorState

Example

WHILE MST(0).#MOVE
WAIT 300

3.4.7 RMSM

Description

RMSM is a real array with one element for each axis in the system, the elements of which store the
motor RMS current for an axis (in % of drive peak). The value ranges between 0 and 100.

Tag

363

Comments

This variable is supported in ADK versions 2.70 and higher.

Accessibility

Read-Only

ACSPL+ Variables

XRMSM, XRMSTM

297Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.4.8 RMSD

Description

RMSD is a real array, with one element for each axis in the system, the elements of which store the
drive RMS current for an axis (in % of drive peak). The value ranges between 0 and 100.

Tag

362

Comments

This variable is supported in ADK versions 2.70 and higher.

Accessibility

Read-Only

Related ACSPL+ Variables

XRMSD, XRMSTD

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.4.9 NST

Description

NST is an integer array, with one element for each EtherCAT node in the system, each element of
which contains a set of 2 bits. The variable enables users to differentiate between different causes
of servo processor alarm faults.

An axis not associated to a physical drive will have a high Servo Processor Alarm fault.

Syntax

NST(node_index).bit_designator = 1|0

Arguments

node_index
Designates the specific node, valid numbers are: 0, 1, 2, ... up to the number
of nodes in the system minus 1.

bit_designator The meanings of bit_designator are given in Table 3-8.

298Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-8. NST Bit Description

Bit Name Bit No. Description

#SYNC 0 Sync error

#GPRT 1 GPRT error

#MISSING 2 EtherCAT Node Missing

#SPDC 3
0: SPDC data collection not active

1: SPDC data collection active

#FSYNC 4 FPGA Sync Fault

#SPRT 5

0: Real-time data transfer process from the MPU to a
corresponding Servo Processor is not active

1: Real-time data transfer process from the MPU to a
corresponding Servo Processor is active

#LCI 10 LCI Fault

Tag

229

Comments

If the #SYNC or #GPRT error bit is set in NST, there will be a network error in all axes, and servo
processor alarm in all the axes related to the node related to the NST. These faults indicate a
problem in the interface between the firmware and the node.

The setting of the #SYNC error bit means that one or more slaves are out of synchronization with
the master.

The setting of the #GPRT error bit means that the queue (the size, of which, is 400) for the GPRT
commands (commands that are sent by request) was full and some commands to be sent were lost.
For example, for the SPiiPlusDC-LT-4 controller 8 such commands can be sent every cycle, these
commands can be found in a reserved place in the EtherCAT telegram for the
command1,…,command8.

The following commands will cause the NST.#SPRT bit to be 1:

> SPINJECT
> SPRT
> ASSIGNPEG/f
> BPTP/2 (20 kHz motion profile)
> FOLLOW (in case of customized servo algorithm for 20 kHz motion profile)

SPINJECT, SPRT, ASSIGNPEG/f, BPTP/2 and FOLLOW are mutually exclusive, meaning only one of the
features can be active at the given time. So the NST.#SPRT bit should be checked before using any
of these commands.

FCLEAR for any axis associated with the node axis will reset all bits of the NST variable of that node.

299Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadInteger

C Library Functions

acsc_ReadInteger

3.5 Safety Limits Variables

The Safety Limits variables are:

Name Description

CERRA Critical Position Error (Accelerating)

CERRI Critical Position Error (Idle)

CERRV Critical Position Error (Velocity)

DELI Delay on Transition to Idle State

DELV Delay on Transition to Velocity State

ERRA Tolerable Error (Accelerating)

ERRI Tolerable Error (Idle)

ERRV Tolerable Error (Velocity)

SLLIMIT Software Left Limit-feedback count down limit

SLLROUT Sets the HW limits routing for the specified axis

SRLIMIT Software Right Limit-feedback count up limit

XACC Over Acceleration fault parameter

XCURCDB Threshold of the current vector peak

XCURI Maximum idle motor current

XCURK Current limit during kill operation

XCURV Maximum drive current during motion

XRMS Drive RMS over current fault parameter

XRMSD Drive RMS over current fault parameter

300Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

XRMSM Motor RMS over current fault parameter

XRMST Drive RMS Current Time Constant

XRMSTD Drive RMS Current Time Constant

XRMSTM Motor RMS Current Time Constant

XSACC Maximum slave axis acceleration

XVEL Over Velocity fault parameter

3.5.1 CERRA

Description

CERRA is a real array, with one element for each axis in the system, and is used for defining the
Position Error criterion for acceleration/deceleration states.

Syntax

CERRA(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value of each member ranges between 2.22507e-308 and 1.79769e+308,
Default = 1000.

Tag

11

Comments

CERRA defines critical position error fault (FAULT(axis_index).#CPE) criterion when the motor is in
acceleration or deceleration motion states.

As a configuration variable, the CERRA value is normally defined by SPiiPlus MMI Application Studio
g Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

CERRA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CPE

301Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

CERRI, CERRV, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.2 CERRI

Description

CERRI is a real array, with one element for each axis in the system, and is used for defining the
critical Position Error when the motor is idle.

Syntax

CERRI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value of each member ranges between 2.22507e-308 and 1.79769e+308,
Default = 1000.

Tag

12

Comments

As a configuration variable, the CERRI value is normally defined by SPiiPlus MMI Application Studio
g Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

CERRI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CPE

CERRA, CERRV, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

302Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.5.3 CERRV

Description

CERRV is a real array, with one element for each axis in the system, and is used for defining the
critical Position Error when the motor is moving with constant velocity.

Syntax

CERRV(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value of each member ranges between 2.22507e-308 and 1.79769e+308,
Default = 1000.

Tag

13

Comments

As a configuration variable, the CERRV value is normally defined by SPiiPlus MMI Application Studio
g Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

CERRV values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CPE

CERRA, CERRI, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.4 DELV

Description

DELV is a real array, with one element for each axis in the system, and is used for defining the delay
of transition to the Constant Velocity state.

Syntax

DELV(axis_index) = value

303Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value of each member ranges between 2.22507e-308 and 1.79769e+308,
Default = 50.

Tag

24

Comments

DELV is defined in msecs and applies a delay when the motion state changes to a constant velocity
state (GPHASE(axis_index) = 4).

DELV affects the following faults:

> FAULT(axis_index).#PE

> FAULT(axis_index).#CPE

Accessibility

Read-Write

DELV values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

ERRA, ERRI, ERRV, DELI, FAULT.#CPE, FAULT.#PE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.5 DELI

Description

DELI is a real array, with one element for each axis in the system, and is used for defining the delay
of transition to the Idle state.

Syntax

DELI(axis_index) = value

304Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value of each member ranges between 2.22507e-308 and 1.79769e+308,
Default = 50.

Tag

23

Comments

DELI is defined in milliseconds and applies a delay when the motion state changes from any motion
state to idle (GPHASE(axis_index) = 0 or 12).

DELI affects the following faults and current limits:

> FAULT(axis_index).#PE

> FAULT(axis_index).#CPE

> XCURI(axis_index)

> XCURV(axis_index)

Accessibility

Read-Write

DELI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

ERRA, ERRI, ERRV, DELV, FAULT(axis_index).#CPE, FAULT(axis_index).#PE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.6 E_ERR

Description

E_ERR is an integer array for each axis. It contains the encoder error code that was identified during
the encoder initialization process.

The encoder errors range from 5121 to 5128 and are latched in the E_ERR variable. The error codes
are specified in Table 6-5 in the Error Codes section.

Comments

This variable is supported in version 3.00 and higher.

305Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadInteger()

3.5.7 ERRA

Description

ERRA is a real array, with one element for each axis in the system, and is used for defining the
Position Error criterion for Acceleration/Deceleration states.

Syntax

ERRA(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100.

Tag

39

Comments

ERRA defines the maximum tolerable position error (FAULT(axis_index).#PE) when the motor is
moving with acceleration.

As a configuration variable, the ERRA value is normally defined by SPiiPlus MMI Application Studiog
Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

ERRA values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#PE, FDEF

ERRI, ERRV, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable,

306Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.8 ERRI

Description

ERRI is a real array, with one element for each axis in the system, and is used for defining the
maximum tolerable Position Error (FAULT(axis_index).#PE) when the motor is idle.

Syntax

ERRI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100.

Tag

40

Comments

As a configuration variable, the ERRI value is normally defined by SPiiPlus MMI Application Studiog
Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

ERRIvalues cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#PE

ERRA, ERRV, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.9 ERRV

Description

ERRV is a real array, with one element for each axis in the system, and is used for defining the
maximum tolerable Position Error (FAULT(axis_index).#PE) when the axis is moving with constant
velocity.

307Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

ERRV(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100.

Tag

41

Comments

As a configuration variable, the ERRV value is normally defined by SPiiPlus MMI Application Studiog
Toolboxg Setupg Adjuster during the setup procedure of the system.

Accessibility

Read-Write

ERRV values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#PE

ERRA, ERRI, DELI, DELV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.10 SLLIMIT

Description

SLLIMIT is a real array, with one element for each axis in the system, and is used for defining the
minimum allowed Left position for the motor.

Syntax

SLLIMIT(axis_index) = value

Arguments

axis_
index

Designates the spe"../../Resourcescific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 2e+014.

308Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

124

Comments

If reference position RPOS is less than this value, a software Left Limit fault results and bit FAULT
(axis_index).#SLL is = 1.

Accessibility

Read-Write

SLLIMIT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

RPOS, FAULT(axis_index).#SLL, SRLIMIT

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.11 SLLROUT

HW Limits Routing is available using ACSPL+ variable: SLLROUT

Description

SLLROUT is an integer array, with one element for each axis in the system, and is used for setting
the HW limits routing for the specified axis.

Syntax

SLLROUT(<axis>)=value

Arguments

Value HW Limits

0 According to SLPROUT

001 From channel 0

101 From channel 1

201 From channel 2

301 From channel 3

309Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

If SLLROUT(<axis>)=0, the routing is being done according to SLPROUT. In particular, if SLPROUT
(<axis>)=0, the HW limits are being taken from the axis itself.

Tag

318

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.5.12 SRLIMIT

Description

SRLIMIT is a real array, with one element for each axis in the system, and is used for defining the
minimum allowed Right position for the motor.

Syntax

SRLIMIT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 2e+014.

Tag

128

Comments

If reference position RPOS is greater than this value, a software Right Limit fault results and FAULT
(axis_index).#SRL is = 1.

Accessibility

Read-Write

SRLIMIT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection.

Related ACSPL+ Variables

RPOS, FAULT(axis_index).#SRL, SLLIMIT

310Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.13 XACC

Description

XACC is a real array, with one element for each axis in the system, and is used for defining the
maximum allowed acceleration for the motor.

Syntax

XACC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 1e+007.

Tag

141

Comments

If the reference acceleration RACC exceeds this value, the Acceleration Limit fault is activated and bit
#AL is set in variable FAULT.

Accessibility

Read-Write

XACC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#AL, RACC

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.14 XCURCDB

Description

XCURCDB is a real array, the size of which is determined by the total number of axes in the system. It
is used for defining the threshold of the current vector peak.

311Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

XCURCDB(index) = value

Arguments

index A number between 0 up to a maximum number of axes in the system minus 1.

value
value range is [0,100] (in percentage) Default value: 0. If the value is 0, the
actual value will be minimum of ACSPL+ XRMSM and XRMSD.

Comments

The parameter is relevant only if the Controlled Current Dynamic Brake Mode is active.

This variable is supported in version 3.10 and higher.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.15 XCURI

Description

XCURI is a real array, with one element for each axis in the system, and is used for limiting the drive
output when the motor is enabled but in standstill position. XCURI is defined as a percentage of the
maximum peak output. For products that incorporate the Drive Power Electronics (UDMnt, etc…),
this value directly limits the Output Current. For products that output Voltage Signals to external
Amplifiers (universal analog drive controllers such as the UDI), this value limits the Output Signal to
percentage of ±10V.

Syntax

XCURI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 100, Default = 50.

Tag

142

Comments

XCURI is defined as a percentage of the maximum peak output. For drive command products, the
command scales the voltage output range. For example, in the UDMnt-10/20, the maximum output

312Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

voltage is ±20V. Setting XCURI to 50 will limit the drive output to ±10V when the motor is idle. For
other products setting XCURI will scale the peak current output.

Accessibility

Read-Write

XCURI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CL, XRMS, XCURV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.16 XCURK

Description

XCURK is a double array with one element for each axis in the system. It sets the current limit (in
percentage) for the axis to be applied during a KILL MOTION operation.

Syntax

XCURK(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Value Value ranges from 0 to 100. Default value is 10.

Tag

375

Comments

The value transferred to the DSP is:

This variable is supported in version 3.00 and higher.

Related ACSPL+ Commands and Variables

XCURV

Accessibility

Read-Write

313Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadDouble(), acsc_WriteDouble()

3.5.17 XCURV

Description

XCURV is a real array, with one element for each axis in the system, and is used for limiting the drive
output when the motor is moving. XCURV is defined as a percentage of the maximum peak output.
For products that incorporate the Drive Power Electronics (UDMnt, etc…), this value directly limits the
Output Current. For products that output Voltage Signals to external Amplifiers (universal analog
drive controllers such as the UDI), this value limits the Output Signal to percentage of ±10V.

Syntax

XCURV(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 100, Default = 50.

Tag

143

Comments

XCURV is defined as a percentage of the maximum peak output. For drive command products, the
command scales the voltage output range. For example, in the UDMnt-10/20, the maximum output
voltage is ±20V. Setting XCURV to 50 will limit the drive output to ±10V when the motor is idle. For
other products setting XCURV will scale the peak current output.

Accessibility

Read-Write

XCURV values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection.

Related ACSPL+ Variables

FAULT(axis_index).#CL, XRMS, XCURI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

314Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.5.18 XRMS

Description

XRMS is a real array, with one element for each axis in the system, and is used for setting the
maximum allowable rms current for the motor. XRMS is defined as a percentage of the maximum
peak output. For products that incorporate the Drive Power Electronics (UDMnt, etc…), this value
directly limits the Output Current. For products that output Voltage Signals to external Amplifiers
(universal analog drive controllers such as the UDI), this value limits the Output Signal to percentage
of ±10V.

Syntax

XRMS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 100, Default = 50.

Tag

144

Comments

The SP program calculates RMS of the corresponding motor. If the calculated value exceeds the
XRMS value, an overcurrent fault occurs. XRMS is defined as a percentage of the maximum output
voltage.

Accessibility

Read-Write

XRMS values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CL, XCURI, XCURV

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.19 XRMSD

Description

XRMSD is a real array, with one element for each axis in the system, and is used for setting the
maximum allowable RMS current on the drive, as opposed to XRMSM which sets the maximum
allowed RMS current for the motor. XRMSD is defined as a percentage of the maximum peak output.

315Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

For products that incorporate the Drive Power Electronics (UDMnt, etc…), this value directly limits the
Output Current. For products that output Voltage Signals to external Amplifiers (universal analog
drive controllers such as the UDI), this value limits the Output Signal to percentage of ±10V.

Syntax

XRMSD(Axis_Index) = Value

Arguments

Axes_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 0 to 100, Default = 50.

Tag

345

Comments

XRMSD is used to define the desired maximum current for the drive.

The SP program calculates RMS of the corresponding controller drive output. If the calculated value
exceeds the XRMSD value, an overcurrent fault occurs. XRMSD is defined as a percentage of the
maximum output current.

Related ACSPL+ Variables

XRMSTD, FAULT(Axis_Index).#CL, XCURI, XCURV

Accessibility

Read-Write

XRMSD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable(), GetFault

C Library Function

acsc_ReadReal(), acsc_WriteReal(), acsc_GetFault

3.5.20 XRMSM

Description

XRMSM is a real array, with one element for each axis in the system, and is used for setting the
maximum allowable RMS current on the motor, as opposed to XRMSD which sets the maximum
allowed RMS current for the drive. XRMSM is defined as a percentage of the maximum peak output.
For products that incorporate the Drive Power Electronics (UDMnt, etc…), this value directly limits the
Output Current. For products that output Voltage Signals to external Amplifiers (universal analog
drive controllers such as the UDI), this value limits the Output Signal to percentage of ±10V.

316Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

XRMSM(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 0 to 100, Default = 100.

Tag

351

Comments

The SP program calculates RMS of the corresponding controller drive output. If the calculated value
exceeds the XRMSM value, an overcurrent fault occurs. XRMSM is defined as a percentage of the
maximum output current.

XRMSM is used to define the desired maximum current for the motor.

Related ACSPL+ Variables

XRMSTM, FAULT(Axis_Index).#CL, XCURI, XCURV

Accessibility

Read-Write

XRMSM values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio→Toolbox→Application Development→ Protection.

.NET Library Method

ReadVariable(), WriteVariable(), GetFault

C Library Function

acsc_ReadReal(), acsc_WriteReal(), acsc_GetFault

3.5.21 XRMST

Description

XRMST is a real array, with one element for each axis in the system, and is used for setting the time
constant in milliseconds for the XRMS to activate the overcurrent protection. For calculation of XRMS
activation time, see SPiiPlus Setup Guide .

Syntax

XRMST(axis_index) = value

317Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 200 to 3260, Default = 3230.

Tag

145

Accessibility

Read-Write

XRMST values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#CL, XCURI, XCURV, XRMS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFault

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetFault

3.5.22 XRMSTD

Description

XRMSTD is a real array, with one element for each axis in the system, and is used for setting the time
constant in milliseconds for XRMSD to activate the overcurrent protection for the drive. For
calculation of XRMSD activation time, see SPiiPlus Setup Guide .

Syntax

XRMSTD(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 200 to 60,000, Default = 3230.

Tag

346

Related ACSPL+ Variables

XRMSD, FAULT(Axis_Index).#CL, XCURI, XCURV

318Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

XRMSTM values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio >Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable(), GetFault

C Library Function

acsc_ReadReal(), acsc_WriteReal(), acsc_GetFault

If Drive XRMS protection is triggered, the error 5049 “Drive Overcurrent” is given.

3.5.23 XRMSTM

Description

XRMSTM is a real array, with one element for each axis in the system, and is used for setting the
time constant in milliseconds for XRMSM to activate the overcurrent protection for the motor. For
calculation of XRMSM activation time, see SPiiPlus Setup Guide.

Syntax

XRMSTM(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 200 to 600,000, Default = 20,000.

Tag

352

Related ACSPL+ Variables

XRMSM, FAULT(Axis_Index).#CL, XCURI, XCURV

Accessibility

Read-Write

XRMSTM values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

319Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

.NET Library Method

ReadVariable(), WriteVariable(), GetFault

C Library Function

acsc_ReadReal(), acsc_WriteReal(), acsc_GetFault

If Motor XRMS protection is triggered, the error 5048 “Motor Overcurrent” is given.

3.5.24 XSACC

Description

XSACC is a real array, with one element for each axis in the system, and is used for defining the
maximum allowed slave acceleration in MASTER - SLAVE motion.

Syntax

XSACC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 1e+007.

Tag

146

Comments

When a slave is synchronized to a master, the controller verifies the slave acceleration against the
XSACC value each MPU cycle. If the slave acceleration exceeds XSACC, the motion falls out of
synchronization. The controller tries to regain synchronism by having the slave pursue the master
with the maximum allowed motion parameters.

Accessibility

Read-Write

XSACC values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

MASTER, SLAVE

COM Library Methods

ReadVariable, WriteVariable

320Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.5.25 XVEL

Description

XVEL is a real array, with one element for each axis in the system, and is used for defining the
maximum allowed velocity for the axis.

Syntax

XVEL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 2e+006.

Tag

147

Comments

If RVEL reference velocity exceeds XVEL, FAULT(axis_index).#VL = 1.

Trying to adjust the position and velocity loops when XVEL is not correctly set will
produce poor results. Verify that XVEL is correctly defined to fit the application and other
requirements before adjusting the loops.

Accessibility

Read-Write

XVEL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT(axis_index).#VL, RVEL, FVEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.6 Data Collection Variables

The Data Collection variables are:

321Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

DCN Axis Data Collection, Number of Samples

DCP Axis Data Collection, Period

S_DCN System Data Collection, Number of Samples

S_DCP System Data Collection, Period

S_ST State of System Data Collection

3.6.1 DCN

Description

DCN is an integer array, with one element for each axis in the system, the elements of which store
the number of data collection samples per given axis.

Tag

19

Comments

DCN stores a defined number of axis data collection samples, as follows:

1. While an axis data collection is in progress DCN displays the index of the array element that
stores the next sample.

2. When an axis data collection terminates for the corresponding axis, DCN stores the number
of actually collected samples. If the data collection terminates automatically, the variable is
always equal to the requested number of samples specified in DC. If STOPDC terminates
data collection, DCN may contain less than the specified number of samples.

If an axis data collection is in progress, DCN increments each time the next sample is stored. When
the data collection terminates, the DCN holds the last value, until the next data collection starts for
the same axis.

Accessibility

Read-Only

Related ACSPL+ Commands

DC, STOPDC

Related ACSPL+ Variables

AST, DCP

COM Library Methods and .NET Library Methods

ReadVariable, DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_ReadInteger, acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectEnd

322Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.6.2 DCP

Description

DCP is a real array, with one element for each axis in the system, the elements of which store the
axis data collection samples based on a specified sampling period. When an axis data collection
terminates, DCP stores the sampling period.

Tag

21

Comments

DCP is generally equal to the specified period, however because period is rounded to an integer
number of controller cycles, the actual period may differ from the period specified in the DC
command.

If DC/t (temporal data collection) was executed, DCP may be greater than the requested minimal
period.

When a system data collection starts, DCP is assigned a real data collection period.

Accessibility

Read-Only

Related ACSPL+ Commands

DC, STOPDC

Related ACSPL+ Variables

AST, DCN

COM Library Methods and .NET Library Methods

ReadVariable, DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_ReadReal, acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectEnd

3.6.3 S_DCN

Description

S_DCN is a scalar integer that stores a defined number of system data collection samples.

Tag

111

Comments

S_DCN stores a defined number of system data collection samples, as follows:

1. While a system data collection is in progress S_DCN displays the index of the array element
that stores the next sample.

2. When a system data collection terminates, the variable stores the number of actually
collected samples. If the data collection terminates automatically, the variable is always
equal to the requested number of samples specified in the dc command. If the data

323Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

collection terminates due to the STOPDC command, the variable may be less than the
requested number of samples.

For cyclic data collection S_DCN displays the current number of collected samples and changes as
follows:

1. At the start of data collection, S_DCN is assigned with zero.

2. With each sampling, S_DCN is incremented until it reaches the specified size of the sample
array

3. S_DCN remains unchanged - the newest sample overwrites the oldest, so the total number
of samples remains the same.

As long as cyclic data collection is in progress, the application cannot use the sample array. After the
cyclic data collection finishes, the controller repacks the sample array so that the first element
represents the oldest sample and the last element represents the most recent sample.

Accessibility

Read-Only

Related ACSPL+ Commands

DC, STOPDC

Related ACSPL+ Variables

S_ST, S_DCP

COM Library Methods and .NET Library Methods

ReadVariable, DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_ReadInteger, acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectEnd

3.6.4 S_DCP

Description

S_DCP is real variable that stores the period of system data collection sampling.

Tag

112

Comments

When a system data collection terminates, the S_DCP stores the sampling period. Unless a temporal
data collection was executed, the variable is always equal to the requested period specified in the
DC command.

S_DCP is generally equal to the specified period, however because the period is
rounded to an integer number of controller cycles, the actual period may differ from the
period specified in the DC command.

Accessibility

Read-Only

324Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Commands

DC, STOPDC

Related ACSPL+ Variables

S_ST, S_DCN

COM Library Methods and .NET Library Methods

ReadVariable, DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_ReadReal, acsc_DataCollectionExt, acsc_StopCollect, acsc_WaitCollectEnd

3.6.5 S_ST

Description

S_ST is a scalar integer variable that provides the state of System Data Collection.

Tag

120

Comments

S_ST provides a bit that indicates if system data collection is currently in progress.

Bit 3:

0 - System data collection off

1 - System data in progress.

Accessibility

Read-Only

Related ACSPL+ Commands

DC, STOPDC

Related ACSPL+ Variables

S_DCN, S_DCP

COM Library Methods and .NET Library Methods

ReadVariable, DataCollection, StopCollect, WaitCollectEnd

C Library Functions

acsc_ReadInteger, acsc_DataCollectionExt, acsc_StopCollect

3.7 Input and Output Variables

The Input and Output variables are:

325Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

AIN Analog Inputs

AINOFFS Percent offset of analog signal from external source

AINSCALE Define scale of analog input signal

AOUT Analog Outputs

COMMCH Returns the last activated communication channel.

DCOM Drive command - in open loop

DOUT Drive output.

EXTIN Extended digital inputs (HSSI)

EXTOUT Extended digital outputs (HSSI)

IN General Purpose Digital Inputs

OUT General Purpose Digital Outputs

SPIRXN Number of words transmitted from SPI interface

SPIST
Integer array with one element for each EtherCAT node in the system. It
shows the current state of the SPI communication channel.

3.7.1 AIN

Description

AIN is a real array, the size of which is determined by the total number of analog input signals in the
system, and is used for defining the level of an analog signal from an external source such as a
sensor or a potentiometer.

Syntax

value = AIN(index)

Arguments

index
A number between 0 up to the maximum number of analog input signals
minus one.

value
value is the scaling, by percent, of the signal and ranges from -100 to +100,
Default = 0.

Tag

4

326Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

None

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable, GetAnalogInput

C Library Functions

acsc_ReadReal, acsc_GetAnalogInput

3.7.2 AINOFFS

Description

AINOFFS is a real array, the size of which is determined by the total number of analog input signals
in the system and is used for defining the percent offset of an analog signal from an external source
such as a sensor or a potentiometer.

Syntax

AINOFFS(index) = value

index
A number between 0 up to the maximum number of analog inputs signals
minus one.

value Value is the offset, by percent, ranges from -100 to +100, Default = 0.

Tag

378

Comments

> If used in combination with the analog input scaling feature(AINSCALE) then, the order of
operations will be first offset and then scaling.

> The AIN variable range is now between -200 to +200.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

AIN, AINSCALE

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

327Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.7.3 AINSCALE

Description

AINSCALE is a real array, the size of which is determined by the total number of analog input signals
in the system and is used for defining the scaling of an analog signal from an external source such
as a sensor or a potentiometer.

Syntax

AINSCALE(index) = value

Arguments

index
A number between 0 up to the maximum number of analog inputs signals
minus one.

value Value is the scaling factor, ranges from -2 to +2, Default = 1.

Tag

391

Comments

If combined with the analog input offset feature(AINOFFS) then the order of operations will be
offset and then scaling.

The AIN variable range is between -200 to +200.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

AIN, AINOFFS

Accessibility

Read-Write

3.7.4 AOUT

Description

AOUT is a real array, the size of which is determined by the total number of analog output signals in
the system, and is used for defining the level of a general purpose analog signal that is sent to an
external device.

Syntax

AOUT(index) = value

328Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

index
A number between 0 up to the maximum number of analog output signals
minus one.

value
value is the scaling, by percent, of the signal and ranges from -100 to +100,
Default = 0.

Tag

5

Comments

1. Some aspects of AOUT are model-dependent, including the number of analog outputs and
type of analog inputs (differential or single-ended).

2. In SPiiPlus controllers (not CM) AOUT can be used only when the axis is defined as Dummy -
see MFLAGS.

To define the analog output command to a drive (connected to a motor) in open loop, refer
to DCOM.

Accessibility

Read-Write

Related ACSPL+ Variables

MFLAGS

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetAnalogOutput, SetAnalogOutput

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetAnalogOutput, acsc_SetAnalogOutput

3.7.5 DOUT

Description

DOUT is an integer array that stores the drive command (velocity loop output) for each axis.

Tag

26

Comments

DOUT values range from -32767 to 32767, which indicates +/-100% command.

In open loop loop mode (MFLAGS.1=1), DOUT is determined by the DCOM variable.

In closed loop mode (MFLAGS.1=0), DOUT is determined by DCOM plus the velocity loop output.

In gantry mode (MFLAGS.25=1) DOUT of the primary axis indicates the longitudinal (force) command
and DOUT of the secondary axis indicates the rotational (torque) command.

DOUT is updated at the MPU rate (CTIME) in most products, see note below.

329Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The following ACS products only support lower rate update (once per 100msec) of DOUT:

> UDMpc
> CMnt
> UDMpm
> MC4U with SPiiPlus NT-HP/LT/LD
> MC4U with SPiiPlus DC-HP/LT/LD
> SPiiPus SAnt

Accessibility

Read-Only, ReadVariable

COM Library Methods and .NET Library Methods

ReadVariable, C Library Functions, acsc_ReadInteger

3.7.6 EXTIN

Description

EXTIN is an integer array, the size of which is determined by the total number of SPI and HSSI input
signals in the system, and reads the current state of the inputs. The number of inputs depends on
the number of SPI and HSSI modules in the system.

For details about the HSSI, see the HSSI Modules Hardware Guide.

Comments

The SPIRXN variable is updated every cycle with the number of active elements.

Tag

42

Accessibility

Read-Only

Related ACSPL+ Variables

EXTOUT, IN

COM Library Methods and .NET Library Methods

ReadVariable, GetExtInput, GetExtInputPort

C Library Functions

acsc_ReadInteger, acsc_GetExtInput, acsc_GetExtInputPort

3.7.7 EXTOUT

Description

EXTOUT is an integer array, the size of which is determined by the total number of SPI and HSSI
output signals in the system, which can be used for reading or setting the current state of the
outputs. The number of outputs depends on the number of HSSI modules and SPI inputs in the
system.

For details about the HSSI, see the HSSI Modules Hardware Guide.

330Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

EXTOUT(index) = value

Arguments

index A number between 0 and 511.

value value ranges from -2147483648, 2147483647, Default = 0.

Comments

When used with an SPI interface in master mode, the EXOUT function should be used.

The SPICFG function sets the number of elements which contain data.

Tag

43

Accessibility

Read-Write

Related ACSPL+ Variables

EXTIN, OUT

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetExtOutput, SetExtOutput, GetExtOutputPort, SetExtOutputPort

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetExtOutput, acsc_SetExtOutput, acsc_
GetExtOutputPort, acsc_SetExtOutputPort

3.7.8 IN

Description

IN is an integer array, the size of which is determined by the total number of digital input signals in
the system, and stores the current state of the General Purpose digital inputs.

Syntax

IN(port).bit

Arguments

port A number between 0 and the total number of ports in the system minus one.

bit bit can be 0-31.

Tag

71

Comments

General Purpose inputs are represented by bits 0..31 of IN(port). Each bit reports the state of one
General Purpose input.

331Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

For example, entering the query command ?IN(0).0 in the SPiiPlus MMI Application Studio
Communication Terminal will return "0" if inputs #0 is non-active or "1" when active.

In some SPiiPlus controllers, the digital input pins can also be used as MARK.

Accessibility

Read-Only

Related ACSPL+ Variables

OUT, EXTOUT

COM Library Methods and .NET Library Methods

ReadVariable, GetInput, GetInputPort

C Library Functions

acsc_ReadInteger, acsc_GetInput, acsc_GetInputPort

3.7.9 OUT

Description

OUT is an integer array, the size of which is determined by the total number of digital output signals
in the system, and can be used for reading or writing the current state of the General Purpose digital
outputs.

Syntax

OUT(port).bit

Arguments

port A number between 0 the total number of ports in the system minus one.

bit bit can be 0-31.

Tag

94

Comments

General purpose outputs are represented by bits 0..31 of OUT(port). Each bit reports the state of one
general purpose output for the given port.

For example, the query command ?OUT(23).0 = 1 through the SPiiPlus MMI Application Studio
Communication Terminal will activate the outputs #0 of port 23.

In some SPiiPlus controllers the digital output pins can also be used as PEG - see .

Accessibility

Read-Write

332Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

IN, EXTIN

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetOutput, GetOutput, SetOutputPort, GetOutputPort

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_SetOutput, acsc_GetOutput, acsc_SetOutputPort, acsc_
GetOutputPort

3.7.10 SPIRXN

Description

SPIRXN is a variable that shows the number of actual words that contain data transmitted from the
SPI external interface. The range is from 0 to 8.

Accessibility

Read-only

Comments

SPIRXN value is 0 if the SPI is disabled. This variable is supported by the UDMsm, IDMsm and ECMsm
products only.

3.7.11 SPIST

Description

SPIST is an integer array with one element for each EtherCAT node in the system. It shows the
current state of the SPI communication channel.

Bit Field

The contents of each entry are interpreted according to the following table

Bit Name Description

0 SPI RX Overflow
1 - more than 16 SPI words received

0 - No Event

1 SPI TX Full

1 - Attempt to add another SPI word for transmission
while the SPI TX FIFO is full. The FIFO depth is 16.

0 - No Event

2-15 Reserved

Comments

If a specific element has the value 0, then there are no errors in that node

TAG

385

333Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-only

3.8 Monitoring Variables

The Monitoring variables are:

Name Description

BCODEUSG
An integer array, with one element for each buffer in the system. It shows
the actual memory allocated by a program code in KB, for each buffer.

BCODECFG
An integer array, with one element for each buffer in the system. It is used
for configuration of the amount of memory in KB that is pre-allocated for
program code for each buffer.

BGLOBCFG
Sets the amount of memory pre-allocated for global variables in the D-
Buffer.

BGLOBUSG
A scalar that shows the amount of memory used by the global variables
defined in the D-Buffer.

BSRCCFG
An integer array with one element for each buffer in the system. It is used
for configuration of the amount of memory in KB that is pre-allocated for a
program source for each buffer.

BSRCUSG
An integer array, with one element for each buffer in the system. It shows,
in KB, the actual memory allocated by a program source for each buffer.

BVARUSG
An integer array with one element for each buffer in the system. It shows,
in KB, the actual memory allocated by a program local variables for each
buffer.

BVARCFG
An integer array with one element for each buffer in the system. It is used
for configuration of the amount of memory that is pre-allocated for local
variables in KB, for each buffer.

JITTER
Elapsed time between the physical timer interrupt and the SC real-time
task starts working.

MSSYNC Time difference between the master clock and the bus clock.

USGBUF
Stores the amount of MPU usage as a percentage of the specific ACSPL+
buffer in the controller cycle during the execution of real-time tasks.

USGTRACE
Stores the amount of MPU usage as a percentage of the specific real-time
task in the controller cycle during the execution of real-time tasks.

334Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SOFTIME
Parameter which specifies the EtherCAT frame delivery time in
microseconds.

TIME Elapsed Time

USAGE MPU Usage

3.8.1 BCODECFG

Description

BCODECFG is an integer array, with one element for each buffer in the system. It is used for
configuration of the amount of memory in KB that is pre-allocated for program code for each buffer.

Syntax

BCODECFG(Buffer_Index) = value

Arguments

Buffer_Index Buffer index.

Tag

409

Comments

The values are in KB.

The default value is 128KB.

BCODEUSG can be useful for setting the value of the BCODECFG variable.

A new value takes affect only after controller reboot.

Related ACSPL+ Variables

BCODEUSG

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.8.2 BCODEUSG

Description

BCODEUSG is an integer array, with one element for each buffer in the system. It shows the actual
memory allocated by a program code in KB, for each buffer.

335Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

[command]BCODEUSG(Buffer_Index)

Arguments

Buffer_Index Buffer index.

Tag

410

Comments

> The values are in KB.

> For empty buffer, the value is 0.

> BCODEUSG can be useful for setting the value of the BCODECFG variable.

Related ACSPL+ Variables

BCODECFG

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.8.3 BGLOBCFG

Description

BGLOBCFG is a scalar. It sets the amount of memory pre-allocated for global variables in the D-
Buffer.

Syntax

BGLOBCFG = value

Arguments

NONE

Tag

413

Comments

> The value is in KB.

> The default value is 1024KB.

> BGLOBUSG can be useful for setting the value of the BGLOBCFG variable.

336Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

> Setting the BGLOBCFG variable changes the value of BGLOBCFG only if the S_
SETUP.#VRMEMVAR bit is ON

> The BGLOBCFG variable applies only for global variables defined in the D-Buffer.

> A new value takes effect only after controller reboot.

Related ACSPL+ Variables

BGLOBUSG

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, Write Variable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.8.4 BGLOBUSG

Description

BGLOBUSG is a scalar that shows the amount of memory used by the global variables defined in the
D-Buffer.

Syntax

value = BGLOBUSG

Arguments

NONE

Tag

414

Comments

> The value is in KB.

> BGLOBUSG can be useful for setting the value of the BGLOBCFG variable.

> The BGLOBUSG variable has a valid value only if S_SETUP.#VRMEMVAR bit is ON

> The BGLOBUSG variable applies only for global variables defined in the D-Buffer

Related ACSPL+ Variables

BGLOBCFG

Accessibility

Read-only

COM Library Methods and .NET Library Methods

ReadVariable

337Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger

3.8.5 BSRCUSG

Description

BSRCUSG is an integer array, with one element for each buffer in the system. It shows, in KB, the
actual memory allocated by a program source for each buffer.

Syntax

value = BSRCUSG(Buffer_Index)

Arguments

Buffer_Index Buffer index.

Tag

412

Comments

> The values are in KB

> For empty buffers the value is 0

> BSRCUSG can be useful for setting the value of the BSRCCFG variable

> The value should equal the size of the source code

Related ACSPL+ Variables

BSRCCFG

Accessibility

Read-only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.8.6 BSRCCFG

Description

BSRCCFG is an integer array with one element for each buffer in the system. It is used for
configuration of the amount of memory in KB that is pre-allocated for a program source for each
buffer.

Syntax

BSRCCFG(Buffer_Index) = value

338Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

Buffer_Index Buffer index.

Tag

411

Comments

> The values are in KB.

> The default value is 64KB.

> BSRCUSG can be useful for setting the value of the BSRCCFG variable.

> A new value takes effect only after controller reboot.

Related ACSPL+ Variables

BSRCUSG

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.8.7 BVARUSG

Description

BVARUSG is an integer array with one element for each buffer in the system. It shows, in KB, the
actual memory allocated by a program local variables for each buffer.

Syntax

value = BVARUSG(Buffer_Index)

Arguments

Buffer_Index Buffer index.

Tag

416

Comments

> The values are in KB.

> For an empty buffer, the value is 0.

> BVARUSG can be useful for setting the value of the BVARCFG variable.

> The BVARUSG variable has a valid value only if S_SETUP.#VRMEMVAR bit is ON

339Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

BVARCFG

Accessibility

Read-only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.8.8 BVARCFG

Description

BVARCFG is an integer array with one element for each buffer in the system. It is used for
configuration of the amount of memory that is pre-allocated for local variables in KB, for each buffer.

Syntax

BVARCFG(Buffer_Index) = value

Arguments

Buffer_Index Buffer index.

Tag

415

Comments

> The values are in KB.

> The default value is 10KB.

> BVARUSG can be useful for setting the value of the BVARCFG variable.

> The BVARCFG variable takes effect only if S_SETUP.#VRMEMVAR bit is ON.

> A new value takes effect only after controller rebooted.

Related ACSPL+ Variables

BVARCFG

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

340Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.8.9 JITTER

Description

JITTER is a real variable that contains the time, in microseconds, that elapsed from the physical timer
interrupt until the SC real-time task starts working. This parameter shows the influence of overall
hosting PC load on real-time endurance of SC.

Tag

224

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.8.10 MSSYNC

Description

MSSYNC is a real variable that contains the difference, in microseconds, between clocks of the
master and the bus.This parameter shows how close the synchronization is between the two clocks.

Tag

225

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.8.11 USGBUF

Description

USGBUF array stores the amount of MPU usage as a percentage of the specific ACSPL+ buffer in the
controller cycle during the execution of real-time tasks.

USGBUF is a real array with one element for each ACSPL+ buffer as follows:

> USGBUF(0) - Buffer 0

> USGBUF(63) - Buffer 63

> USGBUF(64) - D-Buffer

> USGBUF(65) - Buffer for immediate commands execution (C / COM libraries, communication
terminal, etc.)

> USGBUF(66) - Buffer for MACRO execution

341Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

246

Comments

The real-time tasks always have the greatest priority. If the usage reaches 80% or more, the
response time of the controller deteriorates. In addition, it is dangerous and may cause jerks in the
motion profile.

The USGBUF variable should be used for debugging purposes only and should not be used in real
production applications. In order to use a tracing mechanism, bit 1 of S_SETUP variable should be set
to 1.

3.8.12 USGTRACE

Description

USGTRACE array is used for storing the amount of MPU usage as a percentage of the specific real-
time task in the controller cycle during the execution of real-time tasks.

USGTRACE is a real array with one element for each real-time task according to the following list:

> USGTRACE(0) - EtherCAT communication (including communication jitter)

> USGTRACE(1) - reading inputs, prerequisite operations for motion generator

> USGTRACE(2) - motion generator and real-time objects

> USGTRACE(3) - operations on axes and Servo Processor interfaces

> USGTRACE(4) - execution of ACSPL+ buffers

> USGTRACE(5) - writing outputs, house keeping operations

Values 6…9 are not used and reserved for future needs

Tag

245

Comments

The real-time tasks always have the greatest priority. If the usage reaches 80% or more, the
response time of the controller deteriorates. In addition, it is dangerous and may cause jerks in the
motion profile.

The USGTRACE variable should be used for debugging purposes only and should not be used in real
production applications. In order to use a tracing mechanism, bit 1 of S_SETUP variable should be set
to 1.

3.8.13 SOFTIME

Description

SOFTIME is a read-only real array, with one element for each EtherCAT node in the system, which
specifies the EtherCAT frame delivery time in microseconds.

Tag

255

342Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

Comments

A Bit 2 (#SOFTIME) setting enables measuring the EtherCAT frame delivery time. Currently this
feature is supported by the following products only:

> "IOMnt (rev.B2 and higher)

> "PDMnt (rev. B3 and higher)

> "SDMnt (rev. B2 and higher)

3.8.14 TIME

Description

TIME is a real variable that provides the defines the elapsed time (in milliseconds) from the controller
power-up.

Tag

134

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.8.15 USAGE

Description

USAGE is a real variable used for storing the amount of MPU usage as a percentage of the real-time
tasks in the controller cycle during the execution of real-time tasks.

Tag

137

Comments

The real-time tasks always have the greatest priority. If the usage reaches 80% or more, the
response time of the controller deteriorates, in addition, it is dangerous and may cause jerks in the
motion profile.

The USAGE variable value can be used in autoroutines for halting the application should usage
exceed a certain value.

343Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.8.16 USAGESIM

Description

USAGESIM is a real variable used for storing MPU usage as a percentage of the real-time tasks in the
controller cycle during the execution of real-time tasks in the simulator.

Tag

376

Comments

The USAGESIM variable should be used for debugging purposes only and should not be used in real
production applications.

Since the simulator runs in a non-real-time OS, USAGESIM can frequently be above 100% .

This variable is supported in version 3.00 and higher.

Accessibility

Read-only

Related ACSPL+ Variables

USAGE

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9 Motion Variables

The Motion variables are:

Name Description

ACC Default Acceleration

APOS Axis Position

APOSFILT
Integer array storing the current desired motor position, including the
filtering operation result

344Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

CERRK Critical Position Error criterion for the KILL state

DEC Default Deceleration

DECOMP Error Correction

DELK
Defines the time delay after a kill process when CERRK is used to indicate
a critical position error.

DAPOS Delayed Axis Position

FACC Feedback Acceleration

FEEDRF Feedrate Override

FPOS Feedback Position

F2POS Secondary Feedback Position

FVEL Feedback Velocity

F2VEL Secondary Feedback Velocity

GACC Group Acceleration

GJERK Group Jerk

GMOT Motion Number

GMQU Motion Queue

GMTYPE Motion Type

GPATH Group Path

GPHASE Motion Phase

GRTIME Remaining Motion Time

GSEG Motion Segment

GSFREE Free Motion Segments

GSNAP
A real array, with one element for each axis in the system, and is used for
defining the current calculated snap vector snap of group motion.

GVEC Group Vector

345Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

GVEL Group Velocity

JERK Default jerk

KDEC Default kill deceleration

LPOS Axis position in LCS

NVEL Sets a non-zero axis velocity in stepper motor applications

SETTLEA Sets the time to wait inside the target radius before triggering

SETTLEB Sets the time to wait inside the target radius before triggering

SETTLEC Sets the time to wait inside the target radius before triggering

SLSFF A SNAP feed forward parameter.

SNAP
A real array with one element for each axis in the system, and is used for
defining the snap (jerk derivative) of the motion profile in user-defined
units.

STLTIMEA Last settling time of axis, according to SETTLEA and TARGRADA criteria

STLTIMEB Last settling time of axis, according to SETTLEB and TARGRADB criteria

STLTIMEC Last settling time of axis, according to SETTLEC and TARGRADC criteria

SETTLEC Sets the time to wait inside the target radius before triggering

TARGRADA Sets the target radius around which you wish the motion to settle.

TARGRADB Sets the target radius around which you wish the motion to settle.

TARGRADC Sets the target radius around which you wish the motion to settle.

TPOS Target position for track motion

PE Position Error

RACC Reference Acceleration

PPOS Reference Position, 20kHz

PRFLTIME
Holds the time(In milliseconds) passed from the moment that the move
starts until the motion profile ends

346Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

PPOSCOMP Reference Jerk

RJERK Reference Position

RPOSCOMP Reference Position

RPOSDEL Actual motor motion delay

RSNAP
A real array, with one element for each axis in the system, and is used for
defining the current calculated reference snap (jerk derivation) in user-
defined units.

RVEL Reference Velocity

VEL Velocity

3.9.1 ACC

Description

ACC is a real array, with one element for each axis in the system, and is used for defining the motion
profile acceleration.

Syntax

ACC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100000.

Tag

1

Comments

For single-axis motion, ACC defines the axis acceleration. If the axis is a leading axis in a group, ACC
defines the vector acceleration of the common motion.

If ACC is changed when a motion is in progress, the change does not affect currently executing
motions, or motions that were created before the change.

Accessibility

Read-Write

347Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

ACC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

IMM, SLAVE, and all motion commands where the profile is generated by the controller.

Related ACSPL+ Variables

DEC, JERK, KDEC, VEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetAcceleration. GetAcceleration, SetAccelerationImm

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_SetAcceleration. acsc_GetAcceleration, acsc_
SetAccelerationImm

3.9.2 APOS

Description

APOS is a real array, with one element for each axis in the system, and is used for defining the
current reference value for the axis in user-defined units.

Syntax

See SET

Tag

6

Comments

APOS is updated each MPU cycle if a motion that involves the axis is in progress.

If the corresponding motor has a default connection (MFLAGS(axis_index).#DEFCON =1), APOS =
RPOS.

Accessibility

Read-Only - Can be changed using SET.

Related ACSPL+ Commands

MASTER, SLAVE

Related ACSPL+ Variables

MPOS

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

348Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.9.3 APOSFILT

Description

APOSFILT is real array with one element for each axis in the system. The array elements store the
current desired motor position, including the filtering operation result, such as input shaping.

APOSFILT updates on every controller cycle according to the filtering algorithm. When
the filtering algorithm is not configured, APOSFILT = APOS.

TAG

368

Comments

This variable is supported in version 3.00 and higher.

ACCESSIBILITY

Read-Only

RELATED ACSPL+ COMMANDS

All motion commands

RELATED ACSPL+ VARIABLES

FPOS, RPOS, APOS,

.NET LIBRARY METHODS

ReadVariable(), WriteVariable()

C LIBRARY FUNCTIONS

acsc_ReadReal(), acsc_WriteReal()

3.9.4 CERRK

Description

CERRK is a real array, with one element for each axis in the system, and is used for defining the
Critical Position Error criterion for the KILL state.

Syntax

CERRK(Axis_Index) = Value

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1,
2, ... up to the number of axes in the system minus 1.

Value
Value ranges from 2.22507e-308 to 1.79769e+308.

Default: 1000

349Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

347

Comments

CERRK defines the maximum tolerable critical position error (FAULT(axis_index).#PE) during the kill
operation.

The value of CERRK is always equal or higher than that of CERRA.

If CERRK is assigned a new value which is lower than CERRA, CERRK is set to CERRA automatically.

If CERRA is assigned a new value which is higher than CERRK, CERRK is set to CERRA automatically.

Related ACSPL+ Variables

FAULT(Axis_Index).#PE, FDEF

Accessibility

Read-Write

CERRK values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.5 DAPOS

Description

DAPOS is a real array, with one element for each axis in the system. DAPOS reads the delayed Axis
Position value which is synchronized with RPOS and FPOS.

Syntax

DAPOS is activated as part of the SPiiPlus MMI Application Studio Scope.

Tag

18

Comments

Use DAPOS only to view the axis position in the Scope when comparing the axis position to the
RPOS.

In the SPiiPlus, APOS (axis position) is not synchronized with RPOS and FPOS and are characterized
by a few msec delay.

When implementing a non-default CONNECT, it may be necessary to monitor APOS versus RPOS
with the Scope.

Accessibility

Read-Only

350Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Commands

CONNECT

Related ACSPL+ Variables

APOS, RPOS

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.6 DEC

Description

DEC is a real array, with one element for each axis in the system and is used for specifying the
motion profile deceleration in milliseconds.

Syntax

DEC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100000.

Tag

22

Comments

For single-axis motion, DEC defines axis deceleration. If the axis is a leading axis in a group, DEC
defines the vector deceleration of the common motion.

If DEC is changed when a motion is in progress, the change does not affect currently executing
motions or motions that were created before the change.

Accessibility

Read-Write

DEC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

HALT , IMM, SLAVE

Related ACSPL+ Variables

ACC, JERK, KDEC, VEL

351Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetDeceleration. GetDeceleration, SetDecelerationImm

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_SetDeceleration. acsc_GetDeceleration, acsc_
SetDecelerationImm

3.9.7 DECOMP

Description

DECOMP is a real array, with one element for each axis in the system, and is used for displaying the
error correction for the mechanical error compensation that was applied to the axis. DECOMP
displays the difference between RPOS and RPOSCOMP.

Tag

344

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands

Related ACSPL+ Variables

FPOS, RPOS, RPOSCOMP, APOS, PE .

NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.8 DELK

Description

DELK is a real array, with one element for each axis in the system, and is used for defining the time
delay after a kill process in which we still use CERRK to indicate a critical position error.

Syntax

DELK(Axis_Index) = Value

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1,
2, ... up to the number of axes in the system minus 1.

Value Value ranges from 0 to 1000.

Tag

350

352Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

CERRK defines the maximum tolerable critical position error (FAULT(axis_index).#CPE) during the kill
operation. After the kill operation in order to ensure a smooth transition, we still use CERRK to
define the maximal tolerable position error, for DELK time.

Related ACSPL+ Variables

FAULT(Axis_Index).#CPE, CERRK

Accessibility

Read-Write

DELK values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.9 FACC

Description

FACC is a real array, with one element for each axis in the system, and is used for defining the
feedback acceleration value of the axis.

Tag

46

Accessibility

Read-Only

Related ACSPL+ Variables

FVEL

COM Library Methods and .NET Library Methods

ReadVariable, GetAcceleration

C Library Functions

acsc_ReadReal, acsc_GetAcceleration

3.9.10 FPOS

Description

FPOS is a real array, with one element for each axis in the system, and is used for defining the
current feedback position for the motor.

Tag

52

353Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The user can shift the origin of feedback position using SET.

The user can select the units of feedback position by setting the EFAC variable.

Accessibility

Read-Only

Related ACSPL+ Commands

SET

Related ACSPL+ Variables

APOS, RPOS, SLPROUT

COM Library Methods and .NET Library Methods

ReadVariable, GetFPosition, SetFPosition

C Library Functions

acsc_ReadReal, acsc_GetFPosition, acsc_SetFPosition

3.9.11 F2POS

Description

F2POS is a real array, with one element for each axis in the system, and is used for defining the
current secondary feedback value for the motor in user-defined units.

Tag

44

Comments

The user can shift the origin of secondary feedback position using SET.

The user can select the units of secondary feedback position by setting the E2FAC variable.

The application needs to explicitly clear IST(axis_index).#IND2 in order to resume the latching logic.

Accessibility

Read-Only - Can be changed by SET.

Related ACSPL+ Commands

SET, SLP2ROUT

Related ACSPL+ Variables

IST

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

354Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.9.12 FVEL

Description

FVEL is a real array, with one element for each axis in the system, the elements of which store the
measured velocity.

Tag

53

Accessibility

Read-Only

Related ACSPL+ Variables

FVFIL, RVEL, XVEL

COM Library Methods and .NET Library Methods

ReadVariable, GetFVelocity

C Library Functions

acsc_ReadReal, acsc_GetFVelocity

3.9.13 F2VEL

Description

F2VEL is a real array, with one element for each axis in the system, the elements of which store the
measured secondary velocity.

Tag

45

Accessibility

Read-Only

Related ACSPL+ Variables

FVFIL, RVEL, XVEL, FVEL

COM Library Methods and .NET Library Methods

ReadVariable, GetFVelocity

C Library Functions

acsc_ReadReal, acsc_GetFVelocity

3.9.14 FEEDRF

Description

FEEDRF is real array, with one element for each axis in the system, the elements of which store the
feedrate factor. The feedrate factor modifies the calculation of motion velocity for all relevant
motion profiles.

Examples

FEEDRF(2) = 1.23

355Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

IMM FEEDRF(0) = 0.5

Comments

This variable may be updated immediately using the “IMM” qualifier.

The allowed range is 0.1 to 2.0.

Acceleration and Jerk are NOT affected, which actually changes the trajectory characteristics (may
result in Triangular instead of Trapezoidal Trajectory).

It takes effect on the next Trajectory calculation, according to the specified velocity of that trajectory;
situation varies according to PTP Switches.

In case of group motion, the FEEDRF of the leading Axis will be in effect.

Motion Modes in which FEEDRF is supported: PTP, JOG, TRACK, MPTP, XSEG

Accessibility

Read-Write

Related ACSPL+ Commands

IMM, PTP, JOG, TRACK, MPTP, XSEG

Related ACSPL+ Variables

VEL

3.9.15 GACC

Description

GACC is a real array, with one element for each axis in the system, and is used for deriving the vector
acceleration of a group motion.

For example when the three axes 0, 1 and 2 are moving as a group, the GACC is calculated by:

GPATH, GVEL, GACC, GPHASE, GJERK, and GRTIME Variables are updated while the
motion is in progress.

Tag

55

Accessibility

Read-Only

Related ACSPL+ Commands

GROUP

Related ACSPL+ Variables

GVEL, GJERK, GPATH, GPHASE, GRTIME

356Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, GetAcceleration

C Library Functions

acsc_ReadReal, acsc_GetAcceleration

3.9.16 GJERK

Description

GJERK is a real array, with one element for each axis in the system, and is used for deriving the
vector acceleration of a group motion.

For example when the three axes 0, 1 and 2 are moving as a group, the GJERK is calculated by:

GPATH, GVEL, GACC, GJERK, GPHASE, and GRTIME variables are updated while the
motion is in progress.

Tag

57

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.17 GMOT

Description

GMOT is an integer array, with one element for each axis in the system, and defines the ordinal
number of the current motion.

Tag

58

Comments

The GMOT value is valid only if one of the following is true:

> Single-axis motion in progress

> The axis is a leading axis in a group and motion in the group is in progress

After power-up, GMOT is zero and increments each time a motion of the corresponding axis/axis
group terminates.

GMOT resets to zero each time the axis group is created or split.

357Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only.

Related ACSPL+ Commands

GROUP, SPLIT

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.9.18 GMQU

Description

GMQU is an integer array, with one element for each axis in the system, and defines the total
number of motions in the motion queue including the currently executing motion. The maximum
motion queue per axis is 5.

Tag

59

Comments

GMQU is valid only if one of the following is true:

> Single-axis motion in progress

> The axis is a leading axis in a group and motion in the group is in progress

After power-up GMQU is zero. The variable is incremented by one each time a new motion of the
corresponding axis/axis group is issued. It is decremented by one each time a motion of the
corresponding axis/axis group terminates.

GMQU resets to zero each time an axis is regrouped, i.e., a group that contains the axis is created or
split-up.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.9.19 GMTYPE

Description

GMTYPE is an integer array, with one element for each axis in the system. The MPU updates GMTYPE
each time a motion involving the corresponding axis or axis group starts or terminates.

Tag

60

358Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

GMTYPE is updated according to the type of the motion as follows:

0 - no motion

1 - PTP motion

2 - MPTP...ENDS motion

3 - TRACK motion

4 - MSEG...ENDS motion

5 - JOG motion

6 - SLAVE motion

7 - PATH...ENDS motion

8 - PVSPLINE...ENDS motion

10 - XSEG...ENDS motion

11 - BPTP motion

12 - BSEG...ENDS motion

43 - BPTP/2 motion using 20 kHz control

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.9.20 GPATH

Description

GPATH is a real array, with one element for each axis in the system. GPATH defines the current path
value, defined as the distance from the motion origin to the current motion point, or in the case of
Extended Segmented Motion, the distance from the beginning of the first segment.

Tag

61

Comments

GPATH updates each MPU cycle if one of the following is true:

> Single-axis motion in progress

> The axis is a leading axis in a group and motion in the group is in progress

If either of these conditions is not true, GPATH retains its previous value.

For single-axis motion, GPATH defines a positive distance from the initial point of the motion.

359Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

If the axis is a leading axis, GPATH defines a vector distance along the trajectory from the motion
origin.

GPATH, GVEL, GACC, GJERK, GPHASE, and GRTIME variables are updated while the
motion is in progress.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.21 GPHASE

Description

GPHASE is an integer array, with one element for each axis in the system. GPHASE defines the
current phase of a motion.

Tag

62

Comments

GPHASE can have the following values:

0 - no motion

1 - acceleration buildup

2 - constant acceleration

3 - acceleration finishing

4 - constant velocity

5 - deceleration buildup

6 - constant deceleration

7 - deceleration finishing

8 - kill deceleration

9 - asynchronous phase of master-slave motion

10 - synchronous phase of master-slave motion

11 - stalled phase of master-slave motion.

13 - dwell phase in JOG or MPTP...ENDS motions, or no defined target point in PATH...ENDS,
PVSPLINE...ENDS or MPTP...ENDS motions.

31 – Jerk buildup when acceleration buildup

360Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

32 – Jerk finishing when acceleration buildup

33 – Jerk buildup when acceleration finishing

34 – Jerk finishing when acceleration finishing

35 – Jerk buildup when deceleration buildup

36 – Jerk finishing when deceleration buildup

37 – Jerk buildup when deceleration finishing

38 – Jerk finishing when deceleration finishing

GPATH, GVEL, GACC, GJERK, GPHASE, and GRTIME variables are updated while the
motion is in progress.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.9.22 GRTIME

Description

GRTIME is a real array, with one element for each axis in the system. GRTIME defines an estimated
value of time (in milliseconds) remaining until the end of the current motion.

Tag

63

Comments

GRTIME updates each MPU cycle if one of the following is true:

> Single-axis motion in progress

> The axis is a leading axis in a group and motion in the group is in progress

GRTIME does not update if the motion is JOG or MASTER SLAVE. If GRTIME does not update, it retains
its previous value.

Normally, 1-2 msec after motion starts, GRTIME accepts the correct value. In rare cases, the GRTIME
value remains high during motion phases 1 and 2, and accepts correct value at the beginning of
phase 3.

GPATH, GVEL, GACC, GJERK, GPHASE, and GRTIME variables are updated while the
motion is in progress.

361Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.23 GSEG

Description

GSEG is an integer array, with one element for each axis in the system. GSEG defines the ordinal
number of the currently executing segment.

Tag

64

Comments

GSEG updates only under one of the following conditions:

> Single-axis motion in progress, or

> The axis is a leading axis in a group and motion in the group is in progress

If either of these conditions is not true, GSEG retains its previous value.

GSEG updates as follows:

> If the current motion in the axis/axis group is not MSEG...ENDS, the GSEG value is -1.

> The value resets to zero when a multi segment motion starts

> The value increments each time when the motion passes from one segment to the next.

> The value decrements each time the motion passes from one segment to the previous
(possible only in master-slave motion).

> Because the motion returns to the start point in cyclic motion, GSEG may appear greater
than the number of a segment in the motion, if the motion overruns the segment
sequence in positive direction.

> For master-slave cyclic motion, GSEG may appear negative, if the motion overruns the
segment sequence in a negative direction.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

362Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.9.24 GSFREE

Description

GSFREE is an integer array, with one element for each axis in the system. GSFREE is updated for the
leading axis with the number of free cells in the segment queue.

Tag

65

Comments

If GSFREE is zero, the segment queue is full and the next coming POINT or MPOINT command will be
delayed until the required number of cells are freed.

Accessibility

Read-Only

Related ACSPL+ Variable

GSEG

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.9.25 GSNAP

Description

GSNAP is a real array, with one element for each axis in the system, and is used for defining the
current calculated snap vector snap of group motion.

Tag

407

3.9.26 GVEC

Description

GVEC is a real array, with one element for each axis in the system. GVEC is updated each MPU cycle, if
a motion involving the axis is in progress. If the motion is not in progress, GVEC retains its previous
value.

Tag

66

Comments

In single-axis motion, GVEC = 1 or -1, depending on the motion direction.

In multi-axis group motion, GVEC values for all axes in the group are updated each MPU cycle and
together build up a tangent vector for the motion trajectory.

GVEC can also be used for retrieving a tangent vector.

363Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.27 GVEL

Description

GVEL is a real array, with one element for each axis in the system, and is used for deriving the vector
velocity of a group motion.

For example when the three axes 0, 1 and 2 are moving as a group, the GVEL is calculated by:

GPATH, GVEL, GACC, GJERK, GPHASE, and GRTIME variables are updated while the
motion is in progress

Tag

67

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Lisbrary Functions

acsc_ReadReal

3.9.28 JERK

Description

JERK is a real array, with one element for each axis in the system, and is used for defining the jerk of
the motion profile.

Syntax

JERK(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 2e+007.

364Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

80

Comments

For single-axis motion, JERK defines the axis jerk. If the axis is a leading axis in a group, JERK defines
vector jerk of the common motion.

If JERK is changed when a motion is in progress, the change does not affect currently executing
motions, or motions that were created before the change.

Accessibility

Read-Write

JERK values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

IMM, and all motion commands where the profile is generated by the controller.

Related ACSPL+ Variables

ACC, DEC, KDEC, VEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetJerk, SetJerk, SetJerkImm

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_GetJerk, SetJerk, acsc_SetJerkImm

3.9.29 KDEC

Description

KDEC is a real array, with one element for each axis in the system, and is used for defining
deceleration when a motion is killed by the user or fails due to a fault.

Syntax

KDEC(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308, Default = 100000.

Tag

81

365Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

For single-axis motion, the value defines axis deceleration. If the axis is a leading axis in a group,
KDEC defines the vector deceleration when the common motion is killed or fails.

If KDEC is changed when a motion is in progress, the change does not affect currently executing or
motions that were created before the change.

Accessibility

Read-Write

KDEC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

ACC, DEC, JERK, VEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetKillDeceleration, GetKillDeceleration, SetKillDecelerationImm

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_SetKillDeceleration, acsc_GetKillDeceleration, acsc_
SetKillDecelerationImm

3.9.30 LPOS

Description

LPOS is a real array, with one element for each axis in the system, the elements of which store the
axis position in the Local Coordinate System.

Syntax

LPOS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid values are: 0, 1, 2, ... up to the number of axes
in the system minus 1.

value value ranges from 2.22507e-308 to 1.79769e+308; default = 50.

Tag

372

Accessibility

Read-Only

Related ACSPL+ Variables

"FPOS" on page 353, "RPOS" on page 375, "APOS" on page 348

.NET Library Methods

ReadVariable, WriteVariable

366Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.9.31 MPOS

Description

MPOS is a real array, with one element for each axis in the system, and defines the current master
position value for the axis in user units.

Tag

89

Comments

MASTER must precede MPOS for the specified axis. MPOS updates each controller cycle according to
the formula specified in MASTER.

Accessibility

Read-Only

Related ACSPL+ Commands

MASTER, SLAVE

Related ACSPL+ Variables

FPOS, F2POS, APOS

COM Library Methods and .NET Library Methods

ReadVariable, SetMaster, Slave

C Library Functions

acsc_ReadReal, acsc_SetMaster, acsc_Slave

3.9.32 MSTIMEA

Description

MSTIMEA returns the time elapsed from start of motion up to first entering the settled zone, using
SETTLEA and TARGRADA to determine the time and radius required for settling.

Syntax

Value = MSTIMEA(Axis_Index)

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

341

367Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADA. This indicates if we the motor is in the target zone, if it stays in the
target zone for at least SETTLEA time - bit MST.#INTARGA is raised, respectively, and depending on
the operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEA and is only valid when the #INTARGA bit is on.

Related ACSPL+ Variables

TARGRADA, SETTLEA, MST(axis_index).#INTARGA

Accessibility

Read-only

MSTIMEA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

MSTIMEA is only updated if the Move & Settle feature is enabled by using SETCONF(318
to enable either single mode or auto mode.

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadReal()

3.9.33 MSTIMEB

Description

MSTIMEB returns the time elapsed from start of motion up to first entering the settled zone, using
SETTLEB and TARGRADB to determine the time and radius required for settling.

Syntax

Value = MSTIMEB(Axis_Index)

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

342

368Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADB. This indicates if we the motor is in the target zone, if it stays in the
target zone for at least SETTLEB time - bit MST.#INTARGB is raised, respectively, and depending on
the operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIME_B and is only valid when the #INTARGB bit is on.

Related ACSPL+ Variables

TARGRADB, SETTLEB, MST(axis_index).#INTARGB

Accessibility

Read-only

MSTIMEB values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

MSTIMEB is only updated if the Move & Settle feature is enabled by using SETCONF(318
to enable either single mode or auto mode.

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadReal()

3.9.34 MSTIMEC

Description

MSTIMEC returns the time elapsed from start of motion up to first entering the settled zone, using
SETTLEC and TARGRADC to determine the time and radius required for settling.

Syntax

Value = MSTIMEC(Axis_Index)

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

343

369Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADC. This indicates if we the motor is in the target zone, if it stays in the target
zone for at least SETTLEC time - bit MST.#INTARGC is raised, respectively, and depending on the
operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEC and is only valid when the #INTARGC bit is on.

Related ACSPL+ Variables

TARGRADC, SETTLEC, MST(axis_index).#INTARGC

Accessibility

Read-only

MSTIMEC values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

MSTIMEC is only updated if the Move & Settle feature is enabled by using SETCONF(318
to enable either single mode or auto mode.

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadReal()

3.9.35 NVEL

Description

NVEL is a real array, with one element for each axis in the system, and is used for specifying the start
and the end velocities for an axis in stepper motor applications.

Syntax

NVEL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 1.79769e+308, Default = 0.

Tag

91

370Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

1. An NVEL element affects the motion of the corresponding axis and the multi-axis motions if
the axis is a leading axis in the group.

2. If an element is zero, the normal motion profile starts from zero velocity and finishes at
zero velocity.
If an element is non-zero, at the beginning of motion the velocity immediately jumps to the
NVEL value and then continues the regular motion profile. At the end of the motion, the
motion approaches the final point at the velocity specified by NVEL, and then immediately
drops to zero. For example, KILL/KILLALL and HALT slow the velocity to the value specified
in NVEL, and then the velocity drops to zero.

Accessibility

Read-Write

NVEL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection.

Related ACSPL+ Commands

IMM, and all motion commands where the profile is generated by the controller.

Related ACSPL+ Variables

VEL

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.9.36 PE

Description

PE is a real array, with one element for each axis in the system, and is used for displaying the
difference between RPOS and FPOS (the current position error) denoting a noncritical position error.

The PE value is valid only if the motor is enabled.

Tag

98

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands.

371Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

FPOS, RPOS, FAULT

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.37 PPOS

Description

PPOS is real array, with one element for each axis in the system, the elements of which store the
current desired motor reference position. Unlike RPOS, this holds the current value, rather than a
value taking into account the delay for reading the actual current position from the encoder.

Tag

364

Comments

When the motor is disabled, RPOS = FPOS.

This variable is supported in ADK versions 2.70 and higher.

Accessibility

Read-Only

Related ACSPL+ Commands

SET, CONNECT, and all motion commands.

Related ACSPL+ Variables

FPOS, RVEL, RACC

COM Library Methods and .NET Library Methods

ReadVariable, GetRPosition, SetRPosition

C Library Functions

acsc_ReadReal, acsc_GetRPosition, acsc_SetRPosition

3.9.38 PPOSCOMP

Description

PPOSCOMP is real array, with one element for each axis in the system, the elements of which store
the current desired motor reference position including dynamic error compensation. Unlike
RPOSCOMP, this holds the current value, rather than a value taking into account the delay for
reading the actual current position from the encoder.

Tag

365

Comments

This variable is supported in ADK versions 2.70 and higher.

372Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands.

Related ACSPL+ Variables

PPOS, FPOS, RPOS, APOS, PE, DECOMP

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.39 PRFLTIME

Description

PRFLTIME is a real array, the size of which is determined by the total number of axes in the system.
It holds the time(In milliseconds) passed from the moment that the move starts until the motion
profile ends.

Syntax

value = PRFLTIME(index)

Arguments

index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

405

Comments

> The PRFLTIME variable is updated with the latest profile time for the relevant axes.

> If we have multi-axes move, the profile time for all the involved axes is the same and will
be updated once the profile has ended for all the axes.

> A kill/error event is regarded as profile end.

> If the profile starts and ends in the same cycle (for example, move from the current axis
position to the same position), the profile time will be 0.

Related ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable()

373Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadReal()

3.9.40 RACC

Description

RACC is a real array, with one element for each axis in the system, and defines the current reference
acceleration value for the motor in user-defined units.

Tag

106

Comments

RACC updates each controller cycle, and is calculated by digital differentiation of RVEL.

Accessibility

Read-Only

Related ACSPL+ Commands

All motion related commands.

Related ACSPL+ Variables

RVEL, RPOS

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

Real

3.9.41 RJERK

Description

RJERK is a real array, with one element for each axis in the system, and defines the current
calculated reference jerk value for the motor in user-defined units.

RJERK is updated each controller cycle and is calculated as digital differentiation of RACC.

Tag

259

Accessibility

Read-Only

3.9.42 ROFFS

Description

ROFFS is a real array, with one element for each axis in the system, the elements of which store the
Reference Offset.

374Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

107

Comments

As long as the motor is in the default connection (MFLAGS(axis).#DEFCON = 1), offset ROFFS is zero.
Once a user specifies connect formula such as:

CONNECT RPOS(0) = F(…)

the controller calculates offset ROFFS(0) to prevent a sudden change in RPOS(0) that may cause the
motor to jump. The controller then calculates:

RPOS(0) = F(…) + ROFFS(0)

each controller cycle.

The controller recalculates ROFFS to prevent motor jump when the commands CONNECT, SET,
ENABLE/ENABLE ALL, DISABLE/DISABLEALL, KILL are executed. ROFFS reads the current value of the
offset.

Watching the ROFFS value facilitates development and debugging of applications with
complex kinematics.

Accessibility

Read-Only

Related ACSPL+ Commands

CONNECT, SET, ENABLE/ENABLE ALL, DISABLE/DISABLEALL, KILL/KILLALL

Related ACSPL+ Variables

MFLAGS(axis_index).#DEFCON (bit 17 = Default Connection)

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.43 RPOS

Description

RPOS is real array, with one element for each axis in the system, the elements of which store the
current desired motor reference position.

Tag

108

Comments

RPOS updates each MPU cycle according to the connection specified for the motor, see CONNECT.

When the motor is disabled, RPOS = FPOS.

375Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

Related ACSPL+ Commands

SET, CONNECT, and all motion commands.

Related ACSPL+ Variables

FPOS, RVEL, RACC

COM Library Methods and .NET Library Methods

ReadVariable, GetRPosition, SetRPosition

C Library Functions

acsc_ReadReal, acsc_GetRPosition, acsc_SetRPosition

3.9.44 RPOSCOMP

Description

RPOSCOMP is real array, with one element for each axis in the system, the elements of which store
the current desired motor reference position including dynamic error compensation.

RPOSCOMP updates every controller cycle according to the configured dynamic error
compensation, see ERRORMAP1D, ERRORMAPN1D, ERRORMAP2D, ERRORMAPN2D.

When the dynamic error compensation is not configured, RPOSCOMP = RPOS.

Tag

348

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands.

Related ACSPL+ Variables

FPOS, RPOS, APOS, PE, DECOMP

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.45 RPOSDEL

Description

RPOSDEL shows the actual delay time that is currently set. The delay value is rounded (ceiling
function) to 50 µsec. At the beginning of the motion, which is delayed, the parameter indicates the
specified delay. At the end of the motion, the delay is gradually reduced to zero.

376Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

INT val = RPOSDEL

Tag

329

Accessibility

Read-Only

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadInteger()

3.9.46 RSNAP

Description

RSNAP is a real array, with one element for each axis in the system, and is used for defining the
current calculated reference snap (jerk derivation) in user-defined units.

Tag

408

3.9.47 RVEL

Description

RVEL is a real array, with one element for each axis in the system, the elements of which store the
current motor reference velocity in user-defined units.

Tag

109

Accessibility

Read-Only

Related ACSPL+ Commands

All motion commands.

Related ACSPL+ Variables

RPOS, RACC, FVEL

COM Library Methods and .NET Library Methods

ReadVariable, GetRVelocity

C Library Functions

acsc_ReadReal, acsc_GetRVelocity

377Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.9.48 SETTLEA

Description

SETTLEA allows you to set the time to wait inside the TARGRADA before triggering MST.#INTARGA.

Syntax

SETTLEA(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 0.

Tag

338

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADA. This indicates if we the motor is in the target zone, if it stays in the
target zone for at least SETTLEA time - bit MST.#INTARGA is raised, respectively, and depending on
the operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEA and is only valid when the #INTARGA bit is on.

Related ACSPL+ Variables

TARGRADA, MST(axis_index).#INTARGA, MSTIMEA

Accessibility

Read-Write

SETTLEA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection .

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.49 SETTLEB

Description

SETTLEB allows you to set the time to wait inside the TARGRADB before triggering MST.#INTARGB.

378Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SETTLEB(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 0.

Tag

339

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADB. This indicates if we the motor is in the target zone, if it stays in the
target zone for at least SETTLEB time - bit MST.#INTARGB is raised, respectively, and depending on
the operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEB and is only valid when the #INTARGB bit is on.

Related ACSPL+ Variables

TARGRADB, MST(axis_index).#INTARGB, MSTIMEB

Accessibility

Read-Write

SETTLEB values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection .

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.50 SLSFF

Description

SLSFF is a SNAP feed forward parameter.

3.9.51 SETTLEC

Description

SETTLEC allows you to set the time to wait inside the TARGRADC before triggering MST.#INTARGC.

379Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SETTLEC(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 0.

Tag

340

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADC. This indicates if we the motor is in the target zone, if it stays in the target
zone for at least SETTLEC time - bit MST.#INTARGC is raised, respectively, and depending on the
operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEC and is only valid when the #INTARGC bit is on.

Related ACSPL+ Variables

TARGRADC, MST(axis_index).#INTARGC, MSTIMEC

Accessibility

Read-Write

SETTLEC values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection .

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.52 SNAP

Description

SNAP is a real array with one element for each axis in the system, and is used for defining the snap
(jerk derivative) of the motion profile in user-defined units.

Syntax

SNAP(axis_index) = value

380Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value value ranges from 2.22507e-308 to 1.79769e+308, Default = 1e+009

Tag

406

3.9.53 STLTIMEA

Description

STLTIMEA is a real array, with one element for each axis in the system. Each element holds the last
settling time of the axis, i.e., the time passed since the profile generation has been completed up to
first entering the settled zone, using SETTLEA and TARGRADA to determine the time and radius
required for settling.

Syntax

value = STLTIMEA(axis_index)

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

392

Comments

> In cases where the motion settled within the specified radius before the profile has
finished, STLTIME = 0. Otherwise, STLTIME [axis_index] = MSTIME[axis_index] - PRFLTIME
[axis_index].

> This feature has two operating modes, which are controlled through SETCONF with key 318,
where index indicates the axis number and the value the mode, value of 0 is the default
and deactivates the feature. See SETCONF documentation for more details.

> Only motions which support TPOS may be used to measure the settle time. These motions
are: PTP, MPTP, and TRACK.

> Once the MST(axis_index).#INTARGA bit is set(1), the STLTIMEA variable holds an updated
value of the axis settling time.

Related ACSPL+ Variables

MSTIMEA, TARGRADA, SETTLEA, MST(axis_index).#INTARGA

Accessibility

Read-Only

381Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.54 STLTIMEB

Description

STLTIMEB is a real array, with one element for each axis in the system. Each element holds the last
settling time of the axis, i.e., the time passed since the profile generation has been completed up to
first entering the settled zone, using SETTLEB and TARGRADB to determine the time and radius
required for settling.

Syntax

value = STLTIMEB(axis_index)

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

393

Comments

> In cases where the motion settled within the specified radius before the profile has
finished, STLTIME = 0. Otherwise, STLTIME [axis_index] = MSTIME[axis_index] - PRFLTIME
[axis_index].

> This feature has two operating modes, which are controlled through SETCONF with key 318,
where index indicates the axis number and the value the mode, value of 0 is the default
and deactivates the feature. See SETCONF documentation for more details.

> Only motions which support TPOS may be used to measure the settle time. These motions
are: PTP, MPTP, and TRACK.

> Once the MST(axis_index).#INTARGB bit is set(1), the STLTIMEB variable holds an updated
value of the axis settling time.

Related ACSPL+ Variables

MSTIMEB, TARGRADB, SETTLEB, MST(axis_index).#INTARGB

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

382Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.9.55 STLTIMEC

Description

STLTIMEC is a real array, with one element for each axis in the system. Each element holds the last
settling time of the axis, i.e., the time passed since the profile generation has been completed up to
first entering the settled zone, using SETTLEC and TARGRADC to determine the time and radius
required for settling.

Syntax

value = STLTIMEC(axis_index)

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

392

Comments

> In cases where the motion settled within the specified radius before the profile has
finished, STLTIME = 0. Otherwise, STLTIME [axis_index] = MSTIME[axis_index] - PRFLTIME
[axis_index].

> This feature has two operating modes, which are controlled through SETCONF with key 318,
where index indicates the axis number and the value the mode, value of 0 is the default
and deactivates the feature. See SETCONF documentation for more details.

> Only motions which support TPOS may be used to measure the settle time. These motions
are: PTP, MPTP, and TRACK.

> Once the MST(axis_index).#INTARGC bit is set(1), the STLTIMEC variable holds an updated
value of the axis settling time.

Related ACSPL+ Variables

MSTIMEC, TARGRADC, SETTLEC, MST(axis_index).#INTARGC

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.9.56 TARGRADA

Description

TARGRADA is a variable designed to define the target radius around which you wish the motion to
settle.

383Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

TARGRADA(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 1.

Tag

335

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADA. This indicates if the motor is in the target zone, if it stays in the target
zone for at least SETTLEA time - bit MST.#INTARGA is raised, respectively, and depending on the
operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEA and is only valid when the #INTARGA bit is on.

Related ACSPL+ Variables

SETTLEA, MST(axis_index).#INTARGA, MSTIMEA

Accessibility

Read-Write

TARGRADA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.57 TARGRADB

Description

TARGRADB is a variable designed to define the target radius around which you wish the motion to
settle.

Syntax

TARGRADB(Axis_Index) = Value

384Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 1.

Tag

336

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADB. This indicates if we the motor is in the target zone, if it stays in the
target zone for at least SETTLEB time - bit MST.#INTARGB is raised, respectively, and depending on
the operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEB and is only valid when the #INTARGB bit is on.

Related ACSPL+ Variables

SETTLEB, MST(axis_index).#INTARGB, MSTIMEB

Accessibility

Read-Write

TARGRADB values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.58 TARGRADC

Description

TARGRADC is a variable designed to define the target radius around which you wish the motion to
settle.

Syntax

TARGRADC(Axis_Index) = Value

385Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value Value ranges from 2.22507e-308, 1.79769e+308, Default = 1.

Tag

337

Comments

We compare the distance between current position and target position to the given target radii,
represented by TARGRADC. This indicates if we the motor is in the target zone, if it stays in the target
zone for at least SETTLEC time - bit MST.#INTARGC is raised, respectively, and depending on the
operating mode – further inspection will be stopped or continued.

The time from the beginning of motion until first entering the settled zone is represented by
MSTIMEC and is only valid when the #INTARGC bit is on.

Related ACSPL+ Variables

SETTLE_C, MST(axis_index).#INTARGC, MSTIMEC

Accessibility

Read-Write

TARGRADC values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio > Toolbox > Application Development > Protection.

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadReal(), acsc_WriteReal()

3.9.59 TPOS

Description

TPOS is a real array, with one element for each axis in the system, and is used for defining or
updating the target position in TRACK motion.

Syntax

TPOS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 0.

386Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

135

Comments

The controller update occurs as follows:

> When the controller executes PTP motion, the axes’ target coordinates are stored in the
TPOS elements.

> During MPTP...ENDS motion, the controller updates the target coordinates each time motion
to the next point starts.

> When the controller executes TRACK motion, the axes’ target coordinates are stored in the
TPOS elements.

Accessibility

Read-Write

TPOS values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

TRACK

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, Track

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_Track

3.9.60 VEL

Description

VEL is a real array, with one element for each axis in the system, and is used for defining the default
velocity of the motion profile. If a motion command does not specify a specific velocity, the default
value is used.

Syntax

VEL(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -1.79769e+308 to 1.79769e+308, Default = 10000.

Tag

139

387Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

For single-axis motion, the value defines axis velocity. If the axis is a leading axis in a group, its value
defines a vector velocity of common motion.

If VEL is changed when a motion is in progress, the change does not affect currently executing
motions or motions that were created before the change.

Accessibility

Read-Write

VEL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

IMM, and all motion commands where the profile is generated by the controller.

Related ACSPL+ Variables

ACC, DEC, JERK, KDEC,

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetVelocity, GetVelocity, SetVelocityImm

C Library Functions

acsc_ReadReal, acsc_WriteReal, acsc_SetVelocity, acsc_GetVelocity, acsc_SetVelocityImm

3.10 Program Execution Control Variables

The Program Execution Control variables are:

Name Description

ONRATE Autoroutine Rate

PCHARS Program Size in Characters

PERL Program Error Line

PERR Program Error

PEXL Executed Line

PFLAGS Program Flags

PLINES Number of Lines

PRATE Program Rate

PST Program State

388Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.10.1 ONRATE

Description

ONRATE is an integer array with one element for each program buffer plus one for the D-Buffer and
is used for controlling the autoroutine execution rate.

Syntax

ONRATE(buffer_index) = value

Arguments

buffer_index
buffer index - a number between 0 and the total
number of buffers minus one (the highest number is
that of the D-Buffer).

value value ranges from 1 to 10, Default = 1.

Tag

93

Comments

ONRATE is set through SPiiPlus MMI Application Studiog Toolboxg Application Developmentg
Program Managerg Program Buffer Parameters.

When an autoroutine executes in the program buffer, the execution rate is ONRATE lines per each
MPU cycle. The normal rate of program execution (when no autoroutine is activated) is defined by
PRATE.

Accessibility

Read-Write

ONRATE values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.10.2 PCHARS

Description

PCHARS is an integer array with one element for each program buffer plus one for the D-Buffer that
stores the total number of characters stored in the buffer.

Tag

95

389Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.10.3 PERL

Description

PERL is an integer array with one element for each program buffer plus one for the D-Buffer that
stores the line number where the error occurred.

Tag

99

Comments

If an error occurs during ACSPL+ program execution, the controller stores the line number where the
error occurred in the corresponding element of the PERL array.

Accessibility

Read-Only

Related ACSPL+ Variables

PERR

COM Library Methods and .NET Library Methods

ReadVariable, GetProgramError

C Library Functions

acsc_ReadInteger, acsc_GetProgramError

3.10.4 PERR

Description

PERR is an integer array with one element for each program buffer plus one for the D-Buffer that
stores an error code.

Error codes are found in Table 6-2 and Table 6-3.

Tag

100

Comments

If an error occurs during ACSPL+ program execution, the controller stores the error code in the
corresponding element of the PERR array.

Accessibility

Read-Only

390Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

PERL

COM Library Methods and .NET Library Methods

ReadVariable, GetProgramError

C Library Functions

acsc_ReadInteger, acsc_GetProgramError

3.10.5 PEXL

Description

PEXL is an integer array with one element for each program buffer plus one for the D-Buffer that
stores the number of the currently executed line.

Tag

101

Comments

PEXL stores the number of the currently executed line in the buffer. If the program has not
executed, the variable reads zero.

Accessibility

Read-Only

Related ACSPL+ Variables

PERL, PERR

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

PEXL does not support D-Buffer.

3.10.6 PFLAGS

Description

PFLAGS is an integer array with one element for each program buffer plus one for the D-Buffer, each
element of which contains a set of bits that defines the behavior of the program buffer.

When the #JIT(Just In Time) bit is ON the controller waits for a file loading operation (via MMI or host
application program) and can start executing the commands in the buffer immediately after the
loading process is completed.

The Just in Time buffer acts as a FIFO for the ACSPL+ commands which are read from the file. After
the file is loaded, the buffer can be executed any number of times.

391Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The #JIT bit can be set to ON only if the buffer is empty. Error 3204 “JIT and Dynamic
modes require the buffer to be empty” is returned if the buffer is not empty.

Syntax

PFLAGS(buffer_index).(bit) = 0|1

Arguments

buffer_index buffer index - a number between 0 and 64 (64 being the D-Buffer).

bit Table 3-9

Table 3-9. PFLAGS Bit Description 1

Bit Name No. Description

#NOAUTO 0
0 (default): Autoroutines (if exist in the buffer) are enabled.

1: Autoroutines (if exist in the buffer) are disabled.

#NOEDIT 1

0 (default): User program can be viewed and edited.
1: User program can be viewed but cannot be edited.

Supported after applying protection, see
Protection Wizard in the MMI Application Studio
User Guide.

#DYNAMIC 2
0 (default): Buffer works in normal order.

1: Buffer works in Dynamic mode.

#JIT 3
0 (default): Buffers works in normal order.
1: Buffer works in JIT mode.

#PRIVLG 4

0 (default): Buffer works in normal order.
1: Sets the buffer as privileged which means that the program
in the buffer can change the values of protected variables,
start and stop other ACSPL+ programs, and execute any
other action that in a regular buffer would cause a protection
violation.

#DEBUG 5
0 (default): Buffer works in normal order.

1: Not applicable (obsolete option)

392Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name No. Description

#NOVIEW 6

0 (default): The program is visible in the buffer.

1: The program in the buffer hidden from being viewed.

Supported after applying protection, see
Protection Wizard in the MMI Application Studio
User Guide.

Comments

The bit cannot be applied for the D-Buffer. Attempt to setting the bit for the D-Buffer will result in
error 3200 “JIT is not allowed for D-Buffer”.

Tag

102

Accessibility

Read-Write

PFLAGS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

Example

PFLAGS(0) #JIT=1

3.10.7 PLINES

Description

PLINES is an integer array with one element for each program buffer plus one for the D-Buffer each
element of which contains the total number of lines stored in the associated buffer.

Tag

103

Accessibility

Read-Only

Related ACSPL+ Variables

PCHARS

393Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger

3.10.8 PRATE

Description

PRATE is an integer array with one element for each program buffer, each element of which is used
for defining the program execution rate for that buffer.

Syntax

PRATE(buffer_index) = value

Arguments

buffer_
index

buffer index - a number between 0 and N, N being the number of buffers in
the product or system.

value value ranges from 1 to 10, Default = 1.

Tag

104

Comments

PRATE is set through SPiiPlus MMI Application Studiog Toolboxg Application Developmentg
Program Managerg Program Buffer Parameters.

PRATE defines the program execution rate. The execution rate is PRATE lines per each MPU cycle.

PRATE is used only if no autoroutine is activated in the buffer. While an autoroutine is executed,
ONRATE defines execution rate.

For example, if the controller is configured so that PRATE(2) is 1, but ONRATE(2) is 4, the program in
Buffer 2 will be executed one line per one controller cycle, and any autoroutine specified in Buffer 2
that interrupts the program will be executed four lines per one controller cycle. When the RET
command that terminates the autoroutine is executed, the controller switches back to the rate of
one line per one cycle.

Accessibility

Read-Write

PRATE values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

ONRATE

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

394Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.10.9 PST

Description

PST is an integer array with one element for each program buffer plus one for the D-Buffer each
element of which contains a set of bits that display the current state of the given program buffer.

The PST bits are detailed in Table 3-10.

Table 3-10. PST Bit Description

Bit Name No. Description

#COMPILED 0
0: Program in buffer is not compiled

1: Program in buffer is compiled

#RUN 1
0: Program is not running.

1: Program is running.

#SUSPEND 2
0: Program in buffer is not suspended.
1: Program is suspended after STEP or due to a breakpoint in
debug mode.

#DEBUG 5
0: Buffer works in normal order (default).

1: Not applicable (obsolete option)

#AUTO 7
0: Autoroutine is not running

1: Autoroutine is running.

Tag

105

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable, GetProgramState

C Library Functions

acsc_ReadInteger, acsc_GetProgramState

3.11 Safety Control Variables

The Safety Control variables are:

395Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

ECALERR Contains Ethernet slave error code

CERRA Critical Position Error (Accelerating)

CERRI Critical Position Error (Idle)

CERRV Critical Position Error (Velocity)

DELI Delay on Transition to Idle State

DELV Delay on Transition to Velocity State

E_ERR
An integer array for each axis containing the encoder error code identified
during the encoder initialization process

ECEXTST EtherCAT state of the SPiiPlusES slave

ECEXTERR SPiiPlusES EtherCAT error code (based on Application Level Error Code).

FAULT Faults

FAULTSIM Fault Simulation

ECST Contains Ethernet status

ECERR Contains Ethernet error code

FDEF Default Response Mask

FMASK Fault Mask

HLLROUT
Integer array used for mapping between an axis hardware left limit to a
specified digital input bit

HRLROUT
Integer array used for mapping between an axis hardware rigthlimit to a
specified digital input bit

MERR Motor Error

SAFIN Safety Inputs

SAFINI Safety Inputs Inversion

S_ERR System Error

S_FAULT System Faults

396Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

S_FDEF System Default Response Mask

S_FMASK System Fault Mask

S_SAFIN System Safety Inputs

S_SAFINI System Safety Inputs Inversion

SS11TIME
Store SS1-t channel A time between emergency stop request and drive
switching to torque off mode

SS12TIME
Store SS1-t channel B time between emergency stop request and drive
switching to torque off mode

STODELAY
Configures the delay time between the STO fault indication and the default
response (disable) to the fault

SYNC Slave synchronization indicator

3.11.1 E_ERR

Description

E_ERR is an integer array for each axis. It contains the encoder error code that was identified during
the encoder initialization process.

The encoder errors range from 5121 to 5128 and are latched in the E_ERR variable. The error codes
are specified in Table 6-5 in the Error Codes section.

Comments

This variable is supported in version 3.00 and higher.

Accessibility

Read-Only

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadInteger()

3.11.2 ECALERR

Description

ECALERR is an integer array for each EtherCAT slave in the configuration (ENI file). It contains the AL
Status Code error of the slave, when the value “0” indicates no error.

Tag

328

397Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only

.NET Library Method

ReadVariable()

C Library Function

acsc_ReadInteger()

The error codes are defined according to AL Status Code (ETG 1020).

The error codes are listed in Table 6-8.

3.11.3 ECERR

Description

ECERR is a scalar variable containing an EtherCAT error code. The EtherCAT error codes are given in
Table 6-7.

Syntax

ECERR

Arguments

None

Tag

239

Comments

Any EtherCAT error sets ECST.#OP to false and the error code is latched in ECERR.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.11.4 ECEXTERR

Description

ECEXTER is a scalar (INT) variable representing the EtherCAT error code of the SPiiPlusES (based on
Application Level Error Code). The error code range is 7000-7999. The error codes are specified in
Table 6-8.

Can be used only by SPiiPlusES.

398Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

ECEXTERR

Arguments

None

Comments

If the controller is not SPiiPlusES, the value is always 0.

Tag

321

Accessibility

Read-Only

Com Library Methods and .NET Library Methods

ReadVariable

C Library Functions

Acsc_ReadInteger

3.11.5 ECEXTST

Description

ECEXTST is a scalar (INT) variable representing the EtherCAT state of the SPiiPlusES slave. The state is
reflected in the relevant bits.

Can be used only by SPiiPlusES.

Bit Designator Description

0 #INIT SPiiPlusES is in INIT state

1 #BOOT SPiiPlusES is in BOOT state (currently not supported)

2 #PREOP SPiiPlusES is in PREOP state

3 #SAFEOP SPiiPlusES is in SAFEOP state

4 #ES_OP SPiiPlusES is in OP state

5 #ES_DC Distributed Clocks are ON

6 #WATCHDOG PDI Watchdog status. 0: expired, 1: reloaded

7 #LNKPORTA Physical Link Port A

399Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Designator Description

8 #LNKPORTB Physical Link Port B

9 #EXTSYNC Synchronized to External Clock

Syntax

ECEXTST

Arguments

None

Comments

Comments

If the controller is not SPiiPlusES, , MPU3U, or IDMsm, all bits are 0. If external EtherCAT master is not
connected, the slave is in the INIT state.

Bit 9 #EXTSYNC is relevant for IDMsm only.

Tag

320

Accessibility

Read-Only

Com Library Methods and .NET Library Methods

ReadVariable

C Library Functions

Acsc_ReadInteger

3.11.6 ECST

Description

ECST is a scalar variable affecting the EtherCAT state. The EtherCAT state is reflected in the first six
bits as given in Table 3-11.

Table 3-11. ECST Bits

Bit Designator Description

0 #SCAN
The scan process was performed successfully, that is, the
Master was able to detect what devices are connected to
it.

1 #CONFIG
There is no deviation between XML and actual setup. The
Master succeeded to initialize the network by steps
described in configuration file.

400Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Designator Description

2 #INITOK
All bus devices are successfully set to INIT state. The Master
started all devices to the initial state.

3 #CONNECTED
Indicates valid Ethernet cable connection to the master.
The physical link of EtherCAT cable is OK on the Master side.

4 #INSYNC
If DCM is used, indicates synchronization between the
Master and the bus.

5 #OP
The EtherCAT bus is operational. The Master successfully
turned each Slave into full operational mode and the bus is
ready for full operation.

6 #DCSYNC Distributed clocks are synchronized.

7 #RINGMODE Ring topology mode is selected.

8 #RINGCOMM Ring Communication is active.

9 #EXTCONN External clock is connected

10 #DCXSYNC External clock/slaves are synchronized

Syntax

ECST.bit_designator = 1|0

Arguments

None

Tag

238

Comments

All bits (except #INSYNC in some cases) should be true for proper bus functioning.

For monitoring the bus state, checking bit #OP is sufficient. Any bus error will reset the #OP bit.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

401Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.11.7 FAULT

Description

FAULT is an integer array, with one element for each axis in the systems, the elements of which
contain a set of bits that stores axis-related fault bits.

The fault bits are detailed in Table 3-12.

Table 3-12. Axis Fault Bits

Bit Fault Fault Description

0 #RL
Hardware Right Limit.

1 = Right limit switch is activated.

1 #LL
Hardware Left Limit.

1 = Left limit switch is activated.

2 #NT
Network Error.

1 = EtherCAT network error is activated.

4 #HOT
Motor Overheat.

1 = Motor's temperature sensor indicates overheat.

5 #SRL

Software Right Limit.

1 = Axis reference position (RPOS) is greater than the software
right limit margin (SRLIMIT).

6 #SLL

Software Left Limit.

1 = Axis reference position (RPOS) is less than the software left
limit margin (SLLIMIT).

7 #ENCNC

Encoder Not Connected.

1 = Primary encoder (for digital encoder type only) is not
connected.

8 #ENC2NC

Encoder 2 Not Connected.

1 = Secondary encoder (for digital encoder type only) is not
connected.

9 #DRIVE
Drive Alarm.

1 = Signal from the drive reports a failure.

10 #ENC
Encoder Error.

1 = Primary encoder miscounts.

402Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

11 #ENC2
Encoder 2 Error.

1 = Secondary encoder miscounts.

12 #PE

Position Error.

1 = Position error (PE) has occurred.

PE is defined by the following variables:

> ERRI - Maximum position error while the axis is idle

> ERRV - Maximum position error while the axis is
moving with constant velocity

> ERRA - Maximum position error while the axis is
accelerating or decelerating

> DELI - Delay on transition from ERRA to ERRI

> DELV - Delay on transition from ERRAERRA to ERRV

13 #CPE

>Critical Position Error.

1 = Position error (#PE) exceeds the value of the critical limit.

#CPE errors occur outside normal range of operation and #CPE
> #PE.

The critical limit depends on the axis state and is defined by the
following variables:

> CERRI if the axis is idle (not moving)

> CERRV if the axis is moving with constant velocity

> CERRA if the axis is accelerating or decelerating

> DELI - Delay on transition from ERRA to CERRI

> DELV - Delay on transition from ERRA to CERRV

14 #VL

Velocity Limit.

1 = Absolute value of the reference velocity (RVEL) exceeds the
limit defined by the XVEL parameter.

15 #AL

Acceleration Limit.

1 = Absolute value of the reference acceleration (RACC)
exceeds the limit defined by the XACC parameter.

16 #CL Current Limit.

403Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

1 = RMS current calculated in the Servo Processor exceeds the
limit value defined by the XRMS parameter.

17 #SP

Servo Processor Alarm.

1 = Axis Servo Processor loses its synchronization with the
MPU. The fault indicates a fatal problem in the controller.

18 #STO
Safe Torque Off

1 = STO is active

20 #HSSINC
Hssi Not Connected.

1 = HSSI module is not connected.

Tag

47

Comments

FAULT indicates axis related fault bits as detected by the safety mechanism. When each of the faults
is active (such as Left Limit), the corresponding fault bit becomes = 1 while the fault is active, and
automatically reverts to 0 when the fault is no longer active.

> Each fault can be masked by FMASK.

> The logic of some faults can be inverted by SAFINI.

> The default response of each fault can be disabled by FDEF. In this case, any customized
default response can be implemented by autoroutines - see ON...RET.

For a list of S_FAULT related system fault bits see S_FAULT Fault Bits

Accessibility

Read-Only

FAULT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

S_FAULT, FDEF, S_FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, GetFault

C Library Functions

acsc_ReadInteger, acsc_GetFault

404Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.11.8 FAULTSIM

Description

FAULTSIM is an integer array, with one element for each axis in the system. Each such element
consists of bits representing the errors in the axis or the system itself. This variable is used to
simulate these faults and raising a certain bit will trigger the fault the axis/system thereby raising
FAULT and S_FAULT.

The fault bits are indicated in the following table:

Bit Fault Fault Description

Axis Faults

0 #RL
Hardware Right Limit
1 = Right limit switch is activated

1 #LL
Hardware Left Limit
1 = Left limit switch is activated.

2 #NT
Network Error

1 = EtherCAT network error is activated

4 #HOT
Motor Overheat
1 = Motor's temperature sensore indicates overheating

5 #SRL
Software Left Limit
1 = Axis reference postion (RPOS) is greater than the
software right limit margin (SRLIMIT).

6 #SLL
Software Left Limit
1 = Axis reference position (RPOS) is less than the software
left limit margin (SLLIMIT).

7 #ENCNC
Encoder Not Connected
1 = Primary encoder (for digital encoder type only) is not
connected.

8 #ENC2NC
Encoder 2 Not Connected
1 = Secondary encoder (for digital encoder type only) is not
connected.

9 #DRIVE
Drive Fault
1 = Signal from the drive reports a failure

10 #ENC
Encoder Error
1 = Primary encoder miscounts.

405Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

Axis Faults

11 #ENC2
Encoder 2 Error
1 = Secondary encoder miscounts.

12 #PE

1 = Position error (PE) has occurred.
PE is defined by the following variables:

> ERRI- Maximum position error while the axis is idle

> ERRV - Maximum position error while the axis is
moving with constant velocity

> ERRA - Maximum position error while the axis is
accelerating or decelerating

> DELI- Delay on transition from ERRA to ERRI

> DELV - Delay on transition from ERRA to ERRV

13 #CPE

Critical Position Error
1 = Position error (#PE) exceeds the value of the critical limit.

#CPE errors occur outside normal range of operation and
#CPE > #PE.
The critical limit depends on the axis state and is defined by
the following variables:

> CERRI if the axis is idle (not moving)

> CERRV if the axis is moving with constant velocity

> CERRA if the axis is accelerating or decelerating

> DELI- Delay on transition from ERRA to CERRI

> DELV - Delay on transition from ERRA to CERRV

14 #VL
Velocity Limit
1 = Absolute value of the reference velocity (RVEL) exceeds
the limit defined by the XVEL parameter.

15 #AL
Acceleration Limit
1 = Absolute value of the reference acceleration (RACC)
exceeds the limit defined by the XACC parameter.

16 #CL
Current Limit
1 = RMS current calculated in the Servo Processor exceeds
the limit value defined by the XRMS parameter.

406Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

Axis Faults

17 #SP

Servo Processor

1 = Axis Servo Processor loses its synchronization with the
MPU. The fault indicates a fatal problem in the controller.

20 #HSSINC
HSSI Not Connected
1 = HSSI module is not connected.

System Faults

23 #EXTNT External Network Error

24 #TEMP

MPU Overheat Fault
Activated at CPU temperature > 90°C or System
temperature > 70°C
Default response - none

25 #PROG

Program Fault

1 = Run time error occurs in one of the executing ACSPL+
programs.

26 #MEM
Memory Overflow

1 = User application requires too much memory.

27 #TIME

MPU Overuse

1 = User application consumes too much time in the
controller cycle.

28 #ES
Hardware Emergency Stop

1 = ES signal is activated.

29 #INT

Servo Interrupt

1 = The servo interrupt that defines the controller cycle is
not generated. The fault indicates a fatal controller
problem.

30 #INTGR

File Integrity

1 = The integrity of the user application in controller RAM is

checked by the controller at power-up and whenever an
#IR

Terminal command is issued.

407Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

System Faults

31 #FAILURE

Component Failure

1 = An MC4U hardware component other than the drive,
such as the Power Supply, I/O card, or encoder card, has
failed.

Axis Faults

When the bus voltage is not supplied to the MC4U, a component failure
fault is reported. The fault is system wide and prevents all axes from
operating unless the fault is masked or bus voltage is supplied to the
power supply.

When a component failure is reported, the affected power supply is
identified by its address. To determine the faulty unit, use the MMI
System Viewer and Diagnostics

Tag

332

Comments

This variable allows you to simulate Axis & System faults, by raising a certain bit on a given axis –
you effectively set the fault and the appropriate response will be triggered.

In order to reset some faults you must use FCLEAR command, setting the FAULTSIM bit
to 0 might not be enough.

FAULTSIM variable is not saved to flash and will be reset upon controller restart.

FAULTSIM variable does not interact with SAFINI/SAFIN variables and therefore does not affect the
variables.

408Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read/Write

Related ACSPL+ Variables

FAULT, S_FAULT, SAFINI, S_SAFINI, FMASK, S_FMASK

3.11.9 FDEF

Description

FDEF is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits used for setting a default response to an axis fault.

Syntax

FDEF(axis_index)[.bit_designator] = value

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator The FDEF bit designators are given in FDEF Bit Description.

value value ranges from -2147483648 to 2147483647, Default = -1.

409Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-13. FDEF Bit Description

Bit Fault Fault Description Default Response (FDEF)

0 #RL

Hardware Right Limit

1 = Right limit switch is
activated.

The controller kills the violating
axis.

As long as the fault is active, the
controller kills any motion that
tries to move the axis in the
direction of the limit; however,
motion within the permissible
range is allowed.

1 #LL

Hardware Left Limit

1 = Left limit switch is
activated.

Same as for #RL.

2 #NT

Network Error

1 = EtherCAT network
error detected.

Halts all program buffers and
waits for receipt of network
Sync signal.

4 #HOT

>Motor Overheat

1 = Motor's temperature
sensor indicates
overheat.

None.

5 #SRL

Software Right Limit

1 = Axis reference
position (RPOS) is greater
than the software right
limit margin (SRLIMIT).

The controller kills the violating
axis. As long as the fault is
active, the controller kills any
motion that tries to move the
axis in the direction of the limit.
Motion in the direction out of
the limit is allowed.

6 #SLL

Software Left Limit

1 = Axis reference
position (RPOS) is less
than the software left
limit margin (SLLIMIT).

Same as #SRL.

7 #ENCNC

Encoder Not Connected

1 = Primary encoder (for
digital encoder type only)
is not connected.

The controller disables the
violating axis.

8 #ENC2NC Encoder 2 Not Connected No default response.

410Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description Default Response (FDEF)

1 = Secondary encoder
(for digital encoder type
only) is not connected.

9 #DRIVE

Drive Fault

1 = Signal from the drive
reports a failure.

The controller disables the
violating axis.

This fault is only detected when
the axis is enabled. To catch this
fault in an ACSPL+ program,
write an autoroutine.

10 #ENC

Encoder Error

1 = Primary encoder
miscounts.

The controller disables the
violating axis. The faults remain
active until the user resolves
the problems and enables the
axis again or executes FCLEAR.

11 #ENC2

Encoder 2 Error

1 = Secondary encoder
miscounts.

Same as #ENC.

12 #PE

Position Error.

1 = Position error (PE) has
occurred.

PE is defined by the
following variables:

> ERRI - Maximum
position error
while the axis is
idle

> ERRV -
Maximum
position error
while the axis is
moving with
constant velocity

> DELI - Delay on
transition from
ERRA to ERRI

> DELV - Delay on
transition from

None.

411Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description Default Response (FDEF)

ERRA to ERRV

13 #CPE

Critical Position Error

1 = Position error (#PE)
exceeds the value of the
critical limit.

#CPE errors occur outside
normal range of
operation and #CPE >
#PE.

The critical limit depends
on the axis state and is
defined by the following
variables:

> CERRI if the axis
is idle (not
moving)

> CERRV if the axis
is moving with
constant velocity

> CERRA if the axis
is accelerating or
decelerating

> DELI - Delay on
transition from
ERRA to CERRI

> DELV - Delay on
transition from
CERRA to ERRV

The controller disables the
violating axis.

14 #VL

>Velocity Limit

1 = Absolute value of the
reference velocity (RVEL)
exceeds the limit defined
by the XVEL parameter.

The controller kills the violating
axis.

412Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description Default Response (FDEF)

15 #AL

>Acceleration Limit

1 = Absolute value of the
reference acceleration
(RACC) exceeds the limit
defined by the XACC
parameter.

The controller kills the violating
axis.

16 #CL

Current Limit

1 = RMS current
calculated in the Servo
Processor exceeds the
limit value defined by the
XRMS XpRarameter.

The controller disables the
violating axis.

17 #SP

Servo Processor Alarm

1 = Axis Servo Processor
loses its synchronization
with the MPU. The fault
indicates a fatal problem
in the controller.

The controller disables the
violating axis and kills the
motion that involves the axis.

18 #STO
Safe Torque Off

1 = STO is activated

Blocks the PWM signals to the
power stage of the drive

20 #HSSINC

Hssi Not Connected

1 = HSSI module is not
connected.

None.

Tag

48

Comments

When an FDEF bit = 1, the controller executes the default response when the corresponding fault
occurs. If the FDEF bit = 0, the default response is disabled.

Not every fault has a default response. For a fault that has no default response, the corresponding
FDEF bit is inoperative.

Accessibility

Read-Write

413Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

FDEF values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, S_FAULT, S_FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetResponseMask, SetResponseMask, GetFaultMask, SetFaultMask

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetResponseMask, acsc_SetResponseMask, acsc_
GetFaultMask, acsc_SetFaultMask

3.11.10 FMASK

Description

FMASK is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits used for enabling or disabling each axis fault bit.

Syntax

FMASK(axis_index)[.bit_designator] = value

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

bit_designator The FDEF bit designators are given in FMASK Bit Description.

value value ranges from -2147483648 to 2147483647, Default=1040414435.

Table 3-14. FMASK Bit Description

Bit Fault Fault Description

0 #RL
Hardware Right Limit

1 = Right limit switch is activated.

1 #LL
Hardware Left Limit

1 = Left limit switch is activated.

2 #NT
Network Error

1 = EtherCAT network error detected.

4 #HOT
Motor Overheat

1 = Motor's temperature sensor indicates overheat.

414Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

5 #SRL

Software Right Limit

1 = Axis reference position (RPOS) is greater than the software
right limit margin (SRLIMIT).

6 #SLL

Software Left Limit

1 = Axis reference position (RPOS) is less than the software left
limit margin (SLLIMIT).

7 #ENCNC

Encoder Not Connected

1 = Primary encoder (for digital encoder type only) is not
connected.

8 #ENC2NC

Encoder 2 Not Connected

1 = Secondary encoder (for digital encoder type only) is not
connected.

9 #DRIVE
Drive Fault

1 = Signal from the drive reports a failure.

10 #ENC
Encoder Error

1 = Primary encoder miscounts.

11 #ENC2
Encoder 2 Error

1 = Secondary encoder miscounts.

12 #PE

Position Error

1 = Position error (PE) has occurred.

PE is defined by the following variables:

> ERRI - Maximum position error while the axis is idle

> ERRV - Maximum position error while the axis is
moving with constant velocity

> ERRA - Maximum position error while the axis is
accelerating or decelerating

> DELI - Delay on transition from ERRA to ERRI

> DELVDELV - Delay on transition from ERRAERRA to
ERRV

415Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

13 #CPE

Critical Position Error

1 = Position error (#PE) exceeds the value of the critical limit.

#CPE errors occur outside normal range of operation and #CPE
> #PE.

The critical limit depends on the axis state and is defined by the
following variables:

> CERRI if the axis is idle (not moving)

> CERRV if the axis is moving with constant velocity

> CERRA if the axis is accelerating or decelerating

> DELI - Delay on transition from ERRA to CERRI

> DELV - Delay on transition from CERRA to ERRV

14 #VL

Velocity Limit

1 = Absolute value of the reference velocity (RVEL) exceeds the
limit defined by the XVEL parameter.

15 #AL

Acceleration Limit

1 = Absolute value of the reference acceleration (RACC)
exceeds the limit defined by the XACC parameter.

16 #CL

Current Limit

1 = RMS current calculated in the Servo Processor exceeds the
limit value defined by the XRMS parameter.

17 #SP

Servo Processor Alarm

1 = Axis Servo Processor loses its synchronization with the
MPU. The fault indicates a fatal problem in the controller.

18 #STO
Safe Torque Off

1 = STO is active

20 #HSSINC
Hssi Not Connected

1 = HSSI module is not connected.

Tag

51

416Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The default value = 1 and causes the controller to check for the fault associated with that bit, as
follows:

0 = the corresponding FAULT bit is disabled.

1 = the corresponding FAULT is enabled and examined each MPU cycle.

Accessibility

Read-Write

FMASK values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, S_FAULT, S_FDEF, S_FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetResponseMask, SetResponseMask, GetFaultMask, SetFaultMask

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetResponseMask, acsc_SetResponseMask, acsc_
GetFaultMask, acsc_SetFaultMask

3.11.11 HLLROUT

Description

HLLROUT is an integer array with one element for each axis in the system, and it is used for mapping
the hardware left limit of an axis to a specified digital input bit (ACSPL+ IN).

Syntax

HLLROUT(Axis_Index) = value

Arguments

Axis
Designates the specific axis. Valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value

Value is a 4-digit number (decimal): <NNOO> where:

> NN - digital input index (00-99)

> OO – specified input bit (00-31)

The default value is -1, in which case mapping will not occur.

Tag

379

417Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

A value of -1 disables the mapping of the digital input to the hardware limit and restores the default
behavior.

The following errors are supported:

> Error 3329: “Invalid value, digital input index should range between 0-99 and bit index
should range between 0-31”

> Error 3332: “Hardware limit swapping(MFLAGSX.#HLIMSWAP) and limit routing are mutually
exclusive”

418Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The following diagram illustrates the behavior of the firmware when the left limit signal is set:

Related ACSPL+ Variables

HRLROUT, IN

419Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.11.12 HRLROUT

Description

HRLROUT is an integer array with one element for each axis in the system, and it is used for
mapping the hardware right limit of an axis to a specified digital input bit (ACSPL+ IN).

Syntax

HRLROUT(Axis_Index) = value

Arguments

Axis
Designates the specific axis. Valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Value

Value is a 4-digit number (decimal): <NNOO> where:

> NN - digital input index (00-99)

> OO – specified input bit (00-31)

The default value is -1, in which case mapping will not occur.

Tag

379

Comments

A value of -1 disables the mapping of the digital input to the hardware limit and restores the default
behavior.

The following errors are supported:

> Error 3329: “Invalid value, digital input index should range between 0-99 and bit index
should range between 0-31”

> Error 3332: “Hardware limit swapping(MFLAGSX.#HLIMSWAP) and limit routing are mutually
exclusive”

420Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The following diagram illustrates the behavior of the firmware when the left limit signal is set:

Related ACSPL+ Variables

HLLROUT, IN

421Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.11.13 MERR

Description

MERR is an integer array, with one element for each axis in the system, the elements of which store
a code indicating the termination cause of the last motion of an axis.

An error code= 5027, "Motor Failed: Servo Processor Alarm" fault is activated when an
axes does not have a physical drive associated to it.

The MERR return values are listed in Table 6-4

Tag

86

Comments

MERR is updated every time the axis motion is terminated. MERR stores the last termination code
until either FCLEAR or ENABLE/ENABLE ALL is executed.

Accessibility

Read-Only

Related ACSPL+ Commands

FCLEAR

Related ACSPL+ Variables

PERR

COM Library Methods and .NET Library Methods

ReadVariable, GetMotorError

C Library Functions

acsc_ReadInteger, acsc_GetMotorError

3.11.14 SAFIN

Description

SAFIN is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits that indicates the raw state, before processing, of the axis safety inputs.

SAFIN(<axis>).17 (#STO1) and SAFIN(<axis>).18 (#STO2) present the status of the emergency stop
request (24V switched off).

422Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

For the products that supports SS1-t:

SAFIN(<axis>).19 (#SS11) and SAFIN(<axis>).20 (#SS12) present the status of switching in the torque
off mode (5V switched off).

SAFIN(<axis>).16 (#SS1TERR) presents the status of SS1-t timing error.

The value of each element in the array ranges from -2147483648 to 2147483647, Default=0.

Tag

121

Comments

1. The SAFIN uses the same bit numbers as in S_SAFIN and as the corresponding faults in
FAULT and S_FAULT.

2. SAFIN is normally read-only. However, when working with the Simulator, read/write is
permitted to simulate safety inputs.

3. Only the SAFIN bits below are valid.

Bit Name No. Description

#RL 0 Hardware Right Limit

#LL 1 Hardware Left Limit

#HOT 4 Motor Overheat

#DRIVE 9 Drive Fault

#SS1TERR 16 Status of SS1-t timing error

#STO1 17 Status of the emergency stop request (24V switched off)

#STO2 18 Status of the emergency stop request (24V switched off)

#SS11 19 Status of switching in the torque off mode (5V switched off)

#SS12 20 Status of switching in the torque off mode (5V switched off)

#ES 28
Hardware Emergency Stop
1 = ES signal is activated

#COMP 31 Component Failure

Accessibility

Read-Only

423Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SAFIN can be written to when working with the SPiiPlus Simulator.

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, S_FDEF, FMASK, S_FMASK, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.11.15 SAFINI

Description

SAFINI is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits defining the active state of the axis safety input variable (SAFIN) specifying
inversion of the signal input logic, if required.

Syntax

SAFINI(axis_index)[.bit_designator] = value

Arguments

axis_index
axis_index designates the specific axis: 0, 1, 2, .. up to the number of axes
in the system minus 1.

bit_designator The valid SAFINI bits are given in Table 3-15.

value value ranges from -2147483648 to 2147483647, Default=0.

Table 3-15. SAFINI Valid Bits

Bit Name No. Description

#RL 0 Hardware Right Limit

#LL 1 Hardware Left Limit

#HOT 4 Motor Overheat

#DRIVE 9 Drive Fault

#ES 28
Hardware Emergency Stop
1 = ES signal is activated

Tag

122

424Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

1. When a SAFINI bit=0, the corresponding signal is not inverted and the high voltage state is
considered active.

2. When a SAFINI bit=1, the bit is inverted and the low voltage state is considered active.

Accessibility

Read-Write

SAFINI values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection.

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, S_FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, S_SAFINI.

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetSafetyInputPortInv, GetSafetyInputPortInv

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_SetSafetyInputPortInv, acsc_GetSafetyInputPortInv

3.11.16 S_ERR

Description

S_ERR is a scalar integer that contains the code of the initialization error set during powerup.

The error codes are specified in Table 6-6.

Tag

113

Accessibility

Read-Only

Related ACSPL+ Variables

None

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.11.17 S_FAULT

Description

S_FAULT is a scalar integer variable consisting of a set of bits equating to the occurrence of faults. S_
FAULT has two categories of bits, Axis Faults and System Faults (faults that are not related to any
specific axis).

The S_FAULT bits are described in Table 3-16.

425Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-16. S_FAULT Fault Bits

Bit Fault Fault Description

Axis Faults

0 #RL
Hardware Right Limit

1 = Right limit switch is activated.

1 #LL
Hardware Left Limit

1 = Left limit switch is activated.

2 #NT
Network Error.

1 = EtherCAT network error is activated.

4 #HOT
Motor Overheat

1 = Motor's temperature sensor indicates overheat.

5 #SRL

Software Right Limit

1 = Axis reference position (RPOS) is greater than the software
right limit margin (SRLIMIT).

6 #SLL

Software Left Limit

1 = Axis reference position (RPOS) is less than the software left
limit margin (SLLIMIT).

7 #ENCNC

Encoder Not Connected

1 = Primary encoder (for digital or SinCos encoder types) is not
connected.

8 #ENC2NC

Encoder 2 Not Connected

1 = Secondary encoder (for digital or SinCos encoder types) is
not connected.

9 #DRIVE
Drive Fault

1 = Signal from the drive reports a failure.

10 #ENC
Encoder Error

1 = Primary encoder miscounts.

11 #ENC2
Encoder 2 Error

1 = Secondary encoder miscounts.

426Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

12 #PE

Position Error

1 = Position error (PE) has occurred.

PE is defined by the following variables:

> ERRI - Maximum position error while the axis is idle

> ERRV - Maximum position error while the axis is
moving with constant velocity

> ERRA - Maximum position error while the axis is
accelerating or decelerating

> DELI - Delay on transition from ERRA to ERRI

> DELV - Delay on transition from ERRA to ERRV

13 #CPE

Critical Position Error

1 = Position error (#PE) exceeds the value of the critical limit.

#CPE errors occur outside normal range of operation and #CPE
> #PE.

The critical limit depends on the axis state and is defined by the
following variables:

> CERRI if the axis is idle (not moving)

> CERRV if the axis is moving with constant velocity

> CERRA if the axis is accelerating or decelerating

> DELI - Delay on transition from ERRA to CERRI

> DELV - Delay on transition from ERRA to CERRV

14 #VL

Velocity Limit.

1 = Absolute value of the reference velocity (RVEL) exceeds the
limit defined by the XVEL parameter.

15 #AL

Acceleration Limit

1 = Absolute value of the reference acceleration (RACC)
exceeds the limit defined by the XACC parameter.

16 #CL

Current Limit

1 = RMS current calculated in the Servo Processor exceeds the
limit value defined by the XRMS parameter.

17 #SP Servo Processor Alarm

427Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

1 = Axis Servo Processor loses its synchronization with the
MPU. The fault indicates a fatal problem in the controller.

18 #STO
Safe Torque Off
1 = STO is active

20 #HSSINC
HSSI Not Connected

1 = HSSI module is not connected.

System Faults

23 #EXTNT External Network Error

24 #TEMP

MPU Overheat Fault

Activated at CPU temperature > 90°C or System temperature >
70°C
Default response - none.

25 #PROG

Program Fault

1 = Run time error occurs in one of the executing ACSPL+
programs.

26 #MEM
Memory Overflow

1 = User application requires too much memory.

27 #TIME

MPU Overuse

1 = User application consumes too much time in the controller
cycle.

28 #ES
Hardware Emergency Stop

1 = ES signal is activated.

29 #INT

Servo Interrupt

1 = The servo interrupt that defines the controller cycle is not
generated. The fault indicates a fatal controller problem.

30 #INTGR

File Integrity

1 = The integrity of the user application in controller RAM is
checked by the controller at power-up and whenever an #IR
Terminal command is issued.

428Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

31 #FAILURE

Component Failure

1 = An MC4U hardware component other than the drive, such
as the Power Supply, I/O card, or encoder card, has failed.

When the bus voltage is not supplied to the MC4U, a
component failure fault is reported. The fault is system wide
and prevents all axes from operating unless the fault is
masked or bus voltage is supplied to the power supply.

When a component failure is reported, the affected power
supply is identified by its address. To determine the faulty unit,
use the MMI System Viewer and Diagnostics

Tag

114

Comments

An S_FAULT bit, such as Left Limit, will be = 1 whenever one or more Left Limit fault bits are = 1. In
this manner, S_FAULT provides an indication of the aggregate state of each FAULT bit.

Accessibility

Read-Only

S_FAULT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, FDEF, S_FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, GetFault

C Library Functions

acsc_ReadInteger, acsc_GetFault

3.11.18 S_FDEF

Description

S_FDEF is a scalar integer variable consisting of a set of bits for defining the default response for the
system faults contained in S_FAULT. S_FDEF is connected to S_FAULT in the same way that FDEF is
connected with FAULT.

Syntax

S_FDEF[.bit_designator] = value

429Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

bit_designator The S_FDEF bits and associated responses are given in Table 3-17.

value value ranges from -2147483648 to 2147483647, Default = 1.

Table 3-17. S_FDEF Bit Description

Bit Fault Fault Description Default Response (S_FDEF)

23 #EXTNT External Network Error The controller disables all axes.

24 #TEMP MPU Overheat

S_SETUP.#USGTEMP = 0: No
response
S_SETUP.#USGTEMP=1: Default
response is to disable all axes

25 #PROG

Program Fault

1 = Run time error occurs
in one of the executing
ACSPL+ programs.

The controller kills all axes.

26 #MEM

Memory Overflow

1 = User application
requires too much
memory.

The controller kills all axes.

27 #TIME

MPU Overuse

1 = User application
consumes too much
time in the controller
cycle.

No default response.

28 #ES

Hardware Emergency
Stop

1 = ES signal is activated.

The controller disables all axes,
and sets the offset of each axis
to 0.

It does not stop the
program buffers.

430Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description Default Response (S_FDEF)

29 #INT

Servo Interrupt

1 = The servo interrupt
that defines the
controller cycle is not
generated. The fault
indicates a fatal
controller problem.

The controller disables all axes.

30 #INTGR

File Integrity

1 = The integrity of the
user application in
controller RAM is
checked by the
controller at power-up
and whenever an #IR
Terminal command is
issued.

No default response

31 #FAILURE

Component Failure

1 = An MC4U hardware
component other than
the drive, such as the
Power Supply, I/O card,
or encoder card, has
failed.

No default response

The user has to supply a user-
defined fault response.

Tag

115

Comments

The default value for all S_FDEF bits is 1, which enables the default response. If an S_FDEF bit = 0, the
default response is disabled.

Accessibility

Read-Write

S_FDEF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetResponseMask, SetResponseMask, GetFaultMask, SetFaultMask

431Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetResponseMask, acsc_SetResponseMask, acsc_
GetFaultMask, acsc_SetFaultMask

3.11.19 S_FMASK

Description

S_FMASK is scalar integer variable consisting of a set of bits for enabling or disabling the system
faults contained in S_FAULT. S_FMASK is connected to S_FAULT in the same way that FMASK is
connected with FAULT.

Syntax

S_FMASK[.bit_designator] = value

Arguments

bit_designator The S_FMASK bits and associated responses are given in Table 3-18.

value value ranges from -2147483648 to 2147483647, Default=0.

Table 3-18. S_FMASK Bit Description

Bit Fault Fault Description

23 #EXTNT External Network Error

24 #TEMP MPU Overheat

25 #PROG

Program Fault

1 = Run time error occurs in one of the executing ACSPL+
programs.

26 #MEM
Memory Overflow

1 = User application requires too much memory.

27 #TIME

MPU Overuse

1 = User application consumes too much time in the controller
cycle.

28 #ES
Hardware Emergency Stop

1 = ES signal is activated.

29 #INT

Servo Interrupt

1 = The servo interrupt that defines the controller cycle is not
generated. The fault indicates a fatal controller problem.

30 #INTGR File Integrity

432Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Fault Fault Description

1 = The integrity of the user application in controller RAM is
checked by the controller at power-up and whenever a #IR
immediate command is issued.

31 #FAILURE

Component Failure

1 = An MC4U hardware component other than the drive, such
as the Power Supply, I/O card, or encoder card, has failed.

Tag

117

Comments

The S_FMASK default value = 1 and causes the controller to check for the fault associated with that
bit, as follows:

0: The corresponding FAULT bit is disabled

1: The corresponding FAULT is enabled and examined each MPU cycle.

Accessibility

Read-Write

S_FMASK values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, S_FDEF, FMASK, SAFIN, S_SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetFaultMask, SetFaultMask

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetFaultMask, acsc_SetFaultMask

3.11.20 S_SAFIN

Description

S_SAFIN is a scalar integer variable that indicates the raw state of the #ES bit (Emergency Stop) input
stored in the SAFIN variable and indicates the #FAILURE bit (system fault) stored in the S_FAULT
variable.

The value ranges from -2147483648 to 2147483647, Default=0.

Tag

118

433Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

S_SAFIN uses the same bit numbers as in SAFIN and as the corresponding faults in FAULT and S_
FAULT, but only the #ES bit is meaningful.

S_SAFIN can be written to when working with the SPiiPlus Simulator.

Accessibility

Read-Only

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, S_FDEF, FMASK, S_FMASK, SAFIN, SAFINI, S_SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, GetSafetyInputPort

C Library Functions

acsc_ReadInteger, acsc_GetSafetyInputPort

3.11.21 S_SAFINI

Description

S_SAFINI is a scalar integer variable used for defining the active state of the system safety input
variable (S_SAFIN) specifying inversion of the signal input logic, if required.

Tag

119

Comments

1. When a S_SAFINI bit=0, the corresponding signal is not inverted and the high voltage state
is considered active.

2. When a S_SAFINI bit=1, the bit is inverted and the low voltage state is considered active.

Accessibility

Read-Write

S_SAFINI values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables

FAULT, S_FAULT, FDEF, S_FDEF, FMASK, S_FMASK, SAFIN, S_SAFIN, SAFINI

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, SetSafetyInputPortInv, GetSafetyInputPortInv

434Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_SetSafetyInputPortInv, acsc_GetSafetyInputPortInv

3.11.22 SS11TIME

Description

SS11TIME is a integer array with one element for each EtherCAT node in the system, the elements of
which store the last SS1-t channel A time between the emergency stop request (24V switched off)
and the point in time when the drive in fact switched the torque off mode (5V switched off). The
value ranges between 0 and 500. The user can read this value in order to determine whether the
system stops motion within the time required by the system functional safety requirements.

SS11TIME should be used for SS1-t diagnostics only

Tag

373

Comments

This variable is supported in version 3.00 and higher

Accessibility

Read-Only

Related ACSPL+ Variables

SS12TIME

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.11.23 SS12TIME

Description

SS12TIME is a integer array with one element for each EtherCAT node in the system, the elements of
which store the last SS1-t channel B time between the emergency stop request (24V switched off)
and the point in time when the drive in fact switched the torque off mode (5V switched off). The
value ranges between 0 and 500. The user can read this value in order to determine whether the
system stops motion within the time required by the system functional safety requirements.

SS12TIME should be used for SS1-t diagnostics only

Tag

374

435Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

This variable is supported in version 3.00 and higher

Accessibility

Read-Only

Related ACSPL+ Variables

SS11TIME

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.11.24 STODELAY

Description

STODELAY is a real array, with one element for each axis in the system. It is used to configure the
delay time between the STO fault indication and the default response (disable) to the fault. During
this time the user can activate his own response (auto-routine) to kill the motion.

Syntax

STODELAY(axis) = value

Arguments

axis
The specific axis index. Valid numbers are: 0,1… up to the
number of axes in the system, minus 1.

value

The value is the delay time between the STO fault
indication and the default response (disable) to the fault.
value can range between 0 (minimum) to 200 (maximum).
The default is 50.

Tag

319

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

436Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.11.25 SYNC

Description

SYNC is an integer array (one element per each slave node) the elements of which contain a slave
synchronization indicator for the node.

Tag

222

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.12 Induction Motor Variables

The Induction Motor variables are:

Name Description

SLCFIELD Induction Motor Excitation

SLCSLIP Induction Motor Slip Factor

3.12.1 SLCFIELD

Description

SLCFIELD is a real array with one element for each axis in the system. It is used along with SLCSLIP
for controlling permanent magnet (PM) synchronous motors (so called “DC Brushless motors”).
SLCFIELD defines the magnetic field component.

Syntax

SLCFIELD (axis_index)>= value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value provides the percentage of the peak current of the amplifier ranging from
0 to 25.

Tag

217

437Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

Vector control, also known as Field Oriented Control, is a control technique that imitates the DC
motor operation and applies it to AC motors: PM synchronous motors (DC brushless motors) and
induction motors. This technique decomposes the motor current into two independent
components:

> The magnetizing (direct) component that influences the total magnetic flux.

> The torque-producing (quadrature) component that influences the generated torque. This
component is perpendicular to the magnetizing component.

In PM synchronous motors, the magnetizing component is in phase with the permanent magnet
field. The goal is usually to keep this component zero, so all the current is dedicated to torque
production. This maximizes the torque/current ratio and improves the efficiency and dynamic
performance.

The magnetic field variable, SLCFIELD, is usually set equal to the nominal magnetizing current of the
motor. It should be around the “knee” of the magnetizing curve of the motor - it should be high
enough to maximize the torque constant of the motor, but must not be too high to prevent
magnetic saturation. The exact value is provided by the motor manufacturer, but it can also be
estimated based on 10-40% of the nominal current.

The value of SLCFIELD is expressed as percentage of the peak current of the amplifier and is
calculated according to the following formula:

where:

Imag
The nominal excitation current of
the motor (rms value).

Provided by the manufacturer, of 10-
40% of the nominal current

Ipeak
The amplitude of the maximum
current of the amplifier.

SLCFIELD = 0 identifies an induction motor.

Accessibility

Read-Write

SLCFIELD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

438Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

SLCSLIP

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.12.2 SLCSLIP

Description

SLCSLIP is a real array with one element for each axis in the system. It is used along with SLCFIELD
for controlling permanent magnet (PM) synchronous motors (so called “DC Brushless motors”).
SLCSLIP defines the slip constant.

Syntax

SLCSLIP(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the slip frequency ranging from 0 to 5000.

Tag

218

Comments

The range of SLCSLIP is typically 200-1000. A reference value is calculated as follows:

where:

fn - The nominal supply frequency

sn - The nominal slip, given by:

where:

ns - The synchronous velocity

nn - The nominal velocity

Ipeak - The peak current of the amplifier

In - The nominal motor current (rms)

For example, the nominal data of a 1.05kW motor is:

439Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

n = 2870rpm, n = 3000rpm, In = 8.1A, and fn = 50Hz

So the nominal slip of the motor is:

For Ipeak = 10A, the value of SLCSLIP will be:

Accessibility

Read-Write

SLCSLIP values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection.

Related ACSPL+ Variables

SLCFIELD

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13 Nanomotion Variables

The UDIhp-x / UDMnt-x (new revision) products' control algorithm supports Nanomotion motors,
based on Nanomotion servo algorithm. Each UDIhp-x / UDMnt-x (new revision) products can
support up to four Nanomotion axes using AB1 amplifier or two Nanomotion axes using AB2
amplifier (with automatic DC/AC mode switching).

AB2 amplifiers are not supported by SPiiPlus ADK Suite 2.40 or later. If AB2 amplifiers are
used and there is not a need to upgrade the FW, it is recommended to continue using
FW 2.30.03.

If an upgrade is needed, consult ACS Applications and the relevant DSP will be provided.

To activate the Nanomotion algorithm set the seventh bit of MFLAGS variable to 1

> MFLAGS(<axis>).7= 1, or alternatively MFLAGS(<axis>).#NANO = 1

The following variables should be used in support of Nanomotion piezo-ceramic motor motion:

440Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SLDZMIN
Parameter which specifies the minimum position of the Dead Zone (when
the servo is turned off)

SLDZMAX
Parameter which specifies the maximum position of the Dead Zone (when
the servo is turned on).

SLDZTIME
Parameter which specifies the duration (in msec) required for settling after
entering the SLDZMIN.

SLZFF
Parameter which specifies the distance from target to stop the velocity
Feed Forward.

SLFRC
Parameter which specifies the initial non-zero command to overcome the
static friction in positive direction.

SLFRCN
Parameter which specifies the initial non-zero command to overcome the
static friction in negative direction.

SLHRS Parameter which specifies the modulation ratio of the drive command.

SLVKPDCF
Parameter which specifies the multiplication factor of the velocity loop gain
(SLVKP) in DC mode.

SLPKPDCF
Parameter which specifies the multiplication factor of the position loop gain
(SLPKP) in DC mode.

SLVKIDCF
Parameter which specifies the multiplication factor of the velocity loop
integrator (SLVKI) in DC mode.

3.13.1 SLDZMIN

Description

SLDZMIN is a real array, with one element for each axis in the system, and is used for defining the
minimum position of the Dead Zone (when Servo is turned off).

Syntax

SLDZMIN(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 1.79769e+308, Default = 1.

Tag

162

441Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The Dead Zone mechanism stops the motor when the position approaches the target within the
value of SLDZMIN. The value depends on the system specifications; usually SLDZMIN is between 1.0
to 2.0 counts (with an equivilant value in user units).

Accessibility

Read-Write

SLDZMIN values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.2 SLDZMAX

Description

SLDZMAX is a real array, with one element for each axis in the system, and is used for defining the
maximum position of the Dead Zone.

Syntax

SLDZMIN(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 1.79769e+308, Default = 10.

Tag

163

Comments

The Dead Zone mechanism starts the motor again when the error radius increases above the value
SLDZMAX. The value depends on the system specifications; usually SLDZMAX is between 4.0 to 10.0
counts (with an equivilant value in user units).

Accessibility

Read-Write

SLDZMAX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

442Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.3 SLDZTIME

Description

SLDZTIME is a real array, with one element for each axis in the system, which defines the duration
(in msec) required for settling after entering the SLDZMIN. Only after this duration the controller
starts monitoring the position error and returns the servo if |PE| exceeds SLDZMAX.

Syntax

SLDZTIME(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0.1 to 1.79769e+308, Default = 20.

Tag

251

Accessibility

Read-Write

SLDZMAX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.4 SLZFF

Description

SLZFF is a real array, with one element for each axis in the system, and is used for defining the
distance from target to stop the velocity Feed Forward.

Syntax

SLZFF(axis_index) = value

443Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 1.79769e+308, Default = 300.

Tag

189

Comments

Using SLZFF improves settling time by stopping the feed forward velocity when the axis is getting
close to the target position. The distance from the target is defined by SLZFF (in user units). The
proper value of SLZFF depends on the total moving mass and the resolution of the encoder.Usually:

> For an HR1 motor with encoder resolution of 0.1µM, set SLZFF to 100 - 300 counts (with an
equivilant value in user units).

> For an HR8 motor with encoder resolution of 0.1µM, set SLZFF to 300 - 400 counts (with an
equivilant value in user units).

Accessibility

Read-Write

SLZFF values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.5 SLFRC

Description

SLFRC is a real array, with one element for each axis in the system, which defines initial non-zero
command to overcome the static friction in a positive direction.

Syntax

SLFRC(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 50, Default = 0.

Tag

167

444Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLFRC is expressed as a percentage of the maximum output.

Accessibility

Read-Write

SLFRC values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.6 SLFRCN

Description

SLFRCN is a real array, with one element for each axis in the system, which defines initial non-zero
command to overcome the static friction in a negative direction.

Syntax

SLFRCN(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 50, Default = 0.

Tag

250

Comments

SLFRCN is expressed as a percentage of the maximum output.

Accessibility

Read-Write

SLFRCN values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

445Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.13.7 SLHRS

Description:

SLHRS is a real array, with one element for each axis in the system, which defines the modulation
ratio of the drive command.

Syntax:

SLHRS(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges from 0 to 100, Default = 100.

Tag:

169

Accessibility

Read-Write

DCOM values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, Write Variable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.8 SLVKPDCF

Description

SLVKPDCF is a real array, with one element for each axis in the system, which defines multiplication
factor of the velocity loop gain (SLVKP) in DC mode. The normal gain is increased by setting a
SLVKPDCF value larger than 1.

Syntax

SLPKPDCF axis_index = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between -1.79769e+308 to 1.79769e+308, Default = 1.

Tag

252

446Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

SLVKPDCF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.13.9 SLPKPDCF

Description

SLPKPDCF is a real array, with one element for each axis in the system, which defines multiplication
factor of the position loop gain (SLPKP) in DC mode. The normal gain is increased by setting the
SLPKPDCF to a value larger than 1.

Syntax

SLPKPDCF axis_index = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 1.79769e+308, Default = 1.

Tag

253

Accessibility

Read-Write

SLPKPDCF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

447Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.13.10 SLVKIDCF

Description

SLVKIDCF is a real array, with one element for each axis in the system, which defines multiplication
factor of the velocity loop integrator (SLVKI) in DC mode. The normal gain is increased by setting the
SLVKIDCF to a value larger than 1.

Syntax

SLVKIDCF axis_index = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges between 0 to 1.79769e+308, Default = 1.

Tag

254

Accessibility

Read-Write

SLVKIDCF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14 Servo-Loop Variables

Servo-Loop variables are fully accessible at the ACSPL+ level. While ACSPL+ programs
generally do not refer to servo-loop variables at run time, an advanced program could
change a servo-loop variable on-the-fly to provide adaptive control

The servo-loop variables are used for configuration and adjustment, and are set through SPiiPlus
MMI Application Studiog Setupg Adjuster.

The Servo-Loop variable is:

Name Description

DCOM Drive Command

Additional servo-loop variables are grouped as follows:

448Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

> Servo-Loop Current Variables

> Servo-Loop Velocity Variables

> Servo-Loop Velocity Notch Filter Variables

> Servo-Loop Velocity Low Pass Filter Variables

> Servo-Loop Velocity Bi-Quad Filter Variables

> Servo-Loop Position Variables

> Servo-Loop Compensations Variables

> Servo Loop Stepper Variables

> Servo-Loop Miscellaneous Variables

> Non-Linear Control Variables

3.14.1 DCOM

Description

DCOM is a real array, with one element for each axis in the system. It is used for defining the
commanded current as a percentage of the maximum drive command..

Syntax

DCOM(axis_index) = value

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

value value ranges from -100 to 100, Default = 0.

Tag

20

Comments

DCOM defines a percentage of the maximum current command XCURV. When operating in the open
loop mode (MFLAGS.1=1), DCOM supplies this current directly to the motor windings.

DCOM defines a percentage of the maximum drive command, for example, the UDI provides
differential drive output from -10 to +10V. Therefore, assigning 100 to DCOM provides +10V on the
drive output, -100 corresponds to -10V and 0 to 0V.

When operating in the closed loop mode (MFLAGS.1=0), DCOM offsets the normal commanded
output current from the drive..

Accessibility

Read-Write

DCOM values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

449Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Commands

MFLAGS

COM Library Methods and .NET Library Methods

ReadVariable, Write Variable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2 Servo-Loop Current Variables

The Servo-Loop Current variables are:

Name Description

SLBIASA Current phase A bias

SLBIASB Current phase B bias

SLBIASC Current phase C bias

SLIKI Integrator gain

SLIKP Integrator proportional gain

SLIFILT Internal current filter

SLIOFFS Offset to be added to the result of the current loop control

SLILI Used to limit the drive’s output voltage

3.14.2.1 SLBIASA

Description

SLBIASA is a real array, with one element for each axis in the system, and is used for defining offset
of the current in phase "S" or offset in command of phase "S".

Syntax

SLBIASA(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -10 to 10, Default = 0.

Tag

149

450Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLBIASA is expressed as a percentage of the maximum controller voltage output.

1. For integrated models: SLBIASA is read-only and displays the measured value of the
current input bias.

2. For non-integrated models: SLBIASA is read-write and specifies the bias of the drive output.
The controller uses the value only for brushless motors commutated by the controller.

Accessibility

Read-Only (integrated models)

Read-Write (nonintegrated models)

SLBIASA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection
Wizard

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.2 SLBIASB

Description

SLBIASB is a real array, with one element for each axis in the system, and is used for defining offset
of the current in phase "T" or offset in command of phase "T".

Syntax

SLBIASB(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -10 to 10, Default = 0.

Tag

150

Comments

SLBIASB is expressed as a percentage.

1. For integrated models: SLBIASB is read-only and displays the measured value of the
current input bias.

2. For nonintegrated models: SLBIASB is read-write and specifies the bias of the drive output.
The controller uses the value only for brushless motors commutated by the controller.

451Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Only (integrated models)

Read-Write (nonintegrated models)

SLBIASB values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.3 SLBIASC

Description

SLBIASC is a real array, with one element for each axis in the system, and is used for defining offset
of the current in phase "R" or offset in command of phase "R".

Syntax

SLBIASC(axis_index)=value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -10 to 10, Default = 0.

Tag

404

Comments

SLBIASC is expressed as a percentage of the maximum controller voltage output.

1. For integrated models: SLBIASC is read-only and displays the measured value of the current
input bias.

2. For non-integrated models: SLBIASC is read-write and specifies the bias of the drive output.
The controller uses the value only for brushless motors commutated by the controller.

Related ACSPL+ Variables

SLBIASA, SLBIASB

Accessibility

Read-Only (integrated models)

Read-Write (nonintegrated models)

452Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLBIASC values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio -> Toolbox -> Application Development -> Protection
Wizard

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.4 SLIKI

Description

SLIKI is a real array, with one element for each axis in the system, and is used for specifying the
current loop.

Syntax

SLIKI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 - 65000.

Tag

170

Comments

SLIKI is active only in integrated models.

Accessibility

Read-Write

SLIKI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

453Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.2.5 SLIKP

Description

SLIKP is a real array, with one element for each axis in the system, and is used for specifying the
current loop proportional coefficient.

Syntax

SLIKP(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 - 256000, Default = 1000.

Tag

171

Comments

SLIKP is active only in integrated models.

Accessibility

Read-Write

SLIKP values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.6 SLIFILT

Description

SLIFILT is a real array, with one element for each axis in the system, and is used for defining the UDM
current filter frequency.

Syntax

SLIFILT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0-5000.

454Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

226

Accessibility

Read-Write

SLIFILT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Variables and .NET Library Methods

SLIKI, SLIKP

COM Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.7 SLIOFFS

Description

SLIOFFS is a real array, with one element for each axis in the system, and is used for offset to be
added to the result of the current loop control.

Syntax

SLIOFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -50 to 50, Default = 0.

Tag

172

Comments

The variable contains value in percents of maximal drive output.

The primary goal of the variable is to compensate for an active component of the motor load. For
example, in a vertical axis the weight of the carriage can be compensated.

The variable is valid for DC brush and brushless motors.

Normally, the variable is changed in the process of adjustment (use SPiiPlus MMI Application Studio
g Toolboxg Setupg Adjuster Wizard).

Accessibility

Read-Write

455Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLIOFFS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.2.8 SLILI

Description

SLILI is a real array, with one element for each axis in the system, and is used to limit the drive’s
output voltage. If raised, a higher speed can be achieved for the given drive (higher output voltage).

Syntax

SLILI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value is a precentage of the maximal drive output, and consequently ranges
between 0 to 100; Default: 88.

Tag

221

Comments

It is recommended to set value SLILI(axis)=97 to get a higher speed only for SPiiPlus
CMnt, SPiiPlus UDMpm and SPiiPlus UDMpc

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3 Servo-Loop Velocity Variables

The Servo-Loop Velocity variables are:

456Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SLCRAT
Defines gear ratio between velocity feedback resolution and commutation
feedback resolution

SLVKI Sets velocity integrator coefficient

SLVKIIF Provides an Idle Factor to the SLVKI variable

SLVKISF Provides a Settle Factor to the SLVKI variable

SLVKP Sets the proportional velocity gain.

SLVKPIF Provides an Idle Factor to the SLVKP variable

SLVKPSF Provides a Settle Factor to the SLVKP variable

SLVLI Integrator velocity limit

SLVRAT Velocity feed forward ratio

3.14.3.1 SLCRAT

Description

SLCRAT is a real array, with one element for each axis in the system defining the ratio between the
velocity feedback resolution and the commutation feedback resolution. It is used during the
commutation phase.

Syntax

SLCRAT(axis_index)

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -8.38861e+006 to 8.38861e+006, Default = 1.

Tag

154

Comments

Velocity feed forward compensates for the velocity feedback, achieving zero position error at
constant velocity.

Accessibility

Read-Write

457Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLCRAT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.2 SLVKI

Description

SLVKI is a real array, with one element for each axis in the system, and is used for specifying the
velocity loop integrator coefficient.

Syntax

SLVKI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 to 20000; Default = 200.

Tag

179

Accessibility

Read-Write

SLVKI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.3 SLVKIIF

Description

SLVKIIF is a real array with one element for each axis in the system. It is used for providing an Idle
Factor to theSLVKI (Integrator Gain - Velocity) variable.

458Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SLVKIIF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

233

Accessibility

Read-Write

SLVKIIF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.4 SLVKISF

Description

SLVKISF is a real array with one element for each axis in the system. It is used for providing a Settle
Factor to the SLVKI variable.

Syntax

SLVKISF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

234

Accessibility

Read-Write

459Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLVKISF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.5 SLVKITF

Description

SLVKITF increases the velocity loop integrator coefficient when the axis is close to the target
position. It is a real array with one element for each axis in the system.

Syntax

SLVKITF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 1.0 and 100.0. Default = 1.

Tag

271

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.6 SLVKP

Description

SLVKP is a real array, with one element for each axis in the system, and is used for specifying the
velocity loop proportional coefficient.

Syntax

SLVKP(axis_index) = value

460Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 to 16777215, Default = 100.

Tag

180

Accessibility

Read-Write

SLVKP values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.7 SLVKPIF

Description

SLVKPIF is a real array with one element for each axis in the system. It is used for providing an Idle
Factor to the SLVKP (Proportional Gain - Velocity) variable.

Syntax

SLVKPIF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

235

Accessibility

Read-Write

SLVKPIF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

461Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.8 SLVKPSF

Description

SLVKPSF is a real array with one element for each axis in the system. It is used for providing a Settle
Factor to the SLVKP variable.

Syntax

SLVKPSF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

236

Accessibility

Read-Write

SLVKPSF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.9 SLVKPTF

Description

SLVKPTF increases the velocity loop proportional coefficient when the axis is close to the target
position. It is a real array with one element for each axis in the system.

SLVKPTF is supported for the NanoPWM drives only.

462Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SLVKPTF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 1.0 and 100.0. Default = 1.

Tag

272

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.10 SLVLI

Description

SLVLI is a real array, with one element for each axis in the system, and is used for providing an
integrator limit for the velocity of the specified axis.

Syntax

SLVLI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 to 100, Default = 50.

Tag

181

Comments

SLVLI is expressed as a percentage of the maximum value.

Accessibility

Read-Write

463Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLVLI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.3.11 SLVRAT

Description

SLVRAT is a real array, with one element for each axis in the system. It defines the velocity feed
forward ratio during the commutation phase..

Syntax

SLVRAT(axis_index)

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between -8.38861e+006 to 8.38861e+006, Default = 1.

Tag

187

Comments

Velocity feed forward compensates for the velocity feedback, achieving zero position error at
constant velocity.

Accessibility

Read-Write

SLVRAT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

464Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.4 Servo-Loop Velocity Notch Filter Variables

Notch Filter variables serve for notching the velocity servo-loop. The Servo-Loop Velocity Notch
Filter variables are:

Name Description

SLVNFRQ Notch filter frequency.

SLVNWID Notch filter width.

SLVNATT Notch filter attenuation.

3.14.4.1 SLVNFRQ

Description

SLVNFRQ is a real array, with one element for each axis in the system, and is used for providing a
notch filter frequency.

Syntax

SLVNFRQ(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.1 to 4000, Default = 300.

Tag

182

Comments

SLVNFRQ is expressed in Hz.

Accessibility

Read-Write

SLVNFRQ values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

465Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.4.2 SLVNWID

Description

SLVNWID is a real array, with one element for each axis in the system, and is used for providing a
notch filter width.

Syntax

SLVNWID(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.1 to 4000, Default = 30.

Tag

183

Comments

SLVNWID is expressed in Hz.

Accessibility

Read-Write

SLVNWID values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.4.3 SLVNATT

Description

SLVNATT is a real array, with one element for each axis in the system, and is used for providing the
attenuation of the notch frequency at frequency specified by SLVNFRQ.

Syntax

SLVNATT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.05 to 20; Default = 5.

466Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

184

Accessibility

Read-Write

SLVNATT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.5 Servo-Loop Velocity Low Pass Filter Variables

Low Pass Filter variables serve for setting the velocity low pass filtering parameters. The Servo-Loop
Velocity Low Pass Filter variables are:

Name Description

SLVSOF Sets filter bandwidth

SLVSOFD Sets filter damping

3.14.5.1 SLVSOF

Description

SLVSOF is a real array, with one element for each axis in the system, and is used for providing a
second order filter bandwidth for the velocity of the specified axis.

Syntax

SLVSOF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.1 to 4000, Default = 700.

Tag

185

Comments

SLVSOF is expressed in Hz.

467Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

SLVSOF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.5.2 SLVSOFD

Description

SLVSOFD is a real array, with one element for each axis in the system, and is used for providing a
second order filter damping factor for the velocity of the specified axis.

Syntax

SLVSOFD(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0.3 to 1, Default = 0.707.

Tag

186

Accessibility

Read-Write

SLVSOFD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.6 Servo-Loop Velocity Bi-Quad Filter Variables

Bi-Quad Filter variables serve for setting the velocity bi-quad filtering parameters. The Servo-Loop
Velocity Bi-Quad Filter variables are:

468Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SLVB0DD Sets the damping ratio denominator for a Bi-Quad filter.

SLVB0DF Sets the denominator value of the Bi-Quad filter.

SLVB0ND Sets the damping ratio numerator for a Bi-Quad filter.

SLVB0NF Sets the numerator value of the Bi-Quad filter.

3.14.6.1 SLVB0DD

Description

SLVB0DD is a real array, with one element for each axis in the system, and is used for setting the
damping ratio denominator for a Bi-Quad filter to the velocity loop control in addition to the existing
2nd order Low-pass and Notch filters for the given axis.

Syntax

SLVB0DD(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
value designates denominator value of the Bi-Quad damping ratio ranging
from 0.1 to 1. See SPiiPlus ACSPL+ Programmer Guide.

Tag

208

Comments

The Bi-Quad filter is the most general 2nd order filter. It has two poles and two zeros. It can be
thought of as a high-pass filter in series with a low-pass filter.

Accessibility

Read-Write

SLVB0DD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

469Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.6.2 SLVB0DF

Description

SLVB0DF is a real array, with one element for each axis in the system, and is used for setting the
denominator natural frequency value of the Bi-Quad filter algorithm applied to the velocity loop
control in addition to the existing 2nd order Low-pass and Notch filters for the given axis.

Syntax

SLVB0DF(axis_index) = value

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ...
up to the number of axes in the system minus 1.

value
value designates denominator value of the Bi-Quad
filter algorithm ranging from 0.1 to 4000 [Hz]. See
SPiiPlus ACSPL+ Programmer Guide.

Tag

209

Comments

The Bi-Quad filter is the most general 2nd order filter. It has two poles and two zeros. It can be
thought of as a high-pass filter in series with a low-pass filter.

Accessibility

Read-Write

SLVB0DF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functionss

acsc_ReadReal, acsc_WriteReal

3.14.6.3 SLVB0ND

Description

SLVB0ND is a real array, with one element for each axis in the system, and is used for setting the
damping ratio numerator for a Bi-Quad filter to the velocity loop control in addition to the existing
2nd order Low-pass and Notch filters for the given axis.

Syntax

SLVB0ND(axis_index) = value

470Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up
to the number of axes in the system minus 1.

value
value designates numerator value of the Bi-Quad damping
ratio ranging from 0.1 to 1. See SPiiPlus ACSPL+ Programmer
Guide.

Tag

210

Comments

The Bi-Quad filter is the most general 2nd order filter. It has two poles and two zeros. It can be
thought of as a high-pass filter in series with a low-pass filter.

Accessibility

Read-Write

SLVB0ND values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.6.4 SLVB0NF

Description

SLVB0NF is a real array, with one element for each axis in the system, and is used for setting the
numerator natural frequency value of the Bi-Quad filter algorithm applied to the velocity loop
control in addition to the existing 2nd order Low-pass and Notch filters for the given axis.

Syntax

SLVB0NF(axis_index) = value

Arguments

axis_index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to
the number of axes in the system minus 1.

value
value designates numerator value of the Bi-Quad filter
algorithm ranging from 0.1 to 4000 [Hz]. See SPiiPlus ACSPL+
Programmer Guide.

Tag

211

471Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The Bi-Quad filter is the most general 2nd order filter. It has two poles and two zeros. It can be
thought of as a high-pass filter in series with a low-pass filter.

Accessibility

Read-Write

SLVB0NF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7 Servo-Loop Position Variables

The Servo-Loop Position variables are:

Name Description

SLDRA Defines disturbance rejection.

SLDRAIF Provides an Idle Factor to the SLDRA.

SLDRX Defines the maximum DRA correction for a given axis.

SLPKI Specifies the position loop integrator coefficient

SLPKIIF Provides the Idle Factor to the SLPKI (Integrator Gain - Position) variable

SLPKISF Provides the Settle Factor to the SLPKI (Integrator Gain - Position) variable

SLPLI Defines the limit for the position of the specified axis

SLPKP Sets the proportional coefficient of the position for the specified axis.

SLPKPIF Provides an Idle Factor to the SLPKP variable.

SLPKPSF Provides an Settle Factor to the SLPKP variable.

3.14.7.1 SLDRA

Description

SLDRA is a real array, with one element for each axis in the system, and is used for defining the DRA
frequency for the given axis.

472Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

The ACS proprietary Disturbance Rejection Algorithm (DRA) is used to improve the disturbance
rejection response of the servo, and helps to minimize the position error during the settling phase
and shorten the settling time.

Syntax

SLDRA(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the DRA frequency ranging from 0 to 1500 [Hz].

Tag

206

Comments

The most common use of DRA is to improve the settling of systems mounted on passive isolation
platforms. Passive isolation is typically used to isolate systems from disturbances transmitted from
the floor. They employ a seismic mass supported on a soft spring made of rubber, metal, or air. The
spring’s damping action absorbs vibrations above the spring’s resonance. For this reason, passive
isolation manufacturers usually try to lower spring resonant frequency to increase the effective
isolation range. When a servo force is applied to generate motion, it also acts on the isolated
stationary base, causing it to vibrate. Because the frequency is low (usually below 1 Hz, to 10 Hz) and
damping is very light, the isolation system continues vibrating long after the motion profile has
ended. This vibration acts as disturbance to the servo system, introduces position error, and extends
the settling time.

The DRA is used to minimize the latter effect and improve the position error during settling.

Accessibility

Read-Write

SLDRA values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.2 SLDRAIF

Description

SLDRAIF is a real array with one element for each axis in the system. It is used for providing an Idle
Factor to the SLDRA variable.

473Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SLDRAIF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

230

Accessibility

Read-Write

SLDRAIF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.3 SLDRX

Description

SLDRX is a real array, with one element for each axis in the system, and is used for defining the
maximum DRA correction for the given axis.

The ACS proprietary Disturbance Rejection Algorithm (DRA) is used to improve the disturbance
rejection response of the servo, and helps to minimize the position error during the settling phase
and shorten the settling time.

Syntax

SLDRX (axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value designates the DRA correction ranging from 0 to 223.

Tag

207

474Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The most common use of DRA is to improve the settling of systems mounted on passive isolation
platforms. Passive isolation is typically used to isolate systems from disturbances transmitted from
the floor. They employ a seismic mass supported on a soft spring made of rubber, metal, or air. The
spring’s damping action absorbs vibrations above the spring’s resonance. For this reason, passive
isolation manufacturers usually try to lower spring resonant frequency to increase the effective
isolation range. When a servo force is applied to generate motion, it also acts on the isolated
stationary base, causing it to vibrate. Because the frequency is low (usually below 1 Hz, to 10 Hz) and
damping is very light, the isolation system continues vibrating long after the motion profile has
ended. This vibration acts as disturbance to the servo system, introduces position error, and extends
the settling time.

The DRA is used to minimize the latter effect and improve the position error during settling.

Accessibility

Read-Write

SLDRX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.4 SLPKI

Description

SLPKI is a real array, with one element for each axis in the system, and is used for specifying the
position loop integrator coefficient.

Syntax

SLPKI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0 to 20000; Default = 0.

Tag

174

Accessibility

Read-Write

475Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.5 SLPKIIF

Description

SLPKIIF is a real array with one element for each axis in the system. It is used for providing an Idle
Factor to the SLPKI (Integrator Gain - Position) variable.

Syntax

SLPKIIF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 to 100.0; Default = 1.

Tag

260

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

acsc_ReadReal, acsc_WriteReal

3.14.7.6 SLPKISF

Description

SLPKISF is a real array with one element for each axis in the system. It is used for providing a Settle
Factor to the SLPKI (Integrator Gain - Position) variable.

Syntax

SLPKISF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 to 100.0; Default = 1.

476Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

261

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.7 SLPKITF

Description

SLPKITF increases the velocity loop proportional coefficient when the axis is close to the target
position. It is a real array with one element for each axis in the system.

SLPKITF is supported for the NanoPWM drives only.

Syntax

SLPKITF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 to 100.0; Default = 1.

Tag

269

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.8 SLPLI

Description

SLPLI is a real array, with one element for each axis in the system, and is used for providing an
integrator limit for the position of the specified axis.

477Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SLPLI(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0 to 100; Default = 0.

Tag

176

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.9 SLPKP

Description

SLPKP is a real array, with one element for each axis in the system, and is used for setting the
proportional coefficient of the position for the specified axis.

Syntax

SLPKP(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0 to 16777215, Default = 0.

Tag

175

Comments

Motor movement during commutation largely depends on the servo-loop parameters.

COMMUTwill not operate properly if SLPKP is set to zero, or the integrator is very low.

Accessibility

Read-Write

478Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLPKP values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

Related ACSPL+ Commands

COMMUT

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.10 SLPKPIF

Description

SLPKPIF is a real array with one element for each axis in the system. It is used for providing an Idle
Factor to the SLPKP variable.

Syntax

SLPKPIF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

231

Accessibility

Read-Write

SLPKPIF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

479Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.7.11 SLPKPSF

Description

SLPKPSF is a real array with one element for each axis in the system. It is used for providing a Settle
Factor to the SLPKP variable.

Syntax

SLPKPSF axis_index = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 100.0.

Tag

232

Accessibility

Read-Write

SLPKPSF values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.7.12 SLPKPTF

Description

SLPKPTF increases the position loop proportional coefficient when the axis is close to the target
position. It is a real array with one element for each axis in the system.

SLPKPTF is supported for the NanoPWM drives only.

Syntax

SLPKPTF axis_index = value

480Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 1.0 and 100.0. Default = 1.

Tag

270

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.8 Servo-Loop Compensations Variables

Servo-Loop Compensations variables are used to set various parameters that provide
compensation to overcome certain motion problems. The Servo-Loop Compensation variables are:

Name Description

SLAFF Defines acceleration feed forward for a given axis

SLFRCD Compensation for dynamic friction

3.14.8.1 SLAFF

Description

SLAFF is a real array, with one element for each axis in the system, and is used for specifying the
acceleration feed forward of the specified axis.

Syntax

SLAFF(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 0 to 16777215; Default: 0.

Tag

148

Accessibility

Read-Write

481Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLAFF values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.8.2 SLFRCD

Description

SLFRCD is a real array, with one element for each axis in the system, and is used for providing
dynamic friction compensation at the maximum velocity.

Syntax

SLFRCD(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges between 0% to 5% of maximum command.

Tag

168

Comments

SLFRCD provides dynamic compensation at the maximum velocity XVEL. For lower velocities, the
compensation is reduced proportionally with the velocity. The value of SLFRCD is given as a
percentage (range is 0 to 50%) of the maximum command.

Accessibility

Read-Write

SLFRCD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

482Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.9 Servo Loop Stepper Variables

This section contains a collection of variables employed for calculation of the position correction for
stepper motors.

Name Description

MFLAGSX Extended Motor Flags

SLSDZ Array of dead zone values for position correction

SLSKI Array of integral gain values for position correction

SLSKP Array of proportional gain values for position correction

SLSMC Array of maximum allowed stepper correction values

SLSOUT Returns calculated stepper correction for given axis

SLSRL Array of rate limiter values for position correction

3.14.9.1 MFLAGSX

Description

MFLAGSX is an integer array with one element for each axis in the system, each element of which
contains a set of bits used for configuring the motor. It is an extension of the MFLAGS variable.

Syntax

MFLAGSX(Axis_Index).bit_designator = 0|1

Arguments

Axis_Index
Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number
of axes in the system minus 1.

Bit_designator An MFLAGSX bit designator as described below

483Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

MFLAGSX Bit Designators

Bit Name No. Description

#STCLFULL 0

0 (default): Do not use position correction for Stepper
motors working under closed loop.

1: Activate Full mode of the stepper closed loop position
correction mechanism .

This bit is mutually exclusive to #STCLEND and #STCLSP, as
such only one of them may be 1 at a time.

#STCLEND 1

0 (default): Do not use position correction for Stepper
motors working under closed loop

1: Activate End mode of the stepper closed loop position
correction mechanism

This bit is mutually exclusive to #STCLFULL and #STCLSP, as
such only one of them may be 1 at a time.

#STCLSP 2

0 (default): Do not use servo processor closed-loop stepper
algorithm

1: Use servo processor closed-loop stepper algorithm
Mutually exclusive to #STCLFULL,#STCLEND.

#VOLTMODE 3

0: Use current mode for control

1: Use voltage mode instead of current mode to
compensate for low resolution

#HLIMSWAP 4
0: Left/Right limit signal swapping is disabled

1: Left/Right limit signal swapping is enabled

#SATPROT 5
1: Saturation Protection enabled (default)
0: Saturation Protection disabled

Tag

357

Comments

When saturation protection (MFLAGSX.#SATPROT=1) is currently available for the following
products: NPMpm, UDMxx, IDMxx.

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKI, SLSKP, SLSDZ

Accessibility

Read-Write

484Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

MFLAGSX values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.14.9.2 SLSDZ

Description

SLSDZ is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents the dead zone of the position correction.

Syntax

SLSDZ(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

356

Comments

Dead zone [user units]. Inside this zone (|PE| < SLSDZ) algorithm is inactive.

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKI, SLSKP, SLSRL, MFLAGSX

Accessibility

Read-Write

SLSDZ values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

485Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.9.3 SLSKI

Description

SLSKI is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents the integral gain[rad/sec] of the position correction.

Syntax

SLSKI(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

353

Comments

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKP, SLSRL, SLSDZ

Accessibility

Read-Write

SLSKI values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.14.9.4 SLSKP

Description

SLSKP is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents proportional gain of the position correction.

Syntax

SLSKP(Axis_Index) = Value

486Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

354

Comments

Proportional gain is unitless.

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKI, SLSRL, SLSDZ, MFLAGSX

Accessibility

Read-Write

SLSKP values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.14.9.5 SLSMC

Description

SLSMC is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents the maximum allowed stepper correction.

Syntax

SLSMC(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

360

Comments

Maximum correction value [user units]. If this value is reached FAULT.#PE is set.

This variable is supported in ADK versions 2.70 and higher.

487Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Related ACSPL+ Variables

SLSKI, SLSKP, SLSRL, SLSOUT, MFLAGSX

Accessibility

Read-Write

If the accumulated correction of a closed-loop algorithm reaches the maximum limit as
defined by SLSMC, a non-critical Position Fault error is raised (error 5022).

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.14.9.6 SLSOUT

Description

SLSOUT is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents the calculated stepper correction

Syntax

SLSOUT(Axis_Index)

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

359

Comments

Output of the PI loop [user units].

This variable is supported in ADK versions 2.70 and higher.

SLSOUT is reset upon disabling of an axis, or upon setting RPOS using the set command.

Related ACSPL+ Variables

SLSKI, SLSKP, SLSRL, MFLAGSX

Accessibility

Read only

.NET Library Method

ReadVariable()

488Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Function

acsc_ReadInteger()

3.14.9.7 SLSRL

Description

SLSRL is a real array with one element for each axis in the system, it is used for the closed loop
operation of steppers and represents the rate limiter of the position correction.

Syntax

SLSRL(Axis_Index) = Value

Arguments

Axis_
Index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

Tag

355

Comments

Rate limiter of the PI output [user unit/sec].

This variable is supported in ADK versions 2.70 and higher.

Related ACSPL+ Variables

SLSKI, SLSKP, SLSDZ

Accessibility

Read-Write

SLSRL values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studio→Toolbox→Application Development→ Protection

.NET Library Method

ReadVariable(), WriteVariable()

C Library Function

acsc_ReadInteger(), acsc_WriteInteger()

3.14.10 Servo-Loop Miscellaneous Variables

This section contains a collection of miscellaneous variables employed for specific servo-loop
purposes. The Servo-Loop Miscellaneous variables are:

489Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SLCROUT Commutation feedback routing , see Commutation Variables

SLGCAXN Specifies the complementary gantry axis

SLPROUT Position feedback routing

SLP2ROUT Sets the feedback routing of the secondary feedback position

SLVROUT Velocity feedback routing

3.14.10.1 SLCROUT

Description

SLCROUT is an integer array, with one element for each axis in the system, and is used for setting
the feedback routing of the velocity commutation for the specified axis.

Syntax

SLCROUT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
The value values and the feedback sources associated with them are given in
Table 3-19. Default = 0.

Table 3-19. SLCROUT Values

SLCROUT FACC (SPonly)

0 According to E_TYPE velocity

001 From channel 0 quadrature velocity or Absolute Encoder velocity

002 From channel 0 SINCOS velocity

003 From channel 0 HSSI velocity

004 From analog input 0

005 From channel 0 resolver velocity

101 From channel 1 quadrature velocity Absolute Encoder velocity

102 From channel 1 SINCOS velocity

490Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLCROUT FACC (SPonly)

103 From channel 1 HSSI velocity

104 From analog input 1

105 From channel 1 resolver velocity

201 From channel 2 quadrature velocity Absolute Encoder velocity

202 From channel 2 SINCOS velocity

203 From channel 2 HSSI velocity

204 From analog input 2

205 From channel 2 resolver velocity

301 From channel 3 quadrature velocity Absolute Encoder velocity

302 From channel 3 SINCOS velocity

303 From channel 3 HSSI velocity

304 From analog input 3

305 From channel 3 resolver velocity

Tag

159

Accessibility

Read-Write

SLCROUT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.14.10.2 SLGCAXN

Description

SLGCAXN is a read-only integer array, with one element for each axis in the system, which specifies
the complementary gantry axis. The value can be viewed SPiiPlus MMI Application Studio

491Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Communication Terminal window or its value can be assigned to another variable, for example:

Var = SLGCAXN(axis_index).

In order to change gantry axis allocation, the SETCONF(267) command should be used.

Syntax

SLGCAXN(axis_index)

Arguments

axis_index axis_index designates the specific axis: 0 - X, 1 - Y, etc.

Tag

256

Accessibility

Read Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.14.10.3 SLPROUT

Description

SLPROUT is a real array, with one element for each axis in the system, and is used for setting the
feedback routing of the position for the specified axis.

Syntax

SLPROUT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
The value values and the feedback sources associated with them are given in
Table 3-20. Default = 0.

492Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-20. SLPROUT Values

SLPROUT FPOS

0 According to E_TYPE position

001 From channel 0 quadrature position Absolute Encoder position

002 From channel 0 SINCOS position

003 From channel 0 HSSI position

004 From analog input 0

005 From channel 0 resolver position

101 From channel 1 quadrature position Absolute Encoder position

102 From channel 1 SINCOS position

103 From channel 1 HSSI position

104 From analog input 1

105 From channel 1 resolver position

201 From channel 2 quadrature position Absolute Encoder position

202 From channel 2 SINCOS position

203 From channel 2 HSSI position

204 From analog input 2

205 From channel 2 resolver position

301 From channel 3 quadrature position Absolute Encoder position

302 From channel 3 SINCOS position

303 From channel 3 HSSI position

304 From analog input 3

305 From channel 3 resolver position

Tag

177

493Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

The controller supports a standard control loop configuration where 0 feedback position (FPOS) is
obtained from the 0 encoder, FPOS(1) from the 1 encoder, etc.

SLPROUT ¹ 0 indicates FPOS is from an alternative sensor, for example, if SLPROUT(0) is 0104, FPOS is
obtained from an analog input 0 rather than from the encoder. In this case, the feedback source
could be a potentiometer or any other device that produces analog voltage proportional to the
motor position.

The meaning of the routing value depends on the axis and the controller model. For example, a
value of 1 specified for the 0 or 2 axis selects the 0 encoder, the same value for the 1 or 2 axis selects
the 1 encoder.

Accessibility

Read-Write

SLPROUT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.10.4 SLP2ROUT

SPL2ROUT is variable for setting the feedback routing of the secondary feedback position.

Description

SLP2ROUT is an integer array, one element for each axis in the system, and is used for setting the
feedback routing of the secondary feedback position for the specified axis.

Syntax

SLP2ROUT(<axis>)=value

Arguments

The value values and the feedback sources associated with them are given below. The default value
is 0.

Value F2POS

0 Secondary Feedback is not used

001 From channel 0 quadrature position or Absolute Encoder position

002 From channel 0 SINCOS position

003 From channel 0 HSSI position101

494Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Value F2POS

004 From analog input 0

005 From channel 0 resolver position

101 From channel 1 quadrature position or Absolute Encoder position

102 From channel 1 SINCOS position

103 From channel 1 HSSI position

104 From analog input 1

105 From channel 1 resolver position

201 From channel 2 quadrature position or Absolute Encoder position

202 From channel 2 SINCOS position

203 From channel 2 HSSI position304

204 From analog input 2

205 From channel 2 resolver position

301 From channel 3 quadrature position or Absolute Encoder position

302 From channel 3 SINCOS position

303 From channel 3 HSSI position

304 From analog input 3

305 From channel 3 resolver position

Comments

SLP2ROUT variable can be used for routing when applied on secondary feedback only.

Tag

301

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

495Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.10.5 SLTFWID

Description

SLTFWID determines the distance to the target at which the position and velocity loops gains will be
increased by 50%. It is a real array with one element for each axis in the system.

SLTFWID is supported for the NanoPWM drives only.

Syntax

SLTFWID(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value A real value ranging between 0.0 and 4294967295. Default = 0.

Tag

273

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.10.6 SLVROUT

Description

SLVROUT is a real array, with one element for each axis in the system, and is used for setting the
feedback routing of the velocity for the specified axis.

Syntax

SLVROUT(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value
The value values and the feedback sources associated with them are given in
Table 3-21. Default = 0.

496Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-21. SLVROUT Values

SLVROUT FVEL (SP only)

0 According to E_TYPE velocity

001 From channel 0 quadrature velocity Absolute Encoder velocity

002 From channel 0 SINCOS velocity

003 From channel 0 HSSI velocity

004 From analog input 0

005 From channel 0 resolver velocity

101 From channel 1 quadrature velocity Absolute Encoder velocity

102 From channel 1 SINCOS velocity

103 From channel 1 HSSI velocity

104 From analog input 1

105 From channel 1 resolver velocity

201 From channel 2 quadrature velocity Absolute Encoder velocity

202 From channel 2 SINCOS velocity

203 From channel 2 HSSI velocity

204 From analog input 2

205 From channel 2 resolver velocity

301 From channel 3 quadrature velocity Absolute Encoder velocity

302 From channel 3 SINCOS velocity

303 From channel 3 HSSI velocity

304 From analog input 3

305 From channel 3 resolver velocity

Tag

188

Accessibility

Read-Write

497Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLVROUT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.14.11 Non-Linear Control Variables

See Non-Linear Control Application Note for more information about use of non-linear control
variables.

The following variables are used to implement non-linear control.

Name Description

SLPAP Holds the exponent (α) of the Position-Loop Proportional Non-Linear Control

SLPDP The Linear Range (δ) of the Position-Loop Proportional Non-Linear Control

SLPAI The exponent (α) of the Position-Loop Integral Non-Linear Control

SLPDI The Linear Range (δ) of the Position-Loop Integral Non-Linear Control

SLVAP The exponent (α) of the Velocity-Loop Proportional Non-Linear Control

SLVDP The Linear Range (δ) of the Velocity-Loop Proportional Non-Linear Control

SLVAI The exponent (α) of the Velocity-Loop Integral Non-Linear Control

SLVDI he Linear Range (δ) of the Velocity-Loop Integral Non-Linear Control

3.14.11.1 SLPAP

Description

SLPAP is a real array, the size of which is determined by the total number of axes in the system.
SLPAP holds the exponent (α) of the Position-Loop Proportional Non-Linear Control.

Syntax

SLPAP(index) = value

Comments

This variable is supported in version 3.10 and higher.

498Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.11.2 SLPDP

Description

SLPDP is a real array, the size of which is determined by the total number of axes in the system. This
is the Linear Range (δ) of the Position-Loop Proportional Non-Linear Control.

Syntax

SLPDP(index) = value

Arguments

index Axis index, from 0 to number of axes in the system-1

value Default value is 1. The range is [0,1]

Tag

Comments

A value of 1 sets the Linear range of the Non-Linear Gain curve to the Position-Error Limit.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPAI, SLPDI, SLVAP, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

3.14.11.3 SLPAI

Description

SLPAI is a real array, the size of which is determined by the total number of axes in the system. This
is the exponent (α) of the Position-Loop Integral Non-Linear Control.

Syntax

SLPAI(index) = value

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value Default value is 1. The range is [0,100]

499Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Tag

Comments

A value of 1 sets the Linear Range of the Non-Linear Gain curve to the Position-Error Limit.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPDP, SLPAI, SLVAP, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

3.14.11.4 SLPDI

Description

SLPDI is a real array, the size of which is determined by the total number of axes in the system. This
is the Linear Range (δ) of the Position-Loop Integral Non-Linear Control.

Syntax

SLPDI(index) = value

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value Default value is 1. The range is [0,1]

Tag

Comments

A value of 1 sets the Linear Range of the Non-Linear Gain curve to the Position-Error Limit.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPDP, SLPAI, SLVAP, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

500Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

3.14.11.5 SLVAP

Description

SLVAP is a real array, the size of which is determined by the total number of axes in the system. This
is the exponent (α) of the Velocity-Loop Proportional Non-Linear Control.

Syntax

SLVAP(index) = value

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value Default value is 1. The range is [0,1]

Tag

Comments

A value of 1 sets the Velocity-Loop Proportional Gain to Linear.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPDP, SLPAI, SLPDI, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

3.14.11.6 SLVDP

Description

SLVDP is a real array, the size of which is determined by the total number of axes in the system. This
is the Linear Range (δ) of the Velocity-Loop Proportional Non-Linear Control.

Syntax

SLVDP(index) = value

501Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value

Switches

Return Value

None

Comments

This variable is supported in version 3.10 and higher.

Example

3.14.11.7 SLVAI

Description

SLVAI is a real array, the size of which is determined by the total number of axes in the system. This
is the exponent (α) of the Velocity-Loop Integral Non-Linear Control.

Syntax

SLVAI(index) = value

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value Default value is 1. The range is [0,1]

Tag

Comments

A value of 1 sets the Velocity-Loop Integral Gain to Linear.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPDP, SLPAI, SLPDI, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

502Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.14.11.8 SLVDI

Description

SLVDI is a real array, the size of which is determined by the total number of axes in the system. This
is the Linear Range (δ) of the Velocity-Loop Integral Non-Linear Control.

Syntax

SLVDI(index) = value

Arguments

index
Axis:
0, 1, 2, ..., up to total number of axes in system minus 1

value Default value is 1. The range is [0,1]

Tag

Comments

A value of 1 sets the Linear Range of the Non-Linear Gain curve to the Maximum Current Command.

If the value is not default and the required license for this feature is missing, error 3300 “Non Linear
Control License is required” is given.

This variable is supported in version 3.10 and higher.

Related ACSPL+ Variables

SLPAP, SLPDP, SLPAI, SLPDI, SLVDP, SLVAI, SLVDI

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable(), WriteVariable()

C Library Functions

acsc_ReadReal(), acsc_WriteReal()

3.15 Commutation Variables

The Servo-Loop Commutation variables are:

Name Description

SLCHALL Hall Shift

SLCNP Number of Poles

SLCOFFS Commutation Offset

SLCORG Commutation Origin

503Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

SLCPRD Commutation Period

SLHROUT Setting Hall State Routing

SLSTHALL Getting Hall State

The low-level variables in this section are normally not used by the user.
Generally, these variables are defined during the axis adjustment using SPiiPlus MMI
Application Studiog Toolboxg Setupg Adjuster or the COMMUT command.

3.15.1 SLCHALL

Description

SLCHALL is an integer array, with one element for each axis in the system, and serves for storing the
Hall shift.

Tag

192

Comments

The Adjuster commutation program calculates this parameter and saves it.

Do not change this parameter manually.

Accessibility

Read-Write

SLCHALL values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.15.2 SLCNP

Description

SLCNP is an integer array, with one element for each axis in the system, and defines the number of
poles for a rotary motor.

504Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

SLCNP(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 2 to 1000, Default = 4.

Tag

152

Comments

For linear motors, set SLCNP=2.

Accessibility

Read-Write

SLCNP values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.15.3 SLCOFFS

Description

SLCOFFS is a real array, with one element for each axis in the system, and defines a commutation
offset in electrical degrees to be added to the commutation phase.

Syntax

SLCOFFS(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from -60 to 60, Default=0.

Tag

153

505Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

SLCOFFS defines SLCOFFS is valid only if a brushless motor is specified (MFLAGS(axis_
index).#BRUSHL = 1).

Assignment to SLCOFFS immediately changes the commutation phase. Use SLCOFFS to introduce a
small correction to the commutation phase.

Accessibility

Read-Write

SLCOFFS values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.15.4 SLCORG

Description

SLCORG is a real array, with one element for each axis in the system, that defines the commutation
phase in electrical degrees at the point of origin which is usually at the index point.

Syntax

SLCORG(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value

value ranges from:

> -60 to 60, Default=0

> 0 to 360, Default=0

Tag

156

Comments

SLCORG is valid only if a brushless motor has been specified, i.e., MFLAGS(axis_index).#BRUSHL = 1.

Accessibility

Read-Write

506Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

SLCORG values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.15.5 SLCPRD

Description

SLCPRD is a real array, with one element for each axis in the system, that defines the servo-loop
commutation period.

Syntax

SLCPRD(axis_index) = value

Arguments

axis_
index

Designates the specific axis, valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

value value ranges from 256 to 16777215, Default=8000.

Tag

158

Comments

SLCPRD defines the feedback counts per revolution for rotary motors and the feedback counts per
two magnetic pitches for linear motors.

Accessibility

Read-Write

SLCPRD values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.15.6 SLHROUT

Hall Routing is available using ACSPL+ variable: SLHROUT

507Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Description

SLHROUT is an integer array, with one element for each axis in the system, and is used for setting
the Hall state routing for the specified axis.

Syntax

SLHROUT(<axis>)=value

Value SLSTHALL

0 Default

001 From channel 0

101 From channel 1

201 From channel 2

301 From channel 3

Comments

Hall state is an integer number within the range [0,5]. Getconf(262,<index>) returns Hall state of axis
with index <index>. If SLHROUT(<index>) is not 0, Getconf(262,<index>) returns the hall state of the
channel based on the table defined above.

Tag

302

Accessibility

Read-Write

Com Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.15.7 SLSTHALL

Description

SLSTHALL is an integer array, with one element for each axis in the system, and is used for getting
the Hall state of each axis.

The value is an integer number, in range of {-1,5}. -1 means invalid Hall state.

Comments

The SLSTHALL variable’s value is being updated every cycle.

Tag

196

508Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read only

Com Library Methods and .NET Library Methods

ReadVariable

3.16 System Configuration Variables

The System Configuration variables are:

Name Description

CFG Configuration Mode

CTIME Controller Cycle Time

EXTFAC

Conversion factor between
the SL2-100 protocol
transferred units (microns
[μm]) and ACS user units.

FOLLOWCH
Maps an axis to a data
channel of a SLEC module

G_01WCS...G_12WCS

Defines one of the 12 work-
piece coordinate systems a
user can set as part of the
CNC setup/configuration

GPEXL
Indicates the GSP program
executed block

GSPEXL
Indicates the line in a
running buffer that called a
subroutine

GUFAC

Holds the value a
conversion factor, from
'Common Physical Units' in
[mm] to 'Controller Units'

IENA Interrupt Enable/Disable

IMASK Interrupt Mask

ISENA
Interrupt-Specific
Enable/Disable

S_FLAGS System Flags

509Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

S_SETUP System Settings

XSEGAMAX Maximal processing angles

XSEGAMIN Minimal processing angles

XSEGRMAX
Maximal arc radius
difference

XSEGRMIN Minimal arc radius

3.16.1 CFG

Description

CFG is an integer variable that indicates the application protection configuration mode.

Syntax

CFG = value

Arguments

value

value can be one of the following:

0: Controller is in protected mode

1: Controller is in normal mode

Tag

14

Comments

An attempt to assign a value to a protected variable when CFG = 0 causes an error.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Commands

acsc_ReadInteger

3.16.2 CTIME

CTIME is a real variable that defines the controller cycle time.

Syntax

CTIME = value

510Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguments

value
value can be 0.2, 0.25, 0.5, or 1.0 milliseconds (depending on the controller
model).

Tag

17

Comments

Many operations in the controller are synchronized to the controller cycle. For example, profile
generation is executed each controller cycle.

If CTIME is used, before running, the program has to be saved to the controller and
controller restarted.

CTIME is normally set through the SPiiPlus MMI Application Studio EtherCAT Configurator - see
SPiiPlus MMI Application Studio User Guide.

For information about valid CTIME values see the EtherCAT Cycle Rate section in the Installation
Guide for the relevant controller.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadReal, acsc_WriteReal

3.16.3 EXTFAC

Description

EXTFAC is a real array, with one element for each axis in the system. It is used as a conversion factor
between the SL2-100 protocol transferred units (microns [μm]) and ACS user units.

Syntax

EXTFAC(axis)

Argument

axis Axis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

3.16.4 FOLLOWCH

Description

FOLLOWCH is an integer array, with one element for each axis in the system, the elements of which
maps an axis to a data channel of a SLEC module.

Syntax

FOLLOW(axis)xbit

511Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Arguement

axis Axis, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

bit A description of the AST bit designators is:

bit Description

0-15 Data channel of SLEC

16-31 Unit ID of SLEC

Example 1

For an EtherCAT system that includes the following devices:

> SPiiPlusEC motion controller and EtherCAT master

> SPiiPlusCMHV EtherCAT control module

> SLEC. EtherCAT node

SLEC node number 1:

> Axis 0 will follow channel 0

> Axis 2 will follow channel 1

FOLLOWCH(0) = 0x00010000
FOLLOWCH(2) = 0x00010001

Example 2

For an EtherCAT system that includes the following devices:

> SpiiPlusEC motion controller and EtherCAT master

> SLEC EtherCAT node

> MC4U(8 axes)

> MC4U(8 axes)

> SLEC.EtherCAT node

Each MC4U includes 2 drives with 4 axes each for a total of 16 total axes..

SLEC node number 0:

> Axes 0 will follow channel 0

> Axes 1 will follow channel 1.

SLEC node number 3:

> Axes 8 will follow channel 0

512Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

> Axes 9 will follow channel 1.

FOLLOWCH(0) = 0x00000000
FOLLOWCH(1) = 0x00000001
FOLLOWCH(8) = 0x00050000
FOLLOWCH(9) = 0x00050001

3.16.5 G_01WCS...G_12WCS

Description

G_01WCS to G_012WCS are each a real array, with one element for each axis in the system (up to 9
axes). Each is used for defining one of the 12 work-piece coordinate systems a user can set as part of
the CNC setup/configuration. During the execution of a GSP program, a user can select one of them
to work. If user choses going back to work in the Machine Coordinate System, he can then chose to
clear it.

Syntax

N/A

Arguments

N/A

Tag

284…295

Accessibility

Read Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.16.6 GPEXL

Description

GPEXL is an integer array, with one element for each program buffer in the system. It indicates the
GSP program executed block. If block executes motion then GPEXL will indicate this line till this
motion completion.

If a buffer is not running, GPEXL equals 0.

Syntax

N/A

Arguments

N/A

Tag

296

513Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.16.7 GSPEXL

Description

GSPEXL is an integer array, with one element for each program buffer in the system. It indicates the
line in a running buffer that called a subroutine.

If a buffer is not running, GSPEXL equals 0.

Syntax

N/A

Arguments

N/A

Tag

347

Accessibility

Read Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.16.8 GUFAC

Description

GUFAC is a real array, with one element for each program buffer in the system. Each entry in the
array holds the value a conversion factor, from 'Common Physical Units' in [mm] to 'Controller Units'
(In the world of ACSPL+, those 'Controller Units' are sometimes related to as 'User Units'). As part of
GSP modality data, default value of GUFAC is 1.0 for all buffers.

Syntax

N/A

Arguments

N/A

Tag

298

514Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadReal

3.16.9 IENA

Description

IENA is a 23-bit mask variable used for enabling or disabling software and hardware interrupts from
a specific source.

Syntax

IENA.bit_designator = 1|0

Arguments

bit_designator The meanings of bit_designator are given in Table 3-22.

Table 3-22. IENA Bit Description

Bit Interrupt

7 Enable MARK1 0 interrupt

8 Enable MARK2 0 interrupt

9 Enable MARK1 2 interrupt

10 Enable M2ARK2 2 interrupt

11 Enable MARK1 4 interrupt

12 Enable M2ARK2 4 interrupt

13 Enable MARK1 5 interrupt

14 Enable M2ARK2 5 interrupt

15 Enable Emergency Stop interrupt

16 Enable Physical motion end interrupt

17 Enable Logical motion end interrupt

18 Enable Motion failure (Motion interruption due to a fault) interrupt

515Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Interrupt

19 Enable Motor failure (Motor disable due to a fault) interrupt

20 Enable Program termination interrupt

21 Enable Dynamic buffer interrupt

22 Enable ACSPL+ interrupt by INTERRUPT command

23 Enable Digital input interrupt

24 Enable Motion start interrupt

25 Enable Motion phase interrupt

26 Enable ACSPL+ interrupt by TRIGGER command

Tag

69

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.10 IMASK

Description

IMASK is an integer array, with one element for each axis in the system, the elements of which
contain a set of bits that define which motor index and mark signals are processed.

Syntax

IMASK(axis_index).bit_designator = value

Arguments

axis_index
Designates the specific axis, valid numbers
are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

bit_designator

IMASK has four bit designators:

> #IND (bit 0) - Primary encoder
index

> #IND2 (bit 1) - Secondary encoder

516Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

index

> #MARK (bit 2) - Mark1

> #MARK2 (bit 3) - Mark2

value
value ranges from -2147483648 to
2147483647, Default = 13

Tag

70

Comments

If a bit is zero, the controller neither analyzes or latches the corresponding INDEX or MARK signal.

Every axis does not provide all INDEX and MARK signals. The secondary encoder index is available
only if a secondary encoder is used. MARK signals are only available for axes 0, 1, 4, and 5.

Accessibility

Read-Write

IMASK values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, GetIndexState, ResetIndexState

C Library Functions

acsc_ReadInteger, acsc_WriteInteger, acsc_GetIndexState, acsc_ResetIndexState

3.16.11 ISENA

Description

ISENA is an integer array, with one element for each axis in the system, the elements of which
contain a set of 8 bits used for enabling or disabling software interrupts within a specific interrupt
status bit for a specific axis or buffer. Each element corresponds to one software interrupt status bit
and specifies which axis, buffers or inputs are enabled to cause interrupt.

Syntax

ISENAarray_index.bit_designator = 1|0

Arguments

array_index
Designates the specific axis, valid numbers are: 0, 1, 2,
... up to the number of axes in the system minus 1.

bit_designator
The meanings of bit_designator are given in Table 3-
23.

517Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-23. ISENA Bit Description

Bit Interrupt

0 Controls Physical Motion End interrupt.

1 Controls Logical Motion End interrupt.

2 Controls Motion Failure interrupt.

3 Controls Motor Failure interrupt.

4 Controls Program Termination interrupt.

5 Controls Command Execution interrupt (dynamic buffer only).

6 Controls ACSPL+ interrupt (by INTERRUPT command).

7 Controls Digital Input interrupt.

If the Physical Motion is PEG-related, then bit 0 is not supported in NT 1.0.

Tag

78

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.12 S_FLAGS

Description

S_FLAGS is an integer variable containing a set of bits that define different settings for the controller.

Syntax

S_FLAGS.bit_designator = 1|0

Arguments

bit_designator The meanings of bit_designator are given in Table 3-24.

518Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Table 3-24. S_FLAGS Bit Description

Bit Name No. Description Remarks

#S_FLAGS 1

S_FLAGS.1 controls
whether the controller
allots a controller cycle
to processing non-
executable lines such
as comments, empty
lines and labels.

0: Comments, empty
lines, labels are skipped
during execution and
not allotted a controller
cycle. (Default)
1: These lines are each
allotted a controller
cycle.

Changes to S_FLAGS.1 take effect
only after a program is
recompiled.

#FCLEAR 2

0: Sets the controller to
regular mode. (Default)

1: Sets the controller to
strict mode

In the regular mode the next
motion command simply clears
the reason for the previous
KILL/KILLALL.

In the strict mode, the next
motion command cannot
activate the motion and fails.
Motion cannot be activated as
long as the reason for the
previous KILL is non-zero for any
involved motor.

Motion can continue only after
clearing the MERR variable with
ENABLE/ENABLE ALL or FCLEAR.

Tag

116

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

519Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

3.16.13 S_SETUP

Description

An integer variable containing a bit mask for defining various settings for the system.

Syntax

S_SETUP.bit_designator = 1|0

Arguments

bit_designator The S_SETUP bit designators are given in Table 3-25.

Table 3-25. S_SETUP Bit Designators

Name No. Description

#USGTRACE 1
0 (default) - Usage tracing is disabled

1 - Enables usage tracing (for debugging purposes only)

#SOFTIME 2

0 (default) - EtherCAT frame delivery time measurement is
disabled

1 - Enables EtherCAT frame delivery time measurement (for
debugging purposes only)

#FRMLOSS 3

0 (default) - single EtherCAT frame loss is not allowed.
Every frame loss causes an EtherCAT error.

1 - single EtherCAT frame loss is allowed without causing an
EtherCAT error.

A single EtherCAT frame loss mode can affect
the performance of ACS units, if this mode is in
use, then the ACS units MUST be connected
before non-ACS units in the network.

#ENHPROT 4
0 - backward compatible application protection.

1 (default) - allow enhanced application protection.

#CONFPROT 5

0 (default) - prevent system reconfiguration In Protected
Mode.

1 - allow system reconfiguration In Protected Mode.

#GMODE 6
0 - backward compatible gantry mode for PEG, MARK,
INDEX. 1 (default) - enable enhanced gantry mode for PEG,
MARK, INDEX.

520Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name No. Description

#POSSYNC 7
0 - backward compatibility for FPOS/RPOS synchronization

1 (default) - enable FPOS/RPOS synchronization

#ESDBMODE 8 SPiiPlusES Debug Mode

#IOMNTMAP 9

0 - IOMNT units are not mapped to ACSPL+ IN and OUT
variables

1 (default) - IOMNT units are mapped to ACPSL+ IN and OUT
variables

#IRMSLEG* 10

0 (default) - RMS Protection is separated between Motor
and Drive

1 - Legacy RMS protection only, using XRMS+XRMST

#USGTEMP 11

0: Do not use default response for Motor Overheat, MPU
Overheat or MPU Overuse
1: Exception default response for Motor Overheat, MPU
Overheat or MPU Overuse is ‘DISABLE’.

#HOME402 13 CiA402 Homing Methods Enabled

#COMM402 14 CiA402 Drive uses ACSPL+ COMMUT Command

#FASTPWUP 15 Optimized power-up time

#CTDBRAKE 19

When the bit is ON, products that support Controlled
Current Dynamic Brake will operate in the new mode. If the
bit is OFF, Dynamic Brake is applied.

Default value is ON.

#SINCOSREP 20

When the bit is ON, the mechanism compensation for any
quadrature misalignment between the Analog counter and
the quadrature counter during initialization is applied.

The bit is ON by default.

*Starting from version 2.60, after changing the RMSLEG bit, the system should be
reconfigured using the System Setup component

Tag

240

Accessibility

Read-Write

521Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.14 XSEGAMAX

Description

A real variable that defines the maximal angle required when configuring look-ahead processing
angles.

Syntax

XSEGAMAX= value

Tag

262

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.15 XSEGAMIN

Description

A real variable that defines the minimal angle required when configuring look-ahead processing
angles.

Syntax

XSEGAMIN= value

Tag

263

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.16 XSEGRMAX

Description

A real variable that defines the maximal radius difference required when configuring arcs.

522Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Syntax

XSEGRMAX= value

Tag

264

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.16.17 XSEGRMIN

Description

A real variable that defines the minimal arc radius required when configuring arcs.

Syntax

XSEGRMIN= value

Tag

265

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17 Communication Variables

Communication variables are used for establishing various communication parameters.

The Communication variables are:

Name Description

BAUD Serial Communication Baud Rate

COMMCH Communication Channel

COMMFL Communication Flags

CONID Controller Identification

523Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Name Description

DISPCH Default Communication Channel

ECHO Echo Communication Channel

GATEWAY
Contains the address of a network router that serves accessing another
network segments.

SUBNET Used to determine to what subnet an IP address belongs.

TCPIP IP Address for 1st Ethernet

TCPIP2 IP Address for 2nd Ethernet

TCPPORT TCP port identifier

UDPPORT UDP port identifier

3.17.1 BAUD

Description

BAUD is an integer variable that defines the serial communication rate, given in bits per second.

Syntax

BAUD = value

Arguments

value

value can be one of the following:

> 300

> 1200

> 4800

> 9600

> 19200

> 57600

> 115200

Tag

8

Comments

Changes to BAUD take effect only after controller restart.

Accessibility

Read-Write

524Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

BAUD values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable, OpenComSerial

C Library Commands

acsc_ReadInteger, acsc_WriteInteger, acsc_OpenComSerial

3.17.2 COMMCH

Description

COMMCH is an integer that stores a number representing the last activated communication channel.

Table 3-26. COMMCH Values

Value Description

1 Serial port 1

2 Serial port 2

6 Ethernet network (TCP)

7 Ethernet network (TCP)

8 Ethernet network (TCP)

9 Ethernet network (TCP)

10 Ethernet Point-to-Point (UDP)

12 PCI bus

16 MODBUS Slave

36 Ethernet network (TCP)

37 Ethernet network (TCP)

38 Ethernet network (TCP)

39 Ethernet network (TCP)

Tag

15

525Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

When queried through a communication channel, COMMCH reads the number of the current
communication channel.

COMMCH can be used in SEND, or assigned to DISPCH.

Accessibility

Read-Only.

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.17.3 COMMFL

This variable is for advanced users. Changing the default values of these bits is not
recommended!

Description

COMMFL is a scalar variable containing a set of bits that affect controller communication.

Syntax

COMMFL.bit_designator = 1|0

Arguments

bit_designator The COMMFL bits and the meanings of their values are given in Table 3-27.

Table 3-27. COMMFL Bit Descriptions

Bit Name Bit No. Description

#VERBOSE 0

Controls error message form.

0 = The controller provides the error number only
to the C Library function or COM method, when an
error occurs.

1 = The controller provides an extended message

1 1 = Enable motor messages

2 1 = Enable Axis messages

3 1 = Enable Program messages

#SAFEMSG 4
1 = Controller sends unsolicited messages in Safe
communication format

526Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Bit Name Bit No. Description

#CSUMMSG 6
1 = A checksum is included in unsolicited messages.
Normally the user does not need to change this bit.

#NOCOMM 7

Controls the communication in protected mode.

1 = The controller ignores any command received via
communication channels except the queries that start from
'?' character. The bit is not effective if the controller is in
configuration mode. The default value is 0.

#NOQUERY 8

Controls the communication in protected mode.

1 = The controller ignores any query received via
communication channels. The bit is not effective if the
controller is in configuration mode. The default value is 0.

Tag

16

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Commands

acsc_ReadInteger, acsc_WriteInteger

3.17.4 CONID

Description

CONID is an integer variable that contains the controller identification.

Syntax

CONID = value

Arguments

value An integer ranging between 0 and 65536.

Tag

193

Comments

The controller identification can be used for many different purposes like Modbus Slave ID, CAN
Slave ID or user-defined unique ID within the user network.

527Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

According to the Modbus specification, the controller must have an individual address
from 1 to 247.
In order to specify the Modbus Slave address, CONID should be initialized to the Modbus
Slave address value.

By default, the variable has zero value.

Accessibility

Read-Write

CONID values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Commands

acsc_ReadInteger, acsc_WriteInteger

3.17.5 ECHO

Description

ECHO is a 10-member mask integer variable that defines an echo communication channel.

Syntax

ECHO = channel_number

Arguments

channel_
number

The values of channel_number and their meanings are given in Table 3-
28.

Table 3-28. ECHO Channel Numbers

Channel Number Channel Name

-1 Echo NOT active

-2 All channels

1 Serial port 1

2 Serial port 2

6 Ethernet network (TCP)

7 Ethernet network (TCP)

528Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Channel Number Channel Name

8 Ethernet network (TCP)

9 Ethernet network (TCP)

10 Ethernet Point-to-Point (UDP)

12 PCI bus

16 MODBUS Slave

36 Ethernet network (TCP)

37 Ethernet network (TCP)

38 Ethernet network (TCP)

39 Ethernet network (TCP)

Tag

35

Comments

If ECHO specifies a valid communication channel, the controller sends an echo of each command
received from any communication channel to the specified channel. Address each channel as
follows:

The default value for ECHO is -1, in order to select an echo channel, the user needs to select a
channel number.

ECHO cannot be saved to flash. After power-up the value is set to -1.

Use DISPCH to configure the communication channels related to the controller. Use COMMCH to
retrieve the current controller channel’s physical connection (only the channel that is connected to
the terminal on which the query is sent).

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17.6 DISPCH

Description

DISPCH is a scalar integer variable that defines a communication channel between the controller
and a host application, SPiiPlus MMI Application Studio or any device connected to the controller's

529Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

communication ports.

Syntax

DISPCH = channel_number

Arguments

channel_
number

The values of channel_number and their meanings are given in Table 3-
29.

Table 3-29. DISPCH Channel Numbers

Channel
Number

Description

-2 All channels

-1
No default channel is specified, the command uses the last channel
activated by the host.

1 Serial port 1

2 Serial port 2

6 Ethernet network (TCP)

7 Ethernet network (TCP)

8 Ethernet network (TCP)

9 Ethernet network (TCP)

10 Ethernet Point-to-Point (UDP)

12 PCI bus

16 MODBUS Slave

36 Ethernet network (TCP)

37 Ethernet network (TCP)

38 Ethernet network (TCP)

39 Ethernet network (TCP)

Tag

25

530Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Comments

DISPCH is relevant only to messages sent with DISP and SEND (described also as “Unsolicited
Messages”).

In order to view unsolicited messages in the SPiiPlus MMI Application Studio Communication
Terminal window, select the check box in the lower right corner of the Terminal window to enable
Show Unsolicited Messages.

If DISPCH specifies a valid communication channel, all unsolicited messages (messages that are sent
with DISP and SEND from the program buffers) are sent to this channel irrespective of the channel
used for immediate commands.

Accessibility

Read-Write

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17.7 GATEWAY

Description

GATEWAY is an integer variable used for setting the address of a network router that serves for
accessing another network segment.

The configuration is only available for the first Ethernet port.

Syntax

GATEWAY = value

Arguments

value value an hexadecimal number - format: 0xAABBCCDD.

Tag

227

Comments

The GATEWAY address value consists of 4 individual bytes, each byte containing a decimal number
ranging from 0 to 255. The bytes, when read, include a dot between each byte, with the least
significant byte of the value representing the first decimal number. For example, the value
0x0100000A is the address: 10.0.0.1.

If controller is configured to obtain network settings from a DHCP server, GATEWAY contains the
gateway address received from DHCP server

531Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Accessibility

Read-Write

GATEWAY values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17.8 SUBNET

Description

SUBNET is an integer variable used to determine to what subnet an IP address belongs.

The configuration is only available for the first Ethernet port.

Syntax

SUBNET = value

Arguments

value value an hexadecimal number - format: 0xAABBCCDD.

Tag

228

Comments

The SUBNET value consists of 4 individual bytes, each byte containing a decimal number ranging
from 0 to 255. The bytes, when read, include a dot between each byte, with the least significant byte
of the value representing the first decimal number. For example, the value 0x00FFFFFF represents
mask 255.255.255.0.

If controller is configured to obtain network settings from a DHCP server, SUBNET contains the
address received from DHCP server.

Accessibility

Read-Write

SUBNET values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

532Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17.9 TCPIP

Description

TCPIP is an integer variable used for setting the TCP/IP for the Ethernet port N1.

Syntax

TCPIP = value

Arguments

value value an hexadecimal number - format: 0xAABBCCDD.

Tag

133

Comments

If TCPIP has a non-zero value, the controller uses the value as its TCP/IP address. In this case, other
configuration parameters receive the following default values:

> Subnet mask - 255.255.255.0

> Gateway address - no gateway, i.e., no routing is supported

If TCPIP is zero, the controller uses the DHCP protocol to receive the network configuration from the
DHCP server. The network configuration received from the DHCP server includes the following
parameters:

> Controller’s TCP/IP address

> Subnet mask

> Gateway address

The TCPIP variable value has to be in hex, for example:

TCPIP=0x6400000a

assigns a TCP/IP address of: 10.0.0.100. Note that the address is calculated starting from the least
significant byte of the value.

To retrieve the assigned address in an ACSPL+ program, use the GETCONF function with key 310.

Accessibility

Read-Write

533Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

TCPIP values cannot be modified if protection is applied to this variable through SPiiPlus
MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Commands

acsc_ReadInteger, acsc_WriteInteger, acsc_GetEthernetCards (to find all SPiiPlus controllers in the
network segment)

3.17.10 TCPIP2

Description

TCPIP2 is an integer variable used for setting the TCP/IP for a second Ethernet port: N2.

Syntax

TCPIP2 = value

Arguments

value value an hexadecimal number - format: 0xAABBCCDD.

Tag

198

Comments

If TCPIP2 is zero, the address will be automatically obtained at the controller start-up through DHCP
protocol. The default address for second Ethernet port is 192.168.0.100.

The TCPIP2 variable value has to be in hex: 0xAABBCCDD, for example:

TCPIP=0x6400000a

assigns a TCP/IP address of: 10.0.0.100. Note that the address is calculated starting from the least
significant byte of the value.

To retrieve the assigned address in an ACSPL+ program, use the GETCONF function with key 310.

Accessibility

Read-Write

TCPIP2 values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

534Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Commands

acsc_ReadInteger, acsc_WriteInteger, acsc_GetEthernetCards (to find all SPiiPlus controllers in the
network segment)

3.17.11 TCPPORT

Description

TCPPORT is a scalar integer that stores a number representing a TCP port.

Syntax

TCPPORT = Port_number

Arguments

Port_number An integer ranging between 0 and 65536.

Tag

200

Comments

TCPPORT defines Ethernet ports in the controller for TCP. By default, this variable is set to 701. In
order to establish communication with the controller through a port different from default port
numbers, the following should be done:

1. Set TCPPORT to a value other than 701.

Some of the ports are used by the controller firmware and cannot be used. It is
recommended to use ports starting from 1024.

2. Save system parameters to the flash.

3. Restart the controller.

4. Try to establish communication using new ports by providing them in client user
application. If communication isn't established, try to set other values.

This new port value is used by the client user application only. The SPiiPlus Tools and
SPiiPlus C/COM Library continue to use the default ports.

Accessibility

Read-Write

TCPPORT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

535Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.17.12 UDPPORT

Description

UDPPORT is a scalar integer that stores a number representing a UDP port.

Syntax

UDPPORT = Port_number

Arguments

Port_number An integer ranging between 0 and 65536.

Tag

201

Comments

UDPPORT defines Ethernet ports in the controller for UDP. By default, it is set to 700. In order to
establish communication with the controller through different from default port numbers, the
following should be done:

1. Set UDPPORT to a value other than 700.

Some of the ports are used by the controller firmware and cannot be used. It is
recommended to use ports starting from 1024.

2. Save system parameters to the flash.

3. Restart the controller.

4. Try to establish communication using new ports by providing them in client user
application. If communication isn't established, try to set other values.

This new port value is used by the client user application only. The SPiiPlus Tools and
SPiiPlus C/COM Library continue to use the default ports.

Accessibility

Read-Write

UDPPORT values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

536Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

3.18 Miscellaneous

The Miscellaneous variables are:

Name Description

FK Function Key

STATIC Tag used to define a global variable as STATIC

XARRSIZE Maximum Array Size

3.18.1 FK

Description

FK is a scalar integer and is used by the controller to store function keys in an input string processed
with the INPUT command.

Tag

50

Comments

If the controller encounters a zero character in the input string, it stores the value of the next
character in FK.

This is the usual way for loading function key codes (F1 - F12).

An autoroutine can be used to respond to changes in FK.

Accessibility

Read-Only

COM Library Methods and .NET Library Methods

ReadVariable

C Library Functions

acsc_ReadInteger

3.18.2 STATIC

Description

A new tag can be used to define a global variable as STATIC.

STATIC variables can only be defined in the D-buffer and once defined can only be freed using the
#VGV command, that is: removing the definition from the D-buffer does not remove the variable.

537Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

Use the #VGS/#VGSF command to list all static variables in the system.

Syntax

GLOBAL INT/REAL STATIC Var

3.18.3 XARRSIZE

Description

XARRSIZE is a scalar integer that stores maximum size of an array.

Syntax

XARRSIZE = value

Arguments

value value ranges from 10,000 to 10,000,000 (elements); Default = 100,000

Tag

219

Comments

By default the maximum size for a user array is 100,000 elements; if, however, an application
requires larger arrays, the user may change this value to accommodate a larger array size. However
the following should be taken into consideration:

1. Defining large arrays may use too much memory and may cause an out of memory fault. To
avoid this, the RAM size available for user data in the specific controller model should be
checked. One element in an array requires 8 bytes of RAM, 131,072 elements require 1 MB.

2. The processing time required for operations on large arrays in ACSPL+ may cause an over
usage fault. Therefore, arrays should be defined only with the size actually required for the
application.

It strongly recommended that users change the XARRSIZE variable only if necessary,
and that such changes be tested under safe conditions.

Accessibility

Read-Write

XARRSIZE values cannot be modified if protection is applied to this variable through
SPiiPlus MMI Application Studiog Toolboxg Application Developmentg Protection

COM Library Methods and .NET Library Methods

ReadVariable, WriteVariable

C Library Functions

acsc_ReadInteger, acsc_WriteInteger

538Version 3.12

ACSPL+ Commands & Variables Reference Guide
3. ACSPL+ Variables

4. ACSPL+ Functions
ACSPL+ functions are divided into the following categories:

> Arithmetical Functions

> Matrix Functions

> Miscellaneous Functions

> EtherCAT Functions

> CoE Functions

> Modbus Functions

> Servo Processor Functions

> Signal Processing Functions

> Laser Control Functions

> Dynamic Error Compensation

This chapter covers the ACSPL+ functions.

The ACSPL+ Functions, in alphabetical order, are:

Function Description

ABS Calculates the absolute value.

ACOS Calculates the arc cosine.

AINOFFS Percent offset of analog signal from external source

AINSCALE Define scale of analog input signal

ASIN Calculates the arc sine.

ATAN Calculates the arctangent.

ATAN2 Calculates the arctangent of X/Y.

AxListAsMask Mask for defining axes.

AVG Finds the average of all values in an array.

BCOPY
Copies a given number of bytes from a source array into a target
array.

CEIL Calculates the ceiling of a value.

COPY The function copies one array to another.

539Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

COEREAD Read CoE slave Object Directory entry.

COS Calculates the cosine.

COEWRITE Write into CoE slave Object Directory.

DEADZONE Implements dead-zone routine.

DSIGN Implements a dynamic version of the standard SIGN function.

DSTR Converts a string to an integer array.

ECIN Copy EtherCAT offset data into ACSPL+ variable

ECGETGRPIND
Returns an array that contains optional groups’ indexes that are part
of the current configuration

ECGETOPTGRP
Returns number of actually connected optional groups, not including
the mandatory group.

ECGETSLAVES Returns the number of EtherCAT slaves in the network

ECGRPINFO
> Fills array with nodes’ indexes which are members of a

given optional group
> Returns the number of members in the group.

ECOUT Copy data of ACSPL+ variable into EtherCAT offset

ECRESCUE Triggers execution of a rescue scan of the EtherCAT network

ECSAVECFG
Saves to flash an array of optional groups based on current
configuration, based on ecgetgrpind() function.

ECSAVEDCNF
Returns array that contains optional groups’ indexes that are part of
the last saved configuration

ECUNMAP Undoes any results from running ECIN and ECOUT

ECUNMAPIN Undoes any results from running ECIN to a specific offset.

ECUNMAPOUT Undoes any results from running ECOUT to a specific offset.

EDGE Returns 1 on positive edge of x.

ENCREAD Read encoder parameters

540Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

ERRORMAP1D
Configures and activates 1D error correction for the mechanical error
compensation for the specified zone,

ERRORMAP2D
Configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ command for the specified zone,

ERRORMAPN1D
Configures and activates 1D error correction for the mechanical error
compensation for the specified zone

ERRORMAPN2D
Configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ command for the specified zone,

ERRORMAPOFF
Deactivates error mapping correction for the mechanical error
compensation for the specified zone.

ERRORMAPON
Activates error correction for the mechanical error compensation for
the specified zone.

#ERRORMAPREP
Generates a report of all activated zones of error mapping for all
axes in the system.

ERRORUNMAP
Deactivates error correction for the mechanical error compensation
for the specified zone.

EXP Calculates the exponent.

FLOOR Calculates the floor of a value.

GETCONF Reads hardware and firmware parameters.

GETSP Reads a value from the specified SP address.

GETSPA Retrieves address of the SP variable specified by name.

GETSPV Reads a value from the specified SP variable name.

HYPOT Calculates the hypotenuse.

INP
Reads data characters from the specified channel and stores them
into integer array.

INTGR Implements an integrator with DEADZONE and SAT.

LAG
Provides delayed switching on argument change (anti-bouncing
effect).

541Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

LCDelayGet Returns the actual currently configured delay in microseconds.

LCDelaySet Sets the pulse generation delay in microseconds.

LCFixedDist Initializes the fixed distance pulse firing mode.

LCFixedInt Initializes the fixed distance pulse firing mode.

LCMODULATION
Initializes Pulse modulation mode and sets initial values for the unit
internal registers.

LCOutputGet Returns the laser outputs configuration.

LCOutputSet Configures the laser physical outputs.

LCRandomDist Initializes either array based pulse firing mode or gating mode.

LCSignalGet Returns the laser control signal (LCS) output conditioning state.

LCSignalSet Configures the laser control signal (LCS) output conditioning state.

LCStop
Stops any previously initialized laser mode and resets the previously
defined mode parameters.

LCTickle Initializes Tickle mode.

LCZone Sets a laser operation zone area.

LCZoneGet
Returns the limits of the laser operation zone that was previously
defined

LCZoneSet Changes the minimal and/or maximal laser operationzone limit.

LDEXP Calculates a value of x*2exp.

LOG Calculates the natural logarithm.

LOG10 Calculates the base-10 logarithm.

MAP Implements a table-defined function with constant step.

MAPB One-dimensional uniform b-spline.

MAPN
One-dimensional non-uniform linear interpolation (replaces
obsolete MAPBY1 and MAPBY2).

542Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

MAPNB One-dimensional non-uniform B-spline.

MAPNS One-dimensional non-uniform Catmull-Rom spline.

MAPS One-dimensional uniform Catmull-Rom spline.

MAP2
Implements a table-defined function with two arguments and
constant step along each argument.

MAP2B Two-dimensional uniform B-spline.

MAP2N
Two-dimensional non-uniform linear interpolation (replaces
obsolete MAP2FREE).

MAP2NB Two-dimensional non-uniform B-spline.

MAP2NS Two-dimensional non-uniform Catmull-Rom spline.

MAP2S Two-dimensional uniform Catmull-Rom spline.

MATCH
Calculates axis position that matches current reference position of
the same axis with zero offset.

MAX Finds the maximum value in an array.

MAXI
Finds the element with maximum value in an array or in a section of
an array and returns its index.

MIN Finds the minimum value in an array.

MINI
Finds the element with minimum value in an array or in a section of
an array and returns its index.

NUMTOSTR Converts a number to an ASCII string.

POW Calculates x raised to the power of y.

RAND Implements a random number generator.

ROLL Calculates a result rolled-over to within one pitch.

SAT Implements a saturation characteristic.

SETCONF Writes hardware and firmware parameters.

SETSP Sets a value for the specified SP address.

543Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

SETSPV Sets a value for the specified SP variable name.

SETVAR
Writes a value to a system or user variable, scalar or array, that was
declared as a Tag number.

SIGN Returns -1, 0 or 1 depending on the sign of x.

SIN Calculates the sine.

SQRT Calculates the square root.

STR Converts an integer array to a string.

STRTONUM
Converts an ASCII string representing a number to the number it
represents.

SYSINFO
Returns certain system information based on the argument that is
specified.

TAN Calculates the tangent.

4.1 Arithmetical Functions

The Arithmetical functions are:

Function Description

ABS Calculates the absolute value

ACOS Calculates the arc cosine

ASIN Calculates the arc sine

ATAN Calculates the arctangent

ATAN2 Calculates the arctangent of Y/X

CEIL Calculates the ceiling of a value

COS Calculates the cosine

EXP Calculates the exponent

FLOOR Calculates the floor of a value

HYPOT Calculates the hypotenuse

LDEXP Calculates a value of x*2exp

544Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

LOG Calculates the natural logarithm

LOG10 Calculates the base 10 logarithm

POW Calculates x raised to the power of y

SIGN Returns -1, 0 or 1 depending on the sign of x

SIN Calculates the sine

SQRT Calculates the square root

TAN Calculates the tangent

ROUND Rounds REAL to INTEGER

4.1.1 ABS

Description

ABS calculates the absolute value

Syntax

ABS(input)

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns the absolute value of the input.

Error Conditions

None

Example

XX = ABS(-3.14)
DISP XX !Output = 3.14

4.1.2 ACOS

Description

ACOS calculates arc cosine.

Syntax

ACOS(input)

545Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns the arc cosine of the argument in the range from 0 toπradians.

Error Conditions

The value of input must be between –1 to 1, otherwise the function returns Error 3045, Numerical
Error in Standard Function.

Example

XX = ACOS(-1)
DISP XX !Output = 3.141592654

4.1.3 ASIN

Description

ASIN calculates the arc sine.

Syntax

ASIN(input)

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns the arc sine of XX in the range –p/2 to p/2.

Error Conditions

The value of inputmust be between –1 to 1, otherwise the function returns Error 3045, Numerical
Error in Standard Function.

Example

XX = ASIN(-1)
DISP XX !Output = -1.570796327

4.1.4 ATAN

Description

ATAN calculates the arctangent.

Syntax

ATAN(input)

Arguments

input input can be a real number or an expression.

546Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Real number - returns the arctangent of the input in the range –p/2 to p/2 radians.

Error Conditions

None

Example

XX = ATAN(-1)
DISP XX !Output = –0.7853981634

4.1.5 ATAN2

Description

ATAN2 calculates the arctangent of X/Y.

Syntax

ATAN2(X_input,Y_input).

Arguments

X_input X_input can be a real number or an expression.

Y_input Y_input can be a real number or an expression.

Return Value

Real number - returns the arctangent value of X_input, Y_input. ATAN2 calculates a value in the
range of -p to p radians using the signs of both parameters to determine the quadrant of the return
value. If both parameters are 0, the function returns 0. ATAN2 is well defined even if Y equals 0.

Error Conditions

None

Example

X_input = -1; Y_input = 0
XX=ATAN2(X_input,Y_input)
DISP XX !Output = -1.5708

4.1.6 CEIL

Description

CEIL calculates the ceiling of a value.

Syntax

CEIL(input)

Arguments

input input can be a real number or an expression.

547Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Integer number - returns a value that represents the smallest integer that is ³ input.

Error Conditions

None

Example

XX=CEIL(3)
YY=CEIL(-3)
ZZ=CEIL(2.1)
TT=CEIL(–2.1)
DISP XX, YY, ZZ, TT !Output = 3 -3 3 -2

4.1.7 COS

Description

COS calculates the cosine.

Syntax

COS(input)

Arguments

input
input can be a real number or an expression (which is treated as radians by the
function).

Return Value

Real number - returns the cosine of X in the range of -1 to 1.

Error Conditions

None

Example

XX = COS(-3.141592654)
DISP XX !Output = -1

4.1.8 EXP

Description

EXP calculates the e^ input

Syntax

EXP(input)

Arguments

input input can be a real number or an expression.

548Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Real number - returns the exponential value of input. On overflow, the function returns the largest
real number.

Error Conditions

None

Example

XX = EXP(1)
DISP XX !Output = 2.718281828

4.1.9 FLOOR

Description

FLOOR calculates the floor of a value.

Syntax

FLOOR(input)

Arguments

input input can be a real number or an expression.

Return Value

Integer number - returns a value representing the largest integer that is < to input.

Error Conditions

None

Example

XX=FLOOR(3)
YY=FLOOR(-3)
ZZ=FLOOR (2.1)
TT=FLOOR(-2.1)
DISP XX,YY,ZZ,TT !Output = 3 -3 2 -3

4.1.10 HYPOT

Description

HYPOT calculates the hypotenuse of a right triangle

Syntax

HYPOT(X_input, Y_input)

Arguments

X_input X_input can be a real number or an expression.

Y_input Y_input can be a real number or an expression.

549Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Real number - calculates the length of the hypotenuse of a right triangle, given the length of the
two sides X_input and Y_input. HYPOT is equivalent to the square root of X2 + Y2.

Error Conditions

None

Example

XX=HPOT(3,4)
DISP XX !Output = 5

4.1.11 LDEXP

Description

LDEXP calculates the value of x*2^exp.

Syntax

LDEXP(X_input, Y_input)

Arguments

X_input X_input can be a real number or an expression.

Y_input Y_input can be a real number or an expression.

Return Value

Real number - returns the value of X_input*2Y_input. On overflow LDEXP returns the largest real
number with a sign, depending on the sign of X_input

Error Conditions

None

Example

XX= LDEXP(1,2)
DISP XX !Output = 4

4.1.12 LOG

Description

LOG calculates the natural logarithm.

Syntax

LOG(input)

Arguments

input input can be a real number or an expression.

550Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Real number - returns the natural logarithm of input.

Error Conditions

input must be > 0, otherwise the function returns Error 3045, Numerical Error in Standard Function.

Example

XX=LOG(2.718281829)
DISP XX !Output = 1

4.1.13 LOG10

Description

LOG10 calculates the base 10 logarithm.

Syntax

LOG10(input)

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns the base 10 logarithm of input.

Error Conditions

input must be >0, otherwise the function returns Error 3045, Numerical Error in Standard Function.

Example

XX=LOG10(10)
DISP XX !Output = 1

4.1.14 POW

Description

POW calculates X raised to the power of Y.

Syntax

POW(X_input, Y_input)

Arguments

X_input X_input can be a real number or an expression.

Y_input Y_input can be a real number or an expression.

Return Value

Real number - returns the value of (X_input)Y_input.

551Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

None

Example

XX=POW(2,3)
DISP XX !Output = 8

4.1.15 SIGN

Description

SIGN returns –1, 0 or 1 depending if the input is negative, zero or positive.

Syntax

SIGN(input)

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns:

–1 if input <0;

0 if input = 0;

1 if input >0

Error Conditions

None

Example

XX=SIGN(-5), SIGN(0),SIGN(5)
DISP XX !Output = -1 0 1

4.1.16 SIN

Description

SIN calculates the sine.

Syntax

SIN(input)

Arguments

input
input can be a real number or an expression (which is treated as radians by the
function).

Return Value

Real number - returns the sine value of input in the range of –1 to 1.

552Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

None

Example

XX=SIN(1.570796327)
DISP XX !Output = 1

4.1.17 SQRT

Description

SQRT calculates the square root.

Syntax

SQRT(input)

Arguments

input input can be a real number or an expression.

Return Value

Real number - returns the square root of input.

Error Conditions

input must be ≥0, otherwise the function returns Error 3045, Numerical Error in Standard Function.

Example

XX=SQRT(4)
DISP XX !Output = 2

4.1.18 TAN

Description

TAN calculates the tangent.

Syntax

TAN(input)

Arguments

input
input can be a real number or an expression (which treated as radians by the
function).

Return Value

Real number - returns the tangent value of input.

Error Conditions

None

553Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

REAL PI
PI = 3.141592654
DISP TAN(PI/4) !Output = 1

4.1.19 ROUND

Description

Round a REAL number to closest integer value

Syntax

ROUND(input)

Arguments

Input - Arbitrary real number

Return Value

Closest integer value

Comments

ROUND calculates the closest integer number according to arithmetical rules.

This command is supported in ADK versions 2.70 and higher.

Examples:

DISP(ROUND(1.5)) !Output = 2
DISP(ROUND(1.4)) !Output = 1
DISP(ROUND(-1.5)) !Output = -2
DISP(ROUND(-1.4)) !Output = -1

4.2 Matrix Functions

The matrix functions are:

Function Overloaded Operator Description

MATRIXADD + Add matrices

MATRIXSUB - Subtract matrices

MATRIXMUL * Multiply matrices

MATRIXMULSCA * Multiply matrix by scalar

MATRIXMULEW .* Element-wise matrix multiplication

MATRIXDIV / Matrix division

554Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Overloaded Operator Description

MATRIXIDENT Identity matrix

MATRIXTRANS Transpose matrix

MATRIXINVERT Invert matrix

4.2.1 Matrix Type

ACSPL+ supports a MATRIX type starting with version 3.10.

A MATRIX is defined as 2-dimensional REAL array.

Syntax

> MATRIX A(N)(N) – A is square matrix of size NxN where N is a positive constant.

> MATRIX B(N)(M) – B is NxM matrix having N rows and M columns, where N and M are
positive constants.

Example

MATRIX A(2)(2) !Defines a square matrix of 2x2 size

4.2.1.1 Matrix Initialization in Compilation Time

1. Regular Initialization (similar to 2D arrays initialization):

MATRIX A(M)(N) can be initialized by a 2D array (array of M rows, each of N size)

a. Syntax:

MATRIX A(2)(3) = ((1,2,3), (4,5,6))

b. Preconditions:

i. Number of rows of initialization values = matrix first dimension

ii. Number of columns of initialization values = matrix second dimension

c. Error conditions:

i. If preconditions are violated, then a compilation error will occur.

d. Example:

!///Compilation-time initializations///!
MATRIX A(2)(2)=((1,2),(3,4)) !Regular initialization of a 2x2 matrix

2. Default Initialization:

A matrix which not initialized by the user on definition is automatically initialized with zeros.

a. Syntax:

MATRIX A(M)(N)

555Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example:

!///Compilation-time initializations///!
MATRIX C(2)(2) !Default initialization, filled by zeros

4.2.2 MATRIXADD

Description

Add two matrices.

Syntax

MATRIXADD([in] MATRIX A, [in] MATRIX B, [out] MATRIX C)

Arguments

MATRIX A First operand matrix

MATRIX B Second operand matrix

MATRIX C Result Matrix

Return Value

None

Comments

1. All argument matrices must be of the same size.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(2)(2)=((1,2),(3,4))
MATRIX B(2)(2)=((5,6),(7,8))
MATRIX C(2)(2)
MATRIXADD(A,B,C)

4.2.3 MATRIXSUB

Description

Subtract two matrices.

Syntax

MATRIXSUB([in] MATRIX A, [in] MATRIX B, [out] MATRIX C)

556Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

MATRIX A First operand matrix

MATRIX B Second operand matrix

MATRIX C Result Matrix

Return Value

None

Comments

1. All argument matrices must be of the same size.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(2)(2)=((1,2),(3,4))
MATRIX B(2)(2)=((5,6),(7,8))
MATRIX C(2)(2)
MATRIXSUB(B,A,C)

4.2.4 MATRIXMUL

Description

Multiply matrices

Syntax

MATRIXMUL([in] MATRIX A, [in] MATRIX B, [out] MATRIX C)

Arguments

MATRIX A First operand matrix

MATRIX B Second operand matrix

MATRIX C Result Matrix

Return Value

None

Comments

1. Matrix A's column dimension must equal Matrix B's row dimension.

2. The dimension of Matrix C's rows are equal to the row dimension of Matrix A

3. The dimension of Matrix C's columns are equal to the column dimension of Matrix B

4. If preconditions are violated, then a compilation error will occur.

5. This function is supported in versions 3.11 and higher

557Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

MATRIX A(3)(2)=((1,2),(3,4),(5,6))
MATRIX B(2)(2)=((7,8),(9,10))
MATRIX C(3)(2)
MATRIXMUL(A,B,C)

Example With Overloaded Operator

MATRIX A(3)(2)=((1,2),(3,4),(5,6))
MATRIX B(2)(2)=((7,8),(9,10))
MATRIX C(3)(2)
C=A*B

4.2.5 MATRIXMULSCA

Description

Multiply matrix by scalar value.

Syntax

MATRIXMULSCA([in] MATRIX A, [in] REAL S, [out] MATRIX C)

Arguments

MATRIX A First operand matrix

REAL S Scalar operand

MATRIX C Result Matrix

Return Value

None

Comments

1. The result matrix is of the same size as operand matrix.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(3)(2)=((1,2),(3,4),(5,6))
REAL r=7
MATRIX C(3)(2)
MATRIXMULSC(A,r,C)
MATRIXMULSC(A,5.5,C)
STOP

558Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.2.6 MATRIXMULEW

Description

Element-wise matrix multiplication

Syntax

MATRIXMULEW([in] MATRIX A, [in] REAL S, [out] MATRIX C)

Arguments

MATRIX A First operand matrix

REAL S Scalar operand

MATRIX C Result Matrix

Return Value

None

Comments

1. All parameter matrices must be of the same size.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(2)(2)=((1,2),(3,4))
MATRIX B(2)(2)=((5,6),(7,8))
MATRIX C(2)(2)
MATRIXMULEW(A,B,C)

4.2.7 MATRIXDIV

Description

Matrix division

Syntax

MATRIXDIV([in] MATRIX A, [in] MATRIX B, [out] MATRIX C)

Arguments

MATRIX A Dividend matrix

MATRIX B Divisor matrix

MATRIX C Result Matrix

Return Value

None

559Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Comments

1. Matrix B is a square matrix.

2. The dimension of Matrix A's columns are equal to the order of Matrix A

3. C dimension = (A’s rows, B’s order) = A dimension

4. If preconditions are violated, then a compilation error will occur.

5. If Matrix B is not convertible (determinant(B) == 0) a run-time error will occur.

6. This function is supported in versions 3.11 and higher

Example

MATRIX A(2)(3)=((1,2,3),(4,5,6))
MATRIX B(3)(3)=((1,2,3),(4,5,6),(7,8,1))
MATRIX C(2)(3)
MATRIXDIV(A,B,C)

Example With Overloaded Operator

MATRIX A(2)(3)=((1,2,3),(4,5,6))
MATRIX B(3)(3)=((1,2,3),(4,5,6),(7,8,1))
MATRIX C(2)(3)
C=A/B

4.2.8 MATRIXIDENT

Description

Generate identity matrix, a matrix filled with values of 1 on the main diagonal and all other elements
are 0.

Syntax

MATRIXIDENT([in out] MATRIX A)

Arguments

MATRIX A Square Matrix

Return Value

Identity matrix of dimension matching the input matrix.

Comments

1. The result matrix must be square.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(3)(3)
MATRIXIDENT(A)

560Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.2.9 MATRIXTRANS

Description

Transpose a matrix.

Syntax

MATRIXTRANS([in]MATRIX A, [out] MATRIX B)

Arguments

MATRIX A Input matrix to be transposed

MATRIX B Output, transposed version of MATRIX A

Return Value

None

Comments

1. The target matrix should be defined so that its row number is equal to the target matrix
column number, and its column number is equal to target matrix row number.

2. If preconditions are violated, then a compilation error will occur.

3. This function is supported in versions 3.11 and higher

Example

MATRIX A(2)(3)=((1,2,3),(4,5,6))
MATRIX B(3)(2)
MATRIXTRANS (A,B)

4.2.10 MATRIXINVERT

Description

Invert a matrix.

Syntax

MATRIXINVERT([in] MATRIX A, [out] MATRIX B)

Arguments

MATRIX A Input matrix to be inverted

MATRIX B Output, inverted version of MATRIX A

Return Value

None

Comments

1. The argument matrix must be square.

2. The result matrix should be of the same size as the argument matrix.

3. If preconditions are violated, then a compilation error will occur.

561Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4. This function is supported in versions 3.11 and higher

Example

MATRIX A(3)(3)=((1,2,3),(4,5,6),(7,8,1))
MATRIX B(3)(3)
MATRIXINV(A,B)

4.3 Miscellaneous Functions

The Miscellaneous functions are:

Function Description

GETCONF Reads hardware and firmware parameters.

SYSINFO
Returns certain system information based on the argument that is
specified.

GETVAR Reads the current value of the variable and returns it as a real number.

SETCONF Writes hardware and firmware parameters.

SETVAR
Provide write access to all ACSPL+ variables and to user variables declared
with tag.

STR Converts an integer array to a string.

STRTONUM
Converts an ASCII string representation of a number to the number it
represents.

NUMTOSTR Converts a number to an ASCII string.

BCOPY Copies bytes from a source array to a target array.

SS1RESET Resets the values of the last SS1-t channel A and channel B times

ENCREAD Read encoder parameters

4.3.1 GETCONF

GETCONF should be used only by knowledgeable users.

Description

GETCONF retrieves system configuration data that was configured by SETCONF.

562Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Some keys relate to data that is set by the system and not by SETCONF, for keys set by
SETCONF see SETCONF Arguments.

Syntax

GETCONF(key,index)

Arguments

key Specifies the configured feature.

index Specifies the axis, buffer, or type of information requested.

Return Value

GETCONF return values are described in Table 4-1 according to key.

Table 4-1. GETCONF Return Values

Key Value - Bit and Explanation

26

Returns the mask that determines, for each digital input, whether the leading or
trailing signal edge triggers an interrupt.

The mask contains a bit for each available input signal. The location of bits in the
mask corresponds to the location of bits in variable IN0.

For each bit:
1: The controller generates an interrupt on the falling edge of the corresponding
input signal.
0: Controller generates an interrupt on the rising edge of the corresponding input
signal.

After power-up, all bits in the mask = 0.

37

Returns the mask that determine whether a digital input triggers on a single
edge, or on both edges. If value = 0, the trigger edge is determined by key 26.

The location of bits in the mask corresponds to the location of bits in variable IN0.

1: The controller generates an interrupt on both edges.

0: The controller generates an interrupt on one edge.

After power-up the mask contains 0 in all bits.

71

Used to view the actual assignment of digital outputs to PEG states and PEG
pulses outputs.

Returns the bit code according to or for SPiiPlusNT/DC-LT/HP/LD-x, or for SPiiPlus
CMnt-x-320/UDMpm-x-320, depending on the axis.

72 Used to view the actual encoder PEG engine assignment.

563Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Value - Bit and Explanation

Returns the bit code according to or for SPiiPlusNT/DC-LT/HP/LD-x, or for SPiiPlus
CMnt-x-320/UDMpm-x-320, depending on the axis.

73

Used to view the actual output pins assignment for PEG engines.

Returns the bit code according to or ,for SPiiPlusNT/DC-LT/HP/LD-x, or or for
SPiiPlus CMnt-x-320/UDMpm-x-320, depending on the axis.

74

Returns the saved EtherCAT topology configuration

Index = 1 : EtherCAT topology mode that is saved on the controller's non-volatile
memory:
0: line topology mode

1: ring topology mode

2: two lines topology mode

Index =2 : Number of nodes connected to the EtherCAT master's main line that is
saved on the controller's non-volatile memory

Index =3 : Number of nodes connected to the EtherCAT master's redundant line
that is saved on the controller's non-volatile memory.

76

Returns the the System or MPU temperature (in degrees °C):

0: Current System temperature

1: Current temperature in controller's CPU/MPU

2: Current DSP temperature (IDMsm/sa, ECMsm/sa, UDMsa)

78

Returns the status if fast loading of Random PEG arrays for the relevant Servo
Processor is activated or deactivated:

0: fast loading of Random PEG arrays is deactivated

1: fast loading of Random PEG arrays is activated.

Index is the axis of the relevant Servo Processor: 0, 1, 2, ..., up to total
number of axes in system minus 1.

79
Returns the maximum USAGE value since power-up or since last call to the
SETCONF(79) command.

80

Returns the UnitID of the network unit that the specified digital input is assigned
to.

Index = 0, 1, 2... up to total number of digital inputs in the system minus 1.

564Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Value - Bit and Explanation

81

Returns the UnitID of the network unit that the specified digital output is assigned
to.

Index = 0, 1, 2... up to total number of digital outputs in the system minus 1.

82

Returns the UnitID of the network unit that the specified analog input is assigned
to.

Index = 0, 1, 2... up to total number of analog inputs in the system minus 1.

83

Returns the UnitID of the network unit that the specified analog output is
assigned to.

Index = 0, 1, 2... up to total number of analog outputs in the system minus 1.

86 Returns the number of allowed single EtherCAT frames that were actually lost.

99

Index = 0:

Returns number of regular ACSPL+ program buffers.

Index = 7:

Returns total number of axes to which the controller is configured.

Index = 8:Key

Returns the maximum number of data bytes in the SAFE format message.

203

Returns the value of MFLAGS.1 (Open Loop)

1: Open loop

0: Not open loop

204

Returns the value of MFLAGS.9 (Commutation OK).

1: Commutation OK)

0: Commutation not OK)

214
Only valid for brushless motors (MFLAGS.8 = 1).

Returns the commutation phase (degrees) at the current point.

216

Only valid for brushless motors (MFLAGS.8 = 1).

Returns the commutation state (MFLAGS.9):

0: Commutation is not OK (not initialized)

1: Commutation is OK.

229
Returns the mechanical brake output:

1: Mechanical brake is inactive

565Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Value - Bit and Explanation

0: Mechanical brake is active

246

Upon receipt of a Drive Alarm signal, the controller stores a general Drive Alarm
code (5019) in the MERR variable. The extended Drive Fault status code can be
obtained by executing GETCONF(246, Axis).

The following extended Drive Fault statuses are supported (the MERR code
appears in brackets) by the DDM3U Motor Drive:

> Drive Alarm (5060)

> Drive Alarm: Short circuit (5061)

> Drive Alarm: External Protection Activated (5062)

> Drive Alarm: Power Supply Too Low (5063)

> Drive Alarm: Power supply too high (5064)

> Drive Alarm: Temperature too high (5065)

> Drive Alarm: Power Supply 24VF1 (5066)

> Drive Alarm: Power Supply 24VF2 (5067)

> Drive Alarm: Emergency Stop (5068)

> Drive Alarm: Power down (5069)

> Drive Alarm: Phase lost. (5070)

> Drive Alarm: Drive not ready (5071)

> Drive Alarm: Over current (5072)

> Not in use (reserved) (5073)

> Drive Alarm: Damper is not ok (5074)

> Drive Alarm: Digital Drive Interface not Connected (5075)

Using the GETCONF function, the faults 5064, 5065, 5069, 5071 can be read
before the ENABLE command is executed.

The GETCONF function provides a delay until the extended
Drive Fault is received. This behavior differs from the implementation
in the SPiiPlus CM, where the extended Drive Fault status is stored in
MERR immediately upon receipt of the Drive Alarm signal.

253

Returns the state of the STO signals for the axis selected by index

bit 0: STO1

bit 1: STO2

566Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Value - Bit and Explanation

262
Returns the current Hall state, which can be 0, 1, 2, 3, 4, or 5, of the axis given by
axis_def (a number: 0, 1, 2, ... up to the number of axes in the system minus 1). It
returns -1 for invalid states.

265

When a SIN-COS encoder is used, there are rare cases in which a homing
repeatability error of 1 quadrant (quarter of a sine-period) may occur. This key is
used for supporting SIN-COS repeatability. For example:

!!!Original homing procedure here
...
TILL IST(AXIS).#IND; !Index was found
! Move to a middle of a quadrant, close to the index location
PTP(AXIS), IND(AXIS) + POW(2,(E_SCMUL(AXIS)-3))*EFAC(AXIS)
TILL ^MST(AXIS).#MOVE
WAIT 1000
! Repeatability correction
SET FPOS(AXIS) = FPOS(AXIS) - IND(AXIS) - GETCONF(265,AXIS)
PTP(AXIS), 0 ! 0 = index location

270

If an axis is enabled while moving, the motor back-EMF may generate high
currents during the ENABLE process which can potentially damage the drive or
the motor.

To avoid such damage the controller should check the motor velocity during the
ENABLE process and triggers a fault (error 5104 – “motor is moving”) if it is above
a threshold. The threshold is proportional to SLCPRD (commutation period) for a
brushless motor(MFLAGS().8=1). It is proportional to XVEL(maximal velocity) for a
DC-brush motor (MFLAGS().8=0)
Usually the user should not modify the factor, but in special specific cases it may
need to be increased. A typical example where modification might be needed is a
dual loop system with high resolution encoder on the load and low resolution
encoder at the motor (used for commutation). The threshold may be multiplied by
a factor using a special SETCONF command.

> SETCONF(270, <axis>, <value>) The value is – 1.0 by default.

> GETCONF(270, <axis>) returns the current value of the factor.

The SETCONF command should be executed after each controller powerup.

Because of the potential damage to the drive and the motor, the
user is advised to set this value only after consulting the factory.
Contact support@acsmotioncontrol.com .

301
Returns the size of the segment queue in segmented motions (MPTP...ENDS,
MSEG...ENDS, PATH...ENDS, PVSPLINE...ENDS).

567Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Value - Bit and Explanation

310

Returns an integer value that contains the TCP/IP address currently assigned to
the controller. The index argument has to be zero, for example,

GETCONF(310, 0)

If a TCP/IP protocol is not configured, or not supported, the return value is zero.

312

Returns the RAM load in percentage, the amount of total physical memory, or the
amount of free physical memory as:

0 – memory load in percentage

1 – amount of total physical memory

2 – amount of free physical memory

318

Returns the current mode of operation of move & settle:

0 – Feature is off, no sampling of settling times around radius

1 – Single mode, measure settling time up to first successful settle

2 – Auto mode, keep measuring even after first successful settle

322 Returns 1 if the channel is connected, 0 otherwise

COM Library Methods

GetConf

C Library Functions

acsc_GetConf

Examples

Example 1:

?B/GETCONF(229,0)

Returns the following mask:

00000000,00000000,00000000,00000001

Reports the actual state of the mechanical brake for the given axis. The output is presented in binary
base (/B).

Example 2:

?X/GETCONF(229,0)

Output:

00000001

Reports the actual state of the output pins of the mechanical brake for the given axis in hexidecimal
format.

568Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 3:

?X/GETCONF(310,0)

Output:

6e00000a

The address of a controller whose TCP/IP address is 10.0.0.110

4.3.2 SYSINFO

Description

SYSINFO retrieves a value related to the SPiiPlus controller system based on the argument that is
specified.

Syntax

SYSINFO(Int)

Arguments

Int A positive integer ranging between 1 to 16.

Return Value

Returns a value based on the specified Int.

The possible values of Int and the associated return values are given in Table 4-2.

Table 4-2. SYSINFO Return Values

Int Value Returned

1

The SPiiPlus model number.

For all EtherCAT products, returns 60.

A returned value of < 0 means that the connection is to the Simulator.

Note: To get the product ID, use the function ECGETPID.

2 The SPiiPlus version number.

10 Number of regular ACSPL+ program buffers.

11 D-Buffer index.

13
Total number of axes in the current configuration, whether a single SPiiPlus
controller or an EtherCAT network.

14 Number of EtherCAT nodes

15 Number of data collection channels per DSP.

16 EtherCAT support:

569Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Int Value Returned

1 - Yes

0 - No

COM Library Methods

None

C Library Functions

acsc_SysInfo

4.3.3 GETVAR

Description

GETVAR retrieves a value from a variable (ACSPL+ or user-defined variable, scalar or array) that was
declared as a Tag number.

Syntax

GETVAR(Tag, [Index1, Index2])

Arguments

Tag The variable Tag number (positive integer)

Index1,
Index2

If the variable is an array, the indexes point to the specific location in the
array.

If the variable is scalar, omit the indexes.

Return Value

Returns the value of the variable specified by the Tag.

Example

GLOBAL REAL TAG 1001 EE(2)(2)
!Defines user variable array EE as Tag 1001.

SETVAR (15,1001,1,1) !Sets value 15 to user variable array

!described in Tag 1001 cell (1)(1).
DISP GETVAR (1001,1,1) !Display the value in user variable array

!designated by Tag 1001 cell (1)(1).
STOP !Ends program

The controller displays the return value of the GETVAR function which is = 15.

4.3.4 SETCONF

SETCONF should be used only by knowledgeable users.

570Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Description

SETCONF defines system configuration data.

All the keys that can be set by SETCONF listed in SETCONF Arguments can also be retrieved by
GETCONF.

Syntax

SETCONF(key,index,value)

Arguments

key Specifies the configured feature.

index Specifies axis or buffer number.

value

The set of bit states for the defined key. value is set up according to a 16-bit
binary template, illustrated in 16-bit Binary value Template. The controller strips
all leading zeros. The controller understands value in binary, hexidecimal, or
decimal format.

The following prefixes determine value format:

0B - binary

0H - hexidecimal

A decimal value does not require any prefix.

Table 4-3. 16-bit Binary value Template

Bit
3
1

3
0

2
9

2
8

2
7

..

.
6 5 4 3 2 1 0

Pre
fix
[0
B] |
[0
H]
val
ue

0 0 0 0 0
..
.

0 0 0 0 0 0 0

SETCONF arguments are detailed in Table 4-4.

571Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Table 4-4. SETCONF Arguments

Key Index Value - Bit and Explanation

26 Don’t Care

Sets the mask that determines, for each digital
input, whether the leading or trailing signal
edge triggers an interrupt.

The mask contains a bit for each available input
signal. The location of bits in the mask
corresponds to the location of bits in variable
IN0.

For each bit -
1: The controller generates an interrupt on the
falling edge of the corresponding input signal.
0: Controller generates an interrupt on the
rising edge of the corresponding input signal.

After power-up, all bits in the mask = 0.

37

Sets the mask that determine whether a digital
input triggers on a single edge, or on both
edges. If value = 0, the trigger edge is
determined by key 26.

The location of bits in the mask corresponds to
the location of bits in variable IN0.

1: The controller generates an interrupt
on both edges.

0: The controller generates an
interrupt on one edge.

After power-up the mask contains 0 in all bits.

79

Clears the stored maximum usage value. This
value is the maximum system usage since
power-up or a previous call to SETCONF(79).
See GETCONF(79).

86
Resets the counter of allowed single EtherCAT
frames that were actually lost

203

Axis:

0, 1, 2, ..., up to total number
of axes in system minus 1

Sets the value of MFLAGS.1 (Open Loop)

1: Open loop

0: Not open loop

204

Axis:

0, 1, 2, ..., up to total number
of axes in system minus 1

Sets the value of MFLAGS.9 (Commutation OK).

1: Commutation OK

572Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

0: Commutation not OK

214

Axis:

0, 1, 2, ..., up to total number
of axes in system minus 1

Valid only for brushless motors (MFLAGS.8 = 1).

SETCONF with the 214 key sets the
commutation offset at the current position to
the specified value (in degrees).

There are, however, two cases that have to be
considered when using SETCONF:

> Motor Not Commutated (MFLAGS.9=0)
If the motor has not yet been
commutated, SETCONF sets the
commutation offset at the current
position to the value specified by the
value argument.

> Motor Commutated (MFLAGS.9=1)
The behavior of SETCONF for
commutated motors in SPiiPlus NT
controllers is different fromthat in
non-NT SPiiPlus controllers. For NT
controllers once a motor is
commutated, the commutation phase
has an additional 90o. SETCONF
modifies the commutation phase prior
to this 90o addition. Therefore, to
change the commutation phase of a
commutated motor, it is
recommended that the user enter
?GETCONF(214,axis) in the
Communication Terminal and subtract
90 from the returned value. From this
the user can calculate what the value
of the value argument should be to
get the proper phase.

216

Axis:

0, 1, 2, ..., up to total number
of axes in system minus 1

Valid only for brushless motors (MFLAGS.8 = 1).

If value = 1:

> MFLAGS.9=0 (Commutation is not OK)

> MFLAGS bits 1, 4, 5, 6 are set to zero

> MFLAGS.8 is set to 1

> DCOM is reset to zero

> Sets RPOS = FPOS

573Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

If value = 0:

> MFLAGS.9=0 (Commutation is not OK)

> MFLAGS bits 1, 4, 5, 6 are set to zero

> MFLAGS.8 is set to 10

> Variable DCOM is reset to zero.

217
Axis:
0, 1, 2, ..., up to total number
of axes in system minus 1

Valid only for brushless motors (MFLAGS.8 = 1)
where the encoder has encountered the index
and IND contains a valid value.

value: Not Relevant.

> Adjusts the commutation offset so
that the commutation phase at the
last index point is equal to the
specified value in degrees.

> MFLAGS.9=0 (Commutation is not OK)

> MFLAGS bits 1, 4, 5, 6 are set to zero

> MFLAGS.8 is set to 1

> DCOM is reset to zero

> Sets RPOS = FPOS

229
Axis:
0, 1, 2, ..., up to total number
of axes in system minus 1

Mechanical brake output:
1: Deactivates mechanical brake output.
0: Activates mechanical brake output. The
motor must be disabled to execute this setting.

246
Axis:
0, 1, 2, ..., up to total number
of axes in system minus 1

SETCONF(246, Axis, 0) is used to clear the fault
status on all axes that relate to the DDM3U
Motor Drive that handles the specified axis.

The FCLEAR command does not
clear the fault status in the MC4U,
SETCONF(246, Axis, 0) has to be
used instead.

574Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

249

Axis:

Axis:
0, 1, 2, ..., up to total number
of axes in system minus 1

There are situations where automatic current
bias measurement (in ACS control modules)
can lead to problems. For example, when
running an air bearing stage, the automatic
current offset measurement may be
inconsistent with every enable due to air
bearing stage movement or drift during
enable. Thus any small offset can create a
relatively large oscillation during constant
velocity.

SETCONF(249, Axis, 0) disables the automatic
current bias measurement for the given axis.

575Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

267
0, 1, 2, ..., up to total number
of axes in system minus 1

Changes the gantry pair's allocation to all axes
within the Servo Processor that the specified
axis belongs to.

Gantry pair's allocation is done according to the
following:

0: for pairs (0,1) and (2,3)

1: for pairs (0,2) and (1,3)

For example:

4 axes MC4U system

Command for setting pairs (0,1) and
(2,3) - SETCONF(267,0,0)

Command for setting pairs (0,2) and
(1,3) - SETCONF(267,0,1)

8-axes MC4U system

Command for setting pairs (0,1) and
(2,3) - SETCONF(267,0,0)

Command for setting pairs (0,2) and
(1,3) - SETCONF(267,0,1)

Command for setting pairs (4,5) and
(6,7) - SETCONF(267,4,0)

Command for setting pairs (4,6) and
(5,7) - SETCONF(267,4,1)

Two 8-axes MC4U systems connected in the
network

Command for setting pairs (0,1) and
(2,3) - SETCONF(267,0,0)

Command for setting pairs (0,2) and
(1,3) - SETCONF(267,0,1)

Command for setting pairs (4,5) and
(6,7) - SETCONF(267,4,0)

Command for setting pairs (4,6) and
(5,7) - SETCONF(267,4,1)

Command for setting pairs (8,9) and
(10,11) - SETCONF(267,8,0)

576Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

Command for setting pairs (8,10) and
(9,11) - SETCONF(267,8,1)

Command for setting pairs (12,13) and
(14,15) - SETCONF(267,12,0)

Command for setting pairs (12,14) and
(13,15) - SETCONF(267,12,1)

270
Axis:
0, 1, 2, ..., up to total number
of axes in system minus 1

If an axis is enabled while moving, the motor
back-EMF may generate high currents during
the ENABLE process which can potentially
damage the drive or the motor.

To avoid such damage the controller should
check the motor velocity during the ENABLE
process and triggers a fault (error 5104 –
“motor is moving”) if it is above a threshold. The
threshold is proportional to SLCPRD
(commutation period) for a brushless motor
(MFLAGS().8=1). It is proportional to XVEL
(maximal velocity) for a DC-brush motor
(MFLAGS().8=0)
Usually the user should not modify the factor,
but in special specific cases it may need to be
increased. A typical example where
modification might be needed is a dual loop
system with high resolution encoder on the
load and low resolution encoder at the motor
(used for commutation). The threshold may be
multiplied by a factor using a special SETCONF
command.

> SETCONF(270, <axis>, <value>) The
value is – 1.0 by default.

> GETCONF(270, <axis>) returns the
current value of the factor.

The SETCONF command should be executed
after each controller powerup.

577Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

Because of the potential damage
to the drive and the motor, the
user is advised to set this value
only after consulting the factory.
Contact
support@acsmotioncontrol.com .

302
2

1

The following decimal values specify a
communication channel for special input:

3: Set the channel to Modbus Master mode.

2: Set the channel to Modbus Slave mode

1: Assigns the channel for special input.

0: Set the channel to regular command
processing mode (default channel mode).

If a channel is assigned for special input, the
controller does not process commands from
this channel. Output to the channel is provided
by regular DISP and SEND commands.

index specifies the channel.

303
2

1

The value sets the baud rate for the specified
serial channel, where the baud rate is the
decimal value.

115200 (default), 57600, 19200, 9600, 4800,
2400, 1200, 600, 300.

index specifies the channel.

578Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

304
2

1

Sets communication options:

Bit 2 -

1: extended stop bit

0: normal stop bit

Bit 3 -

1: check parity

0: no parity

Bit 4 -

1: even parity

0: odd parity

index specifies the channel.

306 -1

In order to be able to receive messages, use
specific channels (SEND and DISP commands)
1 - Enable receiving messages on a specific
channel
0 - Stop receiving messages from a host
application

308

19

18

17

When the controller acts as a Modbus Master,
the function establishes or closes the Modbus
TCP connection with the Slave device using the
specified slaveIP. Up to three slaves can be
connected to the master controller (17, 18 or 19).

Value=SlaveIP.

The slaveIP value specifies the Modbus Slave
device IP address. The slaveIP address is
calculated as follows: If the Slave has the
following address: 192.168.1.10, the slaveIP
parameter should be 10*2^24 + 1*2^16 +
168*2^8 + 192 = 167880896 (0x0A01A8C0).

If the specified channel is already open, the
function closes the opened channel and then
opens new one.

If slaveIP is zero, the function closes the TCP
connection.

309 Don’t Care
Defines the sequence for the two 16-bit
Modbus interface registers -

579Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

1: Low word will be first, then high word

0: High word will be first, then low word
(default configuration)

580Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

310 0

Used for providing access to the controller
TCP/IP address. Where:

Value = TCP/IP Address, which is a 32-bit (four
bytes) integer, each byte of which contains one
part of the TCP/IP address, for example,
0x6400000a assigns address 10.0.0.100 (the
number is read from right to left and fills in the
address left to right).

If value is zero, SETCONF activates a new
execution of the DHCP protocol and obtains a
new TCP/IP address from the host (the host
may configure the same address as before).
SETCONF does not change the TCPIP variable.
After power-up, the controller is initialized with
the TCP/IP address set in the TCPIP variable.

There are several limitations when using
SETCONF(310):

> If the TCPIP variable stored in the flash
is zero, SETCONF(310) must be used
only with zero address argument. In
other words, if the controller is
configured for dynamic addressing,
assigning static addresses is not
allowed.

> If the TCPIP variable stored in the flash
is not zero, SETCONF(310) must be
used only with non-zero address
arguments. In other words, if the
controller is configured for static
addressing, switching to a dynamic
address is not allowed.

> SETCONF(310) has a long execution
time. During this time, communication
with the controller is impossible using
any communication channel. Use
SETCONF(310) only within the
controller initialization sequence.
Avoid attempts to communicate with
the controller and the motor ENABLE
command or motion commands while
SETCONF(310) is in progress.

581Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Key Index Value - Bit and Explanation

318
Axis: 0, 1, 2, ..., up to total
number of axis in system
minus 1

Move & Settle:

0 – Feature is off, no sampling of settling times
around radius

1 – Single mode, measure settling time up to
first successful settle

2 – Auto mode, keep measuring even after first
successful settle.

322

> TCP Server
Communication
Port

> Communication
Channel (channels
26-29 are reserved
for this task, no
other channels may
be used)

Index value calculated as
follows:

Index =
Port*100+Channel

The value is the TCP Server IP Address

The IP address is calculated as follows: If the
TCP Server has the following address:
192.168.1.10, the IP parameter should be
10*2^24 + 1*2^16 + 168*2^8 + 192 = 167880896
(0x0A01A8C0).

If the specified channel is already open, the
function closes the opened channel and then
opens new one.

If an IP is zero, the function closes the TCP
connection.

325 0

Range of Values: 0-400

> 0 – Matrix related operations will not
be performed in real-time.

> 400 - Operations on matrices with up
to 400 elements (e.g., 20x20) will be
performed in real-time. Operations on
matrices larger than 400 are not
allowed to run in real-time due to
critical impact on MPU usage.

Return Value

None

COM Library Methods

SetConf

C Library Functions

acsc_SetConf

582Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

The following example illustrates setting the value of MFLAGS.1 to 1, configuring axis 2 to open loop
control:

SETCONF(203, 1, 1)

4.3.5 SETVAR

Description

SETVAR writes a value to an ACSPL+ or user variable, scalar or array, that was declared as a Tag
number.

Syntax

SETVAR(value, Tag, [Index1, Index2])

Arguments

value A real or integer value assigned to the variable.

Tag The variable Tag number (positive integer).

Index1,
Index2

If the variable is an array, the indexes point to the specific location in the
array.

If the variable is scalar, omit the indexes.

Return Value

None

Error Conditions

None

Example

GLOBAL REAL TAG 1001 EE(2)(2) !Defines user variable array EE as Tag 1001
SETVAR (15,1001,1,1) !Sets value 15 to user variable array

!described in Tag 1001 cell (1)(1).
DISP GETVAR (1001,1,1) !Retrieves the value in user variable array

!described in Tag 1001 cell (1)(1).
STOP !Ends program

The controller displays the GETVAR return value which is = 15.

4.3.6 STR

Description

STR converts an integer array to a string. Each element of the array is interpreted as an ASCII
character.

Syntax

string STR(array_name,[start_index,] [number])

583Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

array_name Name of user-defined integer array.

start_index Index in the array from which to start converting.

number Number of characters to convert.

Comments

If an element value is in the range from 0 to 255, it is directly converted to the corresponding ASCII
character. Otherwise, the value will be cyclic, based on 256.

If start_index is omitted, the assignment starts from the first element of the array.

If neither start_index nor number is specified, the conversion takes all elements of the array. If only
start_index is specified, the conversion takes all characters from the specified index until the end of
the array. number limits the number of characters in the resulting string.

Return Value

String composed of the array elements interpreted as characters.

Example

GLOBAL INT BIBI(3)
BIBI(0)=65
BIBI(1)=67
BIBI(2)=83
DISP STR(BIBI)
STOP

The function transforms each of the array members of BIBI to ASCII code characters. When DISP is
applied, the displayed value will be: “ACS”

4.3.7 STRTONUM

Description

This function converts ASCII encoded element string to a number.

Syntax

double STRTONUM(Source, Type, From, N)

Arguments

Source An integer array

Type

Designates the format of the converted number, it can be:

> 0 - decimal

> 1- hex

> 2 - floating point

584Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

From Index of the first element in the array that may contain the number

N The number of elements in source that may be used

Return Value

The number converted from the ASCII string

Example

real number
int string(4);
number = 0
string(0) = 49; !1
string(1) = 50; !2
string(2) = 46; !.
string(3) = 50; !2
number = strtonum(string, 0, 0, 4);
disp"number = %f", number;
number = strtonum(string, 1, 0, 4);
disp"number = %f", number;
number = strtonum(string, 2, 0, 4);
disp"number = %f", number;
stop
! output:
! number = 12.000000
! number = 18.000000
! number = 12.200000

4.3.8 NUMTOSTR

Description

This function converts a number to a string of elements where each element is an ASCII encoded
value.

Syntax

int NUMTOSTR(Number, Target, Type, From, N)

Arguments

Number The number to be converted

Target An integer array used in which to put the results

Type

Designates the format of the number to be converted, it can be:

> 0 - decimal

> 1- hex

> 2 - floating point

585Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

From Index of the first element in the array that may contain the number

N The number of elements in target that may be used

Return Value

The number of elements used.

Example

real number
int target(12);
int i;
int j;
number = 12.2
i=0; loop 12 target(i) = 0; i = i+1; end;
j = numtostr(number,target,0,0,12)
disp "target = %X,%X,%X,%X,%X num elements = %d", target(0),target
(1),target(2),target(3),target(4), j
i=0; loop 12 target(i) = 0; i = i+1; end;
j = numtostr(number,target,1,0,12)
disp "target = %X,%X,%X,%X,%X num elements = %d", target(0),target
(1),target(2),target(3),target(4), j
i=0; loop 12 target(i) = 0; i = i+1; end;
j = numtostr(number,target,2,0,12)
disp "target = %X,%X,%X,%X,%X num elements = %d", target(0),target
(1),target(2),target(3),target(4), j
stop
! output:
! target = 31,32,0,0,0 num elements = 2
! target = 63,0,0,0,0 num elements = 1
! target = 31,32,2E,32,30 num elements = 9

4.3.9 BCOPY

Description

This function can be used to copy bytes from the source array to the target array.

Syntax

int BCOPY(Source_array, Target_array, CopyBytes, S_SkipBytes, T_SkipBytes, From, N)

Arguments

Source_array Array containing input data

Target_array Array containing output data

CopyBytes Number specifying how many bytes will each copy operation

S_SkipBytes
Number specifying how many bytes will be skipped in the source array
following each copy operation

586Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

T_SkipBytes
Number specifying how many bytes will be skipped in the target array
following each copy operation

From Index of the first element in the source array that may be used

N The number of elements in the source that may be used

Return Value

The number of elements (in the source) used.

Comments

The function copies CopyBytes from the source array to the target array, skip S_SkipBytes in the
source and skip T_SkipBytes in the target, and then copy CopyBytes again. The operation starts from
the From element in source and is applied to a maximum of N elements. This means no bytes from
any element other than the specified N elements will be affected. Elements less than N can be
affected if the target array is too short to complete the whole operation.

The difference between elements and bytes throughout this function should be noted.

Examples

In the examples that follow use is made of:

bcopy(source,target,1,3,0) - Copy every 4 byte element from source to a 1 byte element in target

bcopy(source,target,2,2,0) - Copy every 4 byte element from source to a 2 byte element in target

bcopy(source,target,1,0,3) - Copy every 1 byte element from source to a 4 byte element in target

bcopy(source,target,2,0,2) - Copy every 2 byte element from source to a 4 byte element in target

1. Unpacking a single element in source to 1, 2, or 4 elements in target

int source(1)
int target(4)
int j
source(0) = 0x01020304;
j = bcopy(source,target,4,0,0,0,1) => target = 1020304,0,0,0 num elements
= 1
j = bcopy(source,target,2,0,2,0,1) => target = 304,102,0,0 num elements =
1
j = bcopy(source,target,1,0,3,0,1) => target = 4,3,2,1 num elements = 1

stop

2. Packing multiple elements in source to 1 element in target.

int source(4)
int target(1)
int i
int j
target(0) = 0;
i = 0
loop 4

587Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

source(i) = 1;
i=i+1;
end
j = bcopy(source,target,4,0,0,0,4) => target(0) = 1 j = 1
j = bcopy(source,target,2,2,0,0,4) => target(0) = 10001 j = 2
j = bcopy(source,target,1,3,0,0,4) => target(0) = 1010101 j = 4
stop

4.3.10 SS1RESET

Description

Resets the values of the last SS1-t channel A and channel B times.

This function should be used for SS1-t diagnostics only.

Syntax

SS1RESET [/f] axis

Arguments

axis

The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

Axis parameter can be any axis number of the same unit.

Comments

This variable is supported in version 3.00 and higher

Return Value

None

4.3.11 MDURATION

Description

The MDURATION function calculates time of certain motion profile phase. The function can be
executed in buffer or terminal, and it will wait till the execution is completed.

Syntax

REAL MDURATION(MotionType, Distance, Vel, Acc, Dec, Jerk, phaseNumber
(optional), EncoderFactor(optional))

588Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

MotionType

An integer number representing the motion type

0: PTP motion

Currently only PTP motion is supported

Distance
A real number representing the distance of motion. The velocity in
[user units]

Vel
A real number representing the desired velocity. The velocity in .

Velocity ranges from -1.79769e+308 to 1.79769e+308.

Acc
A real number representing the desired acceleration. The acceleration
in . Acceleration ranges from 2.22507e-308 to 1.79769e+308.

Dec
A real number representing the desired deceleration. The acceleration
in . Deceleration ranges from 2.22507e-308 to 1.79769e+308.

Jerk
A real number representing the desired jerk. The jerk in . Jerk ranges
from 2.22507e-308 to 1.79769e+308.

phaseNumber

(Optional, Integer) Determines which motion profile component will be
returned.

0: t – Motion overall time [sec] – default

1: t1 – Acceleration buildup [sec]

2: t2 – Constant Acceleration [sec]

3: t3 – Acceleration finishing [sec]

4: t4 – Constant velocity [sec]

5: t5 – Deceleration buildup [sec]

6: t6 – Constant deceleration [sec]

7: t7 – Deceleration finishing [sec]

EncoderFactor
A real representing the factor between the raw feedback in encoder
counts and the FPOS value calculated by the controller. EncoderFactor
ranges between 1e-15 to 1e+15, Default = 1.

Return Value

Returns motion profile time according to phaseNumber.

Comments

Assume that the motion will start and complete when velocity and acceleration are 0.

Input Shaping is not supported

phaseNumber options corresponds to a third order point-to-point profile:

589Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Assume that the motion will start and complete when velocity and acceleration are 0.

Input Shaping is not supported.

Error Conditions

The function detects the following error conditions.

> 3207 - phaseNumber parameter is not between 0 to 7

> 3412 - The MotionType parameter is intended to be one of supported motion types.
Currently only PTP motion is supported.

> 3045 - At least one of struct members is infinite.

> 3041 - Vel, Acc, Dec, Jerk, or EncoderFactor is out of range.

Examples

! Example 1
! MotionType = 0 – PTP
! Distance = 20000, Vel= 10000, Acc = 100000, Dec = 100000, Jerk =
20000000
! phaseNumber = default = 0 - Motion overall time in seconds

590Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

! EncoderFactor = default = 1
V0 = MDURATION(0, 20000, 10000, 100000, 100000, 20000000)
! Return value: Motion overall time V0 = 2.105[sec]
STOP

! Example 2
! MotionType = 0 – PTP
! Distance = 20000, Vel= 10000, Acc = 100000, Dec = 100000, Jerk =
20000000
! phaseNumber = 4 - Constant velocity
! EncoderFactor = default = 1
V0 = MDURATION(0, 20000, 10000, 100000, 100000, 20000000, 4)
! Return value: Constant velocity V0 = 1.895[sec]
STOP

! Example 3
! MotionType = 0 – PTP
! Distance = 20000, Vel= 10000, Acc = 100000, Dec = 100000, Jerk =
20000000
! phaseNumber = 4 - Constant velocity
! EncoderFactor = 2
V0 = MDURATION(0, 20000, 10000, 100000, 100000, 20000000, 4, 2)
! Return value: Constant velocity V0 = 1.895[sec]
STOP

4.4 Array Processing Functions

The Array Processing functions are:

Function Description

AVG Finds the average of all values in an array.

COPY Copies data from one user array to another.

DSHIFT Shifts all of the elements of the array to one position left.

FILL Fills an array or a section of array with the specified value.

MAX Finds the maximal value in an array

MAXI
Finds the maximal value in an array or in a section of array and returns its
index.

MIN Finds the minimal value in an array.

MINI
Finds the element with minimal value in an array or in a section of an array
and returns its index.

591Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

SIZEOF Returns number of columns or number or rows of the given array

4.4.1 AVG

Description

AVG finds the average of all values in an array.

Syntax

AVG(array_name)

Arguments

array_name The name of an array that has been declared in the program.

Return Value

Real number - returns the average of all elements in array_name.

Example

REAL Ar(3)
Ar(0) = 1; Ar(1)=0.5; Ar(2)=3;
DISP AVG(Ar)

!Output = 1.5

4.4.2 COPY

Description

COPY copies data from one user array to another.

Syntax

COPY(source, destination, from_source_row, to_source_row, from_source_col, to_source_col, from_
destination_row, to_destination_row ,from_destination_col, to_destination_col)

Arguments

source
The name of an array that has been declared in the program from which
the data is to be copied.

destination
The name of an array that has been declared in the program to which
the data is to be copied.

from_source_
row

The index of the first row of the source to begin copying.

to_source_row The index of the last row of the source to end copying.

592Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

from_source_col
The index of the first column of the source to begin copying.

Used only for matrix type arrays, otherwise it can be omitted.

to_source_col
The index of the last column of the source to end copying.

Used only for matrix type arrays, otherwise it can be omitted.

from_
destination_row

The index of the first row of the destination to begin copying into.

to_destination_
row

The index of the last row of the destination to end copying into.

from_
destination_col

The index of the first column of the destination to begin copying into.

Used only for matrix type arrays, otherwise it can be omitted.

to_destination_
col

The index of the last column of the destination to begin copying into.

Used only for matrix type arrays, otherwise it can be omitted.

Comments

If the matrix indexes are omitted, the entire source matrix will be copied to the destination matrix.

If the destination matrix has different dimensions than the source matrix then the destination
matrix will use the source matrix values to fill each row completely and move to the next row.

Return Value

None

Error Conditions

Error 3034, Illegal index value - the destination matrix is smaller than the source matrix.

Example

INT GLOBAL SOURCE(3)(3), DESTINATION(3)(3) !Define source and destination
!matrices

!-------------------- Assign values to SOURCE matrix --------------------
-
SOURCE(0)(0)=1;SOURCE(0)(1)=2;SOURCE(0)(2)=3;SOURCE(1)(0)=4;SOURCE(1)
(1)=5;
SOURCE(1)(2)=6;SOURCE(2)(0)=7;SOURCE(2)(1)=8;SOURCE(2)(2)=9
!------------------ Assign values to DESTINATION matrix -----------------

COPY(SOURCE,DESTINATION,0,1,0,2,1,2,0,2) !COPY command -

!The program copies the first
!two rows from the source
!matrix to the destination
!matrix second two rows. The
!matrices are as follows:
!Source:
!1 2 3

593Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

!4 5 6
!7 8 9
!Destination:
!0 0 0
!1 2 3
!4 5 6

STOP !Ends program

Figure 4-1. Illustration of COPY Function

4.4.3 DSHIFT

Description

DSHIFT shifts all elements of the array to one position left.

Syntax

real DSHIFT(array, value, index)

Arguments

array An array of real with the maximal size of 10,000 elements

value
The real value to be inserted to the array.

The Value is inserted to position of the element with the index Index.

index
The position of the element the Value is inserted to.

The Index should be equal or less than declared size of the array

Return Value

The first element (element with index 0) of the array.

Comments

Each time the function is called the first element of the array (element with the index 0) is returned.
All of the other elements of the array shift one position to the left (element with index 1 to 0,
element with index 2 to 1, etc.). The Value parameter is inserted to the element with the index Index.

594Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

This function only works with arrays with up to 10,000 elements.

The function is useful when it is necessary to delay data for a number of the controller cycles.

Example 1

Example 1 shows how to delay the result of the motion trajectory generator.

global real Array(20) ! Array for delay
global int Axis ! Axis index
Axis=0\
fill(APOS(Axis), Array) ! FILL array with initial APOS value
MFLAGS(Axis).#DEFCON=0 ! Motion trajectory delay is implemented

! using CONNECT function
! Motion trajectory is delayed for 10 controller cycles
CONNECT RPOS(Axis) = dshift(Array, APOS(Axis),8)
DEPENDS Axis, Axis
stop

Example 2

The example 2 shows how to delay the pulses of laser generator. In this example it's assumed that
the laser control module generates pulses as function of vector velocity of the axis. The PFGPAR
parameter is used to transfer a vector velocity value to the laser control module.

global real Array(20) ! Array for delay
global int Axis ! Axis index
Axis=0
fill(0, Array) ! FILL array with zero values
! Laser control module pulses are delayed for 10 controller cycles
while (1); PFGPAR(Axis) = dshift(Array, GVEL(Axis), 9); end;
stop

4.4.4 FILL

Description

FILL fills an array or a section of array with a specified value.

Syntax

FILL (real value, destination, from_array_row, to_array_row, from_array_column, to_array_ column)

Arguments

real value Any real number.

destination
The name of an array that has been declared in the program to which the
value is to be copied.

from_array_row The index of the first row of the destination array to begin filling.

to_array_row The index of the last row of the destination array to end filling.

595Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

from_array_
column

The index of the first column of the destination array to begin filling.

Used only for matrix type arrays, otherwise it can be omitted.

to_array_
column

The index of the last column of the destination array to end filling.

Used only for matrix type arrays, otherwise it can be omitted.

Comments

If the matrix indexes are omitted, the entire matrix will be filled with the requested value.

Example

GLOBAL ARR(6)(3)
FILL(3,ARR,0,4,1,2)
STOP

!The program fills ARR with the value 3, from row 0 to row 4,
!and from column 1 to column 2. After executing the program,
!the resulting ARR values are:
!0 3 3
!0 3 3
!0 3 3
!0 3 3
!0 3 3
!0 0 0

4.4.5 MAX

Description

MAX finds the maximum value in an array or in a section of an array.

Syntax

MAX(array_name, From1, To1, From2, To2)

Arguments

array_name The name of an array that has been declared in the program.

From1 The initial element

To1 The final element

From2 The initial element

To2 The final element

Return Value

Real number - returns the maximum element in the array.

596Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

REAL AR(3)
AR(0) = 1; AR(1)=0.5; AR(2)=3;
DISP MAX(AR) !Output = 3

4.4.6 MAXI

Description

MAXI finds the maximum value in an array or in a section of array and returns its index.

Syntax

MAXI(array_name, From1, To1, From2, To2)

Arguments

array_name The name of an array that has been declared in the program.

From1 The initial element

To1 The final element

From2 The initial element

To2 The final element

Return Value

Integer - MAXI returns the index of maximum element in the array, or in the specified section of the
array. In case of a two-dimensional array only the column index is returned.

Error Conditions

None

Example

REAL AR(3)
AR(0)= 1; AR(1)= 0.5; AR(2)= 3
DISP MAXI(AR) !Output = 2

4.4.7 MIN

Description

MIN finds the minimum value in an array or in a section of an array.

Syntax

MIN(array_name, From1, To1, From2, To2)

Arguments

array_name The name of an array that has been declared in the program.

597Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

Real number - returns the minimum element in the array.

Error Conditions

None

Example

REAL Ar(3)
Ar(0) = 1; AR(1)=0.5; Ar(2)=3;
DISP MIN(Ar) !Output = 0.5

4.4.8 MINI

Description

MINI finds the element with the minimum value in an array or in a section of an array and returns its
index.

Syntax

MINI(array_name, From1, To1, From2, To2)

Arguments

array_name The name of an array that has been declared in the program.

From1 The initial element

To1 The final element

From2 The initial element

To2 The final element

Return Value

Integer - MINI returns the index of the minimum element in array X, or in the specified section of
array x. In case of a two-dimensional array, only the column index is returned.

Example

REAL AR(3)
AR(0)= 1; AR(1)= 0.5; AR(2)= 3
DISP MINI(AR) !Output = 1

4.4.9 SIZEOF

Description

The function returns number of columns or number or rows of the given array (can be user-defined
or ACSPL+). If the array is one-dimension, number of rows is always one and the number of columns
represents the number of elements.

598Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

sizeof(Array, index(optional))

Arguments

Array The array name, can be local or global

Index
Optional parameter. If specified, can be 1
or 2

Return Value

> No index is specified: total number of elements in the array

> Index parameter equals to 1: number of columns for two-dimensional array, or number of
elements for one-dimensional array

> Index parameter equals to 2: number of rows for two-dimensional array, or 1 for one-
dimensional array.

Comments

In case of wrong parameters, the corresponding runtime error will be generated. The function is
intended to be used for arrays only, meaning that an error is generated if a scalar is given as a
parameter.

Example

I0=sizeof(NST)

4.5 EtherCAT Functions

EtherCAT functions include:

COEGETSIZE
Returns the size, in bits, of a specific entry in the object dictionary of a
specific slave.

ECCLOSEPORT The function closes the specified port of specified EtherCAT node.

ECCLRREG Clears the contents of error counters registers.

ECEXTIN
Used for mapping input variables (TxPDO) to non-ACS EtherCAT
network.

ECEXTOUT
Used for mapping output variables (RxPDO) from non-ACS EtherCAT
network to the SPiiPlusES.

ECGETGRPIND
The function returns an array that contains optional groups’ indexes
that are part of the current configuration (including mandatory group,
which is 0).

599Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

ECGETPID Returns product ID of the node.

ECGETMAIN
The function returns the number of EtherCAT slaves connected to the
main EtherCAT line.

ECGETOFFSET
The function returns offset of the specified variable of the specific
EtherCAT node.

ECGETOPTGRP
The function returns number of actually connected optional groups,
not including the mandatory group.

ECGETRED
The function returns the number of EtherCAT slaves connected to the
redundant EtherCAT line.

ECGETREG Gets the contents of ESCs error counters registers.

ECGETSLAVES Returns the number of slaves in an EtherCAT network.

ECGETSTATE Returns the state of the node.

ECGETVID Returns vendor ID of the node.

ECGRPINFO
The function fills array with nodes’ indexes which are members of a
given optional group. In addition, it returns the number of members
in the group.

ECIN Copies the EtherCAT network input variable to an ACSPL+ variable.

ECOUT Copies ACSPL+ variable to EtherCAT network output variable.

ECRESCAN
Triggers the system to rescan the EtherCAT network after a slave has
been removed or been added in order to refresh the network
composition data.

ECRESCUE Triggers execution of a rescue scan of the EtherCAT network

ECREPAIR
Returns the system back to the operational state if one or more
slaves underwent a reset or power cycle.

ECSAVECFG
Saves the current network topology configuration into the non-
volatile memory.

ECSAVEDCNF
The function returns array that contains optional groups’ indexes that
are part of the last saved configuration (including mandatory group,
which is 0).

ECUNMAP Resets mapping of ECIN and ECOUT.

600Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

ECUNMAPIN Resets mapping of ECIN of a specified offset.

ECUNMAPOUT Resets mapping of ECOUT of a specified offset.

FOEDOWNLOAD Downloads a file over EtherCAT from the controller’s flash to slave

FOEUPLOAD
Upload file over EtherCAT and saves it to the controller's flash
memory

PDOEXT Prints the PDO configuration defined by master (SPiiPlusES only)

4.5.1 COEGETSIZE

Description

COEGETSIZE returns the size, in bits, of a specific entry in the object dictionary of a specific slave.

Syntax

int COEGETSIZE(Slave, Index, Subindex)

Arguments

Slave An integer representing slave number, starting from 0

Index An integer representing index in the object dictionary

Subindex An integer representing sub-index in the object dictionary

Return Value

Size in bits of the entry in the object dictionary.

Example

I0=coegetsize(0,0x1000,0)

!Return value: 32 bits. Object 0x1000 usually means the device type.

Comments:

The function returns the received value or fails with runtime error. The function cannot be used in
the SPiiPlus MMI Application Studio Communication Terminal. The function delays the buffer
execution on its line until it's successful of fails the whole buffer with timeout or other error.

4.5.2 ECCLOSEPORT

Description

The function closes the specified port of specified EtherCAT node.

Syntax

Int ECCLOSEPORT(name, index)

601Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

../../../../../../Content/SW/SW_CommandVariable/Document/PDOEXT.htm

Arguments

Index EtherCAT node index.

Port EtherCAT port index (0 - EtherCAT IN port, 1 - EtherCAT OUT port)

Return Value

None

Comments

This function can only be used if ring topology is configured and ring communication is active. In
case there is a cable / port failure on a specific EtherCAT node, it is recommended (as long as the
erroneous situation exists) that the machine should start up directly in the line topology mode. This
is very useful, because it prevent a manual stop of the machine with a suspicious communication
link / device).

Example

ECCLOSEPORT(<slave index>, <port index>)
FCLEAR ALL
ECSAVECFG
STOP

In this example of the AUTOEXEC program that should run on power-up in this case:

The first parameter is the slave index in the network and the second parameter is the port index of
the slave that should be closed.

After “fclear All”, two Lines Are Stored Into The Controller's Non-volatile Memory.

4.5.3 ECCLRREG

Description

ESC Error Counters Registers Clear. The ECCLRREG function clears the contents of the error counters
registers.

Syntax

void ECCLRREG(index,offset)

Arguments

Index EtherCAT slave index.

Offset Register offset in the Beckhoff memory.

Return Value

None

Comments

When the Offset value is -1, all error counters in all slaves are cleared. Otherwise, only the specific
register at the specified Offset is cleared.

602Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

After executing the ECCLRRG function, we recommend to execute the FCLEAR function without
parameters before running ECGETREG.

Example

Run the following code example in a Program Buffer.

ECCLRREG(0,0x310)
FCLEAR
STOP

You can also enter this code in the SPiiPlus MMI Application Studio Connection Terminal: ECCLRREG
(0,-1).

4.5.4 ECEXTIN

Description

The ECEXTIN function is used for mapping input variables (TxPDO) to non-ACS EtherCAT network.

Can be used only by SPiiPlusES.

Syntax

ECEXTIN (int PDOIndex, int Index, int Subindex, string Varname)

Arguments

PDOIndex One of the TxPDO indexes defined by external master’s configuration.

Index Index of the variable mapped to the TxPDO

Subindex Sub-Index of the variable mapped to the TxPDO

Varname Valid name of a global ACSPL+ variable.

Return Value

None

Comments

Once the function is called successfully, the Firmware copies the value of the network input variable
into the ACSPL+ variable every controller cycle. The input is from the external EtherCAT master (e.g.
TwinCAT) point of view (a value provided by SPiiPlusES to the external master).

There is no restriction on number of the mapped network variables.

The mapping is allowed only when the SPiiPlusES is in OP state.

All types supported by the SPiiPlusES are also supported by the ECEXTIN function.

603Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error 3309 “Function is supported only by SPiiPlusES” is returned when called on a
controller which is not SPiiPlusES.

If SPiiPlusES is not in OP state, error 3310 “SPiiPlusES is not in OP state. PDO is not
enabled” error is given.

The mapping is rested by the ECUNMAP command.

COM Library Methods

None

C Library Functions

None

Example

D-Buffer:
GLOBAL INT ActualPositionTwinCAT

Regular Buffer:
ecextin (0x1A01,0x6064,0, ActualPositionTwinCAT)

STOP

4.5.5 ECEXTOUT

Description

The ECEXTOUT function is used for mapping output variables (RxPDO) from non-ACS EtherCAT
network to the SPiiPlusES.

Can be used only by SPiiPlusES.

Syntax

ECEXTOUT (int PDOIndex, int Index, int Subindex, string Varname)

Arguments

PDOIndex One of the RxPDO indexes defined by external master’s configuration.

Index Index of the variable mapped to the TxPDO

Subindex Sub-Index of the variable mapped to the TxPDO

604Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Varname Valid name of a global ACSPL+ variable.

Return Value

None

Comments

Once the function is called successfully, the Firmware copies the value of the network output
variable into the ACSPL+ variable every controller cycle. The output is from the external EtherCAT
master (e.g. TwinCAT) point of view (a value provided to SPiiPlusES by the external master).

There is no restriction on number of the mapped network variables.

Error 3309 “Function is supported only by SPiiPlusES” is returned when called on a controller which is
not SPiiPlusES.

If SPiiPlusES is not in OP state, error 3310 “SPiiPlusES is not in OP state. PDO is not enabled” error is
given.

The mapping is allowed only when the SPiiPlusES is in OP state.

All types supported by the SPiiPlusES are also supported by the ECEXTOUT function.

The mapping is rested by the ECUNMAP command.

COM Library Methods

None

C Library Functions

None

Example

D-Buffer:
GLOBAL INT TargetPositionTwinCAT

Regular Buffer:
ecextout (0x1601,0x607A,0, TargetPositionTwinCAT)

STOP

4.5.6 ECGETGRPIND

Description

The function returns an array that contains optional groups’ indexes that are part of the current
configuration (including mandatory group, which is 0). The array ends with {-1}.

Syntax
ECGETGRPIND(groups_array)

605Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

groups_array Array of type INT, filled with groups’ indexes. {-1} marks the end.

Return Value

None.

Example:

int groups(5)
ecgetgrpind(groups) ! groups array is filled with: {0,1,-1,0,0},
!meaning that there is one optional group (with index 1) defined in the
actual system.

4.5.7 ECGETPID

Description

ECGETPID returns product ID of the node.

Syntax

ECGETPID(index)

Arguments

Index EtherCAT slave index, starting from 0.

Return Value

Product ID of the node.

4.5.8 ECGETMAIN

Description

The function returns the number of EtherCAT slaves connected to the main EtherCAT line.

Syntax

ECGETMAIN()

Return Value

The number of EtherCAT slaves connected to the main EtherCAT line

4.5.9 ECGETOFFSET

Description

The function returns offset of the specified variable of the specific EtherCAT node. The "/b" switch is
used to retrieve the offset on the variable in bits.

Syntax

Int ECGETOFFSET[/b](name, index, InOut(optional), occurrence(optional))

606Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

Name Name of variable as shown in System Setup of #ETHERCAT command.

Index EtherCAT node index.

InOut
(optional)

Can be Output (=0) or Input (=1). By default, the variable is being searched
in Inputs and, if not found, in Outputs.

Occurence
(optional)

By default the value is 0.

Function Options

/b Returns the bit offset of the variable

Comments

The offset in bits can be calculated by following method:

Offset in Bytes as provided by #ETHERCAT report.

The return value of the ECGETOFFSET/B will be equal to:

<Offset in Bytes>*8+<Offset in Bits>

Return Value

Offset of the specified variable.

Example

GLOBAL INT IN0_OFFSET
! Assuming that IOMnt is the first EtherCAT node in the network
IN0_OFFSET = ECGETOFFSET("Digital Inputs 0", 0)
! Assuming that WAGO is the first EtherCAT node in the network.
! Returns offset of network variable (PDO) "Channel 1 Data", slave 0,
Output, first occurrence
I0=ECGETOFFSET("Channel 1 Data",0)
!Returns offset of network variable (PDO) "Channel 1 Data", slave 0,
Input, first occurrence
I1=ECGETOFFSET("Channel 1 Data",0,1,1)
!Returns offset of network variable (PDO) "Channel 1 Data", slave 0,
Input, second occurrence

Example

WAGO_Offset_Bit, WAGO_Offset_Byte
WAGO_Offset_Bit =ECGETOFFSET/b (“Input(s).Channel 2, Word 1”,0)
WAGO_Offset_Byte = ECGETOFFSET (“Input(s).Channel 2, Word 1”,0)

607Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.5.10 ECGETOPTGRP

Description

The function returns number of actually connected optional groups, not including the mandatory
group.

Syntax
ECGETOPTGRP()

Arguments

None.

Return Value

Returns number of actually connected optional groups, not including the mandatory group.

Example:

?ecgetoptgrp()
2

4.5.11 ECGETRED

Description

The function returns the number of EtherCAT slaves connected to the redundant EtherCAT line.

Syntax

ECGETRED()

Return Value

The number of EtherCAT slaves connected to the redundant EtherCAT line.

4.5.12 ECGETREG

Description

ESC Error Counters Registers (Beckhoff Memory). The ESCs have numerous error counters that help
you detect and locate errors. The ECGETREG function enables you to view the contents of these
registers.

Syntax

int ECGETREG(index,offset)

Arguments

Index EtherCAT slave index.

Offset Register offset in the Beckhoff memory.

Return Value

None

Comments

The following table lists supported error counter registers.

608Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Table 4-5. Supported Error Counter Registers

Offset Name Description

0x300
Port Error Counter
(CRC A)

Error Counted at the Auto-Forwarded (per port).
Each register contains two counters:

> Invalid Frame Counter: 0x300/2/4/6

> RX Error Counter: 0x301/3/5/7

0x302
Port Error Counter
(CRC B)

0x304
Port Error Counter
(CRC C)

0x306
Port Error Counter
(CRC D)

0x308
Forwarded RX Error
Counter (CRC A/B)

Invalid frame with marking from previous ESC
detected (per port).

0x309
Forwarded RX Error
Counter

0x30A
Forwarded RX Error
Counter (CRC C/D)

0x30B
Forwarded RX Error
Counter

0x30C
ECAT Processing Unit
Error Counter

Invalid frame passing the EtherCAT Processing Unit
(additional checks by processing unit).

0x30D PDI Error Counter Physical Errors detected by the PDI.

0x310
Lost Link Counter,
Port A (IN)

Link Lost events (per port).

0x311
Lost Link Counter,
Port B (OUT)

0x312
Lost Link Counter,
Port C

0x313
Lost Link Counter,
Port D

609Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

If a cable is unplugged, we recommend using the FCLEAR command before using
ECGETREG.
The mapping is allowed only when stack is operational.

Example

Run the following code example in a Program Buffer.

I0=ECGETREG(0,0x310)
STOP

You can also enter this code in the SPiiPlus MMI Application Studio Connection Terminal:

?ECGETREG(0,0x310)

4.5.13 ECGETSLAVES

Description

This function is used to retrieve the number of slaves in an EtherCAT network.

Syntax

ECGETSLAVES()

Arguments

None

Return Value

Number of EtherCAT slaves in the network.

Comments

If a slave was added or removed, the ECRESCAN command should be used before using
ECGETSLAVES again.

4.5.14 ECGETSTATE

Description

ECGETSTATE returns the state of the node.

Syntax

ECGETSTATE(index)

Arguments

Index EtherCAT slave index, starting from 0.

Return Value

INIT, PREOP, SAFEOP, OP.

610Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.5.15 ECGETVID

Description

ECGETVID returns the vendor ID of the node.

Syntax

ECGETVID(index)

Arguments

Index EtherCAT slave index, starting from 0.

Return Value

The ACS vendor ID of the node.

4.5.16 ECGRPINFO

Description

The function fills array with nodes’ indexes which are members of a given optional group. In
addition, it returns the number of members in the group.

Syntax
ECGRPINFO(group_index, nodes_array)

Arguments

group_index Optional Group Index, starting from 0 (0 is the mandatory group)

nodes_array Array of type INT, filled with nodes’ indexes. {-1} marks the end.

Return Value

Returns the number of the members in the specified optional group.

Example:

int nodes(5)
I0=ecgrpinfo(1,nodes) ! returns number of nodes in optional group 1

! nodes array is filled with: {0,-1,0,0,0}

4.5.17 ECIN

Description

This function is used to copy the EtherCAT network input variable at the corresponding EtherCAT
offset into the specified ACSPL+ variable.

Syntax

ECIN[/b](int offset, Varname)

611Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

offset

Internal EtherCAT offset (in bytes or in bits) of network variable derived from
the SPiiPlus MMI Application Studio Communication Terminal ETHERCAT
command.

> No switch: EtherCAT offset in bytes

> "/b" switch: the offset is in bits

Varname Valid name of ACSPL+ variable, global or standard.

Return Value

None

Comments

Once the function is called successfully, the Firmware copies the value of the network input variable
at the corresponding EtherCAT offset into the specified ACSPL+ variable, every controller cycle.

There is no restriction on number of mapped network variables.

The mapping is allowed only when stack is operational.

In the event of wrong parameters or stack state, the function will produce a corresponding runtime
error.

It is recommended to use the ECGETOFFSET function to retrieve the offset, in bytes or in
bits.

COM Library Methods

None

C Library Functions

acsc_MapEtherCATInput

612Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

D-Buffer:
GLOBAL INT IOMNT_IN(4)
GLOBAL INT IOMNT_OUT(4)

Regular Buffer:
AUTOEXEC:

INT IN0_OFFSET
INT IN1_OFFSET
INT IN2_OFFSET
INT IN3_OFFSET

INT OUT0_OFFSET
INT OUT1_OFFSET
INT OUT2_OFFSET
INT OUT3_OFFSET

! Assuming that IOMnt is the first EtherCAT node in the network
IN0_OFFSET = ECGETOFFSET("Digital Inputs 0", 0)
IN1_OFFSET = ECGETOFFSET("Digital Inputs 1", 0)
IN2_OFFSET = ECGETOFFSET("Digital Inputs 2", 0)
IN3_OFFSET = ECGETOFFSET("Digital Inputs 3", 0)

OUT0_OFFSET = ECGETOFFSET("Digital Outputs 0", 0)
OUT1_OFFSET = ECGETOFFSET("Digital Outputs 1", 0)
OUT2_OFFSET = ECGETOFFSET("Digital Outputs 2", 0)
OUT3_OFFSET = ECGETOFFSET("Digital Outputs 3", 0)

ECIN(IN0_OFFSET, IOMNT_IN(0))
ECIN(IN1_OFFSET, IOMNT_IN(1))
ECIN(IN2_OFFSET, IOMNT_IN(2))
ECIN(IN3_OFFSET, IOMNT_IN(3))

ECOUT(OUT0_OFFSET, IOMNT_OUT(0))
ECOUT(OUT1_OFFSET, IOMNT_OUT(1))
ECOUT(OUT2_OFFSET, IOMNT_OUT(2))
ECOUT(OUT3_OFFSET, IOMNT_OUT(3))

STOP

4.5.18 ECOUT

Description

This function is used to copy the value of ACSPL+ variable into the network output variable at the
corresponding EtherCAT offset.

Syntax

ECOUT[/b][/r] (int offset, Varname)

613Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

offset

Internal EtherCAT offset (in bytes or in bits) of network variable derived from
the SPiiPlus MMI Application Studio Communication Terminal ETHERCAT
command.

> No switch: EtherCAT offset in bytes

> "/b" switch: the offset is in bits

Varname Valid name of ACSPL+ variable, global or standard.

Switches

/r
Copies the EtherCAT network output (RxPDO) variable at the corresponding
EtherCAT offset into the specified ACSPL+ variable.

Return Value

None

Comments

Once the function is called successfully, the Firmware copies the value of the specified ACSPL+
variable network input variable into the given EtherCAT offset, every controller cycle.

There is no restriction on number of mapped network variables.

Mapping is allowed only when stack is operational. ACS recommends retrieving the
offset using ACSPL+ ECGETOFFSET().

In the event of wrong parameters or stack state, the function will produce corresponding runtime
error.

It’s recommended to use the ECGETOFFSET function to retrieve the offset, in bytes or in
bits.

COM Library Methods

None

C Library Functions

acsc_MapEtherCATOutput

Example 1

D-Buffer:
GLOBAL INT IOMNT_IN(4)
GLOBAL INT IOMNT_OUT(4)
Regular Buffer:
AUTOEXEC:
INT IN0_OFFSET

614Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

INT IN1_OFFSET
INT IN2_OFFSET
INT IN3_OFFSET
INT OUT0_OFFSET
INT OUT1_OFFSET
INT OUT2_OFFSET
INT OUT3_OFFSET
! Assuming that IOMnt is the first EtherCAT node in the network
IN0_OFFSET = ECGETOFFSET("Digital Inputs 0", 0)
IN1_OFFSET = ECGETOFFSET("Digital Inputs 1", 0)
IN2_OFFSET = ECGETOFFSET("Digital Inputs 2", 0)
IN3_OFFSET = ECGETOFFSET("Digital Inputs 3", 0)
OUT0_OFFSET = ECGETOFFSET("Digital Outputs 0", 0)
OUT1_OFFSET = ECGETOFFSET("Digital Outputs 1", 0)
OUT2_OFFSET = ECGETOFFSET("Digital Outputs 2", 0)
OUT3_OFFSET = ECGETOFFSET("Digital Outputs 3", 0)
ECIN(IN0_OFFSET, IOMNT_IN(0))
ECIN(IN1_OFFSET, IOMNT_IN(1))
ECIN(IN2_OFFSET, IOMNT_IN(2))
ECIN(IN3_OFFSET, IOMNT_IN(3))
ECOUT(OUT0_OFFSET, IOMNT_OUT(0))
ECOUT(OUT1_OFFSET, IOMNT_OUT(1))
ECOUT(OUT2_OFFSET, IOMNT_OUT(2))
ECOUT(OUT3_OFFSET, IOMNT_OUT(3))
STOP

Example 2

D-Buffer:
GLOBAL INT TargetPosition
Regular Buffer:
!Assuming the first EtherCAT node in the network has "Target Position"
network variable
ecout/r (ECGETOFFSET("Target Position",0),TargetPosition)
STOP

4.5.19 ECREPAIR

Description

ECREPAIR serves to return the system back to the operational state if one or more slaves
underwent a reset or power cycle. It provides an ability to recover EtherCAT network when there is a
need to replace unit for maintenance without the need to perform commutation, homing, etc., to all
other units within the EtherCAT network.

Syntax

ECREPAIR

Comments

ECREPAIR performs the following steps:

615Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

1. Detects which nodes are not communicating

2. Brings all slaves to the EtherCAT OP state

3. Establishes inter-slaves and master-slaves synchronization

4. Downloads Servo Processor programs to repaired nodes only

5. Restores all Servo Processor variable values accordingly

ECREPAIR can take a long time to complete; therefore it is recommended calling ECREPAIR from a
Program Buffer. It is possible to execute the ECREPAIR command from the SPiiPlus MMI Application
Studio Communication Terminal; however, in this case the communication timeout should be
configured to be longer.

It is strongly recommended not to take any other actions until ECREPAIR completes.

Once the process is complete, the system state can be evaluated through:

> ECST

> SYNC values

> Servo Processor Alarm indication on all axes

> The View System Configuration task of the System Configuration Wizard

If all of these indicators show normal operation status, the ECREPAIR operation was successful.

EtherCAT slaves that were operational before ECREPAIR activation will keep their feedback and
commutation valid.

4.5.20 ECRESCAN

Description

ECRESCAN triggers the system to rescan the EtherCAT network after a slave has been removed or
been added in order to refresh the network composition data.

Syntax

ECRESCAN

Arguments

None

Comments

The command can be entered either through a Program Buffer or via the SPiiPlus MMI Application
Studio Communication Terminal.

During controller power-up, the controller automatically detects the EtherCAT network change and
informs the user, making a call to ERESCAN unnecessary.

4.5.21 ECRESCUE

Description

ECRESCUE triggers execution of a rescue scan of the EtherCAT network. The scan will detect the
failure location preventing return of EtherCAT frames to the EtherCAT master.

616Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

ECRESCUE

Arguments

None

Comments

The command can be entered through a Program Buffer in the SPiiPlus MMI Application Studio.

Procedure when using an application developed by the user:

1. Issue the ECRESCUE command to execute EtherCAT network rescue scan

2. Check ECERR value

3. In case of ECERR = 6024, Issue the ?ECGETMAIN() and ?ECGETRED() commands to identify
the location of the failure

4. The controller must be rebooted after running the command ECREPAIR

In most cases the ECRESCUE command shouldn't be explicitly executed by the user. During the
controller power up, the controller automatically detects the EtherCAT network failure and informs
the user.

4.5.22 ECSAVECFG

Description

The command saves to flash an array of optional groups based on current configuration, based on
ecgetgrpind() function. For example, actual configuration that contains 1 optional group will be
represented as: {0,1,-1}. This array will be read upon power-up of the controller. Actual configuration
will be checked against the approved configuration. If not identical, error 6016, “The actual network
configuration doesn’t match the last approved configuration.”, is displayed.

Syntax
ECSAVECFG

Arguments

None

Return Value

None.

Example:

ecsavecfg

4.5.23 ECSAVEDCNF

Description

The function returns array that contains optional groups’ indexes that are part of the last saved
configuration (including mandatory group, which is 0). The array ends with {-1}.

Syntax
ECSAVEDCNF(groups_array)

617Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

groups_array Array of type INT, filled with groups’ indexes. {-1} marks the end.

Return Value

None.

Example:

int groups(5)
ecsavedcnf(groups) ! groups array is filled with: {0,1,-1,0,0},
>!meaning that there is one optional group (with index 1) in the last
saved configuration.

4.5.24 ECUNMAP

Description

This function is used to reset all previous mapping defined by ECIN and ECOUT.

Syntax

ECUNMAP

Arguments

None

Return Value

None

Comments

The mapping is allowed only when stack is operational.

COM Library Methods

None

C Library Functions

acsc_UnmapEtherCATInputsOutputs

4.5.25 ECUNMAPIN

Description

This function is used to reset all previous mapping defined by ECIN to a specfic offset.

Syntax

ECUNMAPIN(ECOffset)

Arguments

ECOffset An integer providing the offset to which a variable was mapped using ECIN.

Return Value

None

618Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Comments

The mapping is allowed only when stack is operational.

Example

Given the previous execution of ECIN(48,I0), ECUNMAPIN(48) will unmap only I0.

4.5.26 ECUNMAPOUT

Description

This function is used to reset all previous mapping defined by ECOUT to a specfic offset.

Syntax

ECUNMAPOUT(ECOffset)

Arguments

ECOffset
An integer providing the offset to which a variable has been mapped by
ECOUT.

Return Value

None

Example

Assuming previous execution of ECOUT(48,I0) and ECOUT(50,I1), executing ECUNMAPOUT(48) will
unmap only I0.

4.5.27 FOEDOWNLOAD

Description

The function downloads a file over EtherCAT from the controller’s flash to slave.

Syntax

FOEDOWNLOAD[/b](string LocalPath, string TargetFileName, int SlaveIndex)

Arguments

LocalPath The path of the file in ACS controller’s flash

TargetFileName The name of the file to be transferred to the slave

SlaveIndex Index of the slave in the EtherCAT network

Flags

/b
With switch “b”, the FW will attempt to set the slave to BOOTSTRAP mode before
the FoE transfer operation.

Comments

Switch /b: even if the slave doesn’t support BOOTSTRAP, the firmware will attempt to set it back to
OP state without executing the FoE operation.

619Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

The function blocks the ACSPL+ buffer until completion.

It cannot be called from the terminal.

The following errors are supported in case of a failure:

> Error 3317 “FoE Error: Access Denied”

> Error 3308 “The disk is full or the file is too big”

> Error 3307 “FoE Protocol is not support by Slave”

> Error 3040 “Unable to open file”

This function is supported in version 3.00 and higher.

This function is intended for use with EtherCAT slaves that support the FoE protocol.

Example

FOEDOWNLOAD/b (“C:\Test.txt”,”Test”,0)

4.5.28 FOEUPLOAD

Description

The function reads a file over EtherCAT from a slave and saves it to the controller’s flash memory.

Syntax

FOEUPLOAD(string LocalPath, string TargetFileName, int MaxFileSize, int
SlaveIndex)

Arguments

LocalPath
The path of the file as it will be saved to the ACS controller’s flash
memory

TargetFileName The name of the file on the slave

MaxFileSize The maximum size of the file (in bytes)

SlaveIndex Index of the slave in the EtherCAT network

Comments

> The function blocks the ACSPL+ buffer processing until completion. It cannot be called from
the terminal. For complete list of errors, see the FoE Errors table.

> The function is intended for use with EtherCAT slaves that support the FoE protocol.

620Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

! Reads file “FileToRead” from slave 0, saves it as “Text.xml”
! Maximum size is 10MB
FOEUPLOAD(“Text.xml”,”FileToRead”,10000000,0)
STOP

4.5.29 PDOEXT

The PDOEXT command may be used with ACS DS402 products. The command prints the PDO
configuration defined by the master that controls the device.

Example

In/Out ObjectIndex SubIndex Size PdoIndex

In 0x6041 0x00 16 0x1a02

In 0x606c 0x00 32 0x1a02

In 0x6841 0x00 16 0x1a11

In 0x6864 0x00 32 0x1a11

Out 0x6040 0x00 16 0x1602

Out 0x60ff 0x00 32 0x1602

Out 0x6840 0x00 16 0x1611

Out 0x687a 0x00 32 0x1611

4.6 CoE Functions

CoE functions are required for SDO transfers in CoE. SDO are part of the cyclic EtherCAT data transfer.
It is impossible to define a generic function for any kind of mailbox transfer, as protocols like EoE,
FoE and VoE have their own definitions. So CoE is supported first.

The SPiiPlus MMI Application Studio Communication Terminal ETHERCATcommand
reports for every slave if it has Mailbox support.

CoE functions cannot be used with ACS EtherCAT slaves since the CoE protocol is not
supported.

The CoE functions are:

621Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

COEREAD Read CoE slave Object Directory entry.

COEWRITE Write into CoE slave Object Directory.

COEGETSIZE
Returns the size, in bits, of a specific entry in the object dictionary of a
specific slave.

4.6.1 COEREAD

Description

This function is used to read Object Dictionary entry from CoE slave.

This function with the “/d” switch provides the capability of reading a double type (64 bit).

In addition, parameter slave with the “-1” value means SPiiPlusES’ Object Dictionary. The following
objects can be read from the SPiiPlusES’ Object Dictionary:

> CiA402 objects, range: 0x6000-0x9FFF

This function with the “/l” (non-capital L) switch is an extension to the existing COEREAD function,
and enables reading of objects bigger than 64 bits, e.g. strings.

Syntax

COEREAD/d[/size] (int slave,int Index,int Subindex)

COEREAD/l (int Slave, int Index, int Subindex, int Len, int Array[])

Arguments

size

1/2/4 number of bytes in the Object Dictionary

/f for floating (32 bit) or

/d for double (64 bit)

slave

Slave number (which can be obtained by running the SPiiPlus MMI
Application Studio Communication Terminal ETHERCAT command).

-1 meands "SPiiPlusES"

Index Index in the Object Dictionary.

Subindex Sub-index in the Object Dictionary.

Len Number of bytes to read if “l” switch is used. The maximum value is 100.

Array
A user-defined one-dimensional integer ACSPL+ array that will store the
result value. Each element is treated as a single byte, so size of Array should
be at least “Len”.

Return Value

COEREAD/d returns the value stored in the variable in the specified Index of the Object Dictionary.

622Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

COEREAD/l has no return value, the result is found in the Array parameter

Comments

If the object doesn’t exist, error 3303 “Error SDO: Object doesn’t exist in the Object Dictionary” is
returned. In case of wrong parameters, the corresponding runtime error will be generated. The
function cannot be used in the Communication Terminal. The function delays the buffer execution
on its line until it is successful or fails the whole buffer with timeout or other error.

COM Library Methods

None

C Library Functions

None

Example 1

COEREAD/4 (0,0x6040,0)

This reads 4 bytes from slave 0, at Index 0x6040, Subindex 0 and returns the value that is stored in
the variable at this Index.

Example 2

V0=Coeread/d (0,0x2801,1)

STOP

In the example above, 8 bytes are read from slave 0, index 0x2801, subindex 1. The returned value is
being stored in the V0 global REAL variable.

Example 3

4.6.2 COEWRITE

Description

This function is used to write a value into the CoE slave Object Dictionary.

This function with the “/d” switch is an extension to the existing coeread function, and provides the
capability of reading a double type (64 bit).

This function with the “/l” (non-capital L) switch is an extension to the existing COEREAD function,
and enables reading of objects bigger than 64 bits, e.g. strings.

Syntax

COEWRITE/d[/size] (int slave,int Index,int Subindex,double Value)

COEREAD/l (int Slave, int Index, int Subindex, int Len, int Array[])

623Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

size

1, 2 or 4 - the number of bytes in the Object Dictionary

/f for floating.(32 bit) or

/d for double (64 bit)

slave
Slave number (which can be obtained by running the SPiiPlus MMI
Application Studio Communication Terminal ETHERCAT command)

Index Index in the Object Dictionary.

Subindex Sub-index in the Object Dictionary.

Value The value to be written.

Len Number of bytes to read if “l” switch is used. The maximum value is 100.

Array
A user-defined one-dimensional integer ACSPL+ array that will store the
result value. Each element is treated as a single byte, so size of Array should
be at least “Len”.

Return Value

None

Comments

If the object doesn’t exist, error 3303 “Error SDO: Object doesn’t exist in the Object Dictionary” is
returned. In case of wrong parameters, the corresponding runtime error will be generated. The
function cannot be used in the Communication Terminal. The function delays the buffer execution
on its line until it is successful or fails the whole buffer with timeout or other error.

COM Library Methods

None

C Library Functions

None

Example 1

COEWRITE/4 (0,0x6041,0,0x0)

This writes the Value 0 (4 bytes) into slave 0, at Index 0x6041, Subindex 0.

Example 2

Coewrite/d (0,0x2801,1,555.666)

STOP

624Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

In the example above, the value “555.666” is being written to slave 0, index 0x2801, subindex 1.

Example 3

4.7 Modbus Functions

Function Description

MBOPEN
Establishes a Modbus TCP connection with a Modbus server device
using the server's IP address

MBGETHANDLE
Returns the server's communication handle if a connection has been
established using the specified IP address

MBCLOSE
Closes an open Modbus TCP connection using the server's
communication handle or IP address

MBREADHREG
Maps a Modbus server's holding register to a specified
ACSPL+ variable. The value in the register is then read to the variable,
either once or at a specified interval.

MBREADIREG
Used to map a Modbus Server’s input register to a specified ACSPL+
variable. The value in the register is then read to the variable, either
once or at a specified interval.

MBWRITEHREG
The function is used to map a client's ACSPL+ variable to a Modbus
server's register. The value in the client variable is then written to the
server's register, either once or at a defined interval.

MBREADCOIL
The function is used to map a Modbus server coil to a specified
ACSPL+ variable and read the state of the coil

MBWRITECOIL
The function is used to map a Modbus server coil to a specified
ACSPL+ variable and write the variable's value to the coil.

MBREADDIN
The function maps a Modbus server discrete input to an
ACSPL+ variable

MBUNMAP Unmaps a specific request using the request ID

MBCLEAR
Clears the error codes from the Modbus requests error array (MBERR)
and reactivates the requests that experienced the error condition

MBERR
Holds the most recent Modbus error code that occurred for the
request during the communication process

#MBMAPREP
Displays a report of all the active Modbus connections and mapped
variables

625Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.7.1 MBOPEN

Description

MBOPEN establishes a Modbus TCP connection with a Modbus server device using the server's
IP address.

Syntax

int MBOPEN[/switches] (server_ip[, server_id, word_order])

Arguments

server_ip The server IP address as a string. For example, “192.168.1.10”.

server_id
(Optional)
Modbus server ID (1 to 247), the default value is 1

word_order

(Optional)
Specifies the order or sequence in which words (registers) are received or
sent. To transfer 32-bit (4 byte) or 64-bit (8 byte) values using the Modbus
protocol, you must define the order in which the registers are received. (Most
vendors choose to map the least significant word onto the lower address of
the register pair).

> big-endian (0)

> little-endian (1) (default)

Return Value

On success: A positive integer value that is used as a communication handle for the server

On failure: A runtime error will occur

Comments

> Up to three servers can be connected to the client controller at any given time.

> A runtime error will occur if the client fails to open a connection with the server.

> If a connection with the specified IP address is already open, the function will return the
communication handle for the server.

> To communicate with an ACS server device, a valid server_id must be specified (the ACS
server device has a CONID variable that specifies the server’s ID).

> Some I/O devices might have a Modbus connection timeout; after a period of inactivity in
the channel, the connection is closed (this behavior and the timeout period are usually
user-defined).

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates how to open a connection to a Modbus server on controller power-up
by using the AUTOEXEC label.

626Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

AUTOEXEC:
GLOBAL INT server_handle
!Opens a Modbus TCP connection with a server device
server_handle = MBOPEN(“10.0.0.100”)

STOP

Example 2

This example demonstrates how to open a connection to a Modbus server by specifying the server_
id and word_order optional arguments.

GLOBAL INT server_handle, server_id, word_order
server_id= 10
word_order = 0 !big-endian
!Opens a Modbus TCP connection with a server device
server_handle = MBOPEN(“10.0.0.100”, server_id, word_order)
STOP

Related ACSPL+ Commands

MBCLOSE, MBGETHANDLE

4.7.2 MBGETHANDLE

Description

MBGETHANDLE returns the server's communication handle if a connection has been established
using the specified IP address.

Syntax

int MBGETHANDLE(IP_address)

Arguments

IP_address IP address, as a string

Return Value

On success: Server’s communication handle

On failure: -1

Example

This example shows how to verify the existence of a connection to a Modbus server device.

GLOBAL INT server_handle
!Checks if a connection with the specified IP has been established
server_handle = MBGETHANDLE(“10.0.0.100”)
IF server_handle <> -1

DISP “There is an open connection with the specified IP”
END
STOP

627Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Related ACSPL+ Commands

MBOPEN, MBCLOSE

4.7.3 MBCLOSE

Description

Closes an open Modbus TCP connection using the server's communication handle or IP address

Syntax

int MBCLOSE[/switches](server_communication_handle|server_ip_address)

Arguments

server_communication_
handle

The server's communication handle, as received from the
MBOPEN function
or
The server's IP address (when used with the /s switch)

Switches

/s
Using the function with the /s switch specifies that the server IP address is
provided, rather than the handle

Return Value

On success: 0

On failure: A runtime error will occur

Comments

Closing a connection will stop all the active Modbus mapping requests.

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates how to open and close a connection to a Modbus server device using
the device handle.

GLOBAL INT server_handle
!Opens a Modbus TCP connection with a server device
server_handle = MBOPEN(“10.0.0.100”)
MBCLOSE(server_handle) !Closes the connection
STOP

Example 2

This example demonstrates how to open and close a connection to a Modbus server device using
the IP address.

GLOBAL INT server_handle
!Opens a Modbus TCP connection with a server device

628Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

server_handle = MBOPEN(“10.0.0.100”)
MBCLOSE/s(“10.0.0.100”) !Closes the connection
STOP

Related ACSPL+ Commands

MBOPEN, MBGETHANDLE

4.7.4 MBREADHREG

Description

The MBREADHREG function maps a Modbus server's holding register to a specified ACSPL+ variable.
The value in the register is then read to the variable, either once or at a specified interval.

Syntax

For Scalar variables

MBREADHREG[/switches] server_handle, mapped_scalar, starting_address[, request_frequency]

For Arrays

MBREADHREG/a server_handle, mapped_array, array_index, starting_address[, number_of_
elements, request_frequency]

Arguments

server_handle
The server’s communication handle (received from the MBOPEN
function)

mapped_
scalar/mapped_
array

A valid ACSPL+ variable name (can be either static or standard, and
scalar or array)

array_index (if /a
switch is used)

Starting index for the mapping

starting_address
The starting address of the register to be mapped to the specified
ACSPL+ variable.

number_of_
elements

(Optional)
The number of elements that will be mapped (sequentially from the
starting address). Element type depends on the switch that has been
used. For example, the /f switch specifies that each element is
regarded as a single-precision floating-point number (32 bits, 2
registers).

request_frequency

(Optional)
Specifies the Modbus request frequency (in milliseconds). The
request is sent every “request_frequency” period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

629Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Switches

Switch
Name

Description

/s
Indicates a one-time read (as opposed to reading the value from the client at
the requested frequency). The function copies the value from the server’s
register to the mapped variable.

/2 The data read should be regarded as integer type (16 bit).

/f The data read should be regarded as float type (32 bit).

/d The data read should be regarded as double type (64 bit).

/a The mapped variable is an array.

Return Value

On success: A unique request ID

On failure: A runtime error will occur

Comments

> If the mapping request tries to read a location that does not exist on the server, a runtime
error will occur (the user will know if they tried to access an invalid address), and the
request will not be created.

> If an error occurs during the Modbus mapping process, the mapping will stop, and the
MBERR(request_id) will hold the error code. Also, the request will become inactive. To
remove or restore a Modbus request, see the MBUNMAP and MBCLEAR functions.

> The request ID can be used to check if an error has occurred for the request using the
MBERR(request_id). Also, it can be used to unmap a specific request. (The request ID is
unique per request).

> If no switch is specified, the data to be mapped is regarded as 32-bit (2 registers) integer
value.

> Each element is converted to the format of the user’s mapped variable type. For example, if
the user mapped an Integer variable using the /f suffix (each element from the server
device is regarded as a single-precision floating-point value), the value of the element is
converted into a two’s-complement integer representation before it is stored.

> Loss of precision can occur when converting different data types. For example, reading a
real (floating point) value to an integer element will result in truncation, which may cause a
loss of precision.

> A runtime error will occur if the specified mapped_variable length is incompatible with the
specified number_of_elements.

> The maximum number of registers that can be mapped is 32. (32 shorts, 16 integers, 16
floats, or 8 doubles).

> The maximum number of mapping requests is 32 per server device.

630Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates the mapping of 2 holding registers to the client’s ACSPL+ global scalar
variable, where the value read is treated as an integer number.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 0 !First holding register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADHREG server_handle, mapped_scalar, starting_address

STOP

Example 2

This example demonstrates the mapping of 2 holding registers to the client’s ACSPL+ global scalar
variable, where the value read is treated as a single-precision floating-point number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalar

Buffer 1:
INT server_handle, starting address, request_id
starting_address = 0 !First holding register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADHREG/f server_handle, mapped_scalar, starting_

address
STOP

Example 3

This example demonstrates the mapping of 10 holding registers to the client’s ACSPL+ global array,
where each element, is treated as a single-precision floating-point number (2 registers).

D-Buffer:
GLOBAL STATIC REAL mapped_array(20)

Buffer 1:
INT server_handle, starting_address, starting_index, number_of_

elements, request_id
starting_index = 10
starting_address = 0 !First holding register address
number_of_elements = 5
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADHREG/fa server_handle, mapped_array, starting_

631Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

index, starting_address, number_of_elements
STOP

Example 4

This example demonstrates a one-time mapping of 2 holding registers to the client’s ACSPL+ global
scalar variable, where the value read is treated as a single-precision floating-point number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalarBuffer 1:
INT server_handle, starting_address, request_id
starting_address = 0 !First holding register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADHREG/fs server_handle, mapped_scalar, starting_

address
STOP

Figure 4-2 illustrates the mapping of two Modbus device registers to a 32-bit little-endian variable.

Figure 4-2. Example Mapping

Related ACSPL+ Commands

MBOPEN, MBCLOSE, MBWRITEREG, MBWRITECOIL

4.7.5 MBREADIREG

Description

The MBREADIREG function is used to map a Modbus Server’s input register to a specified ACSPL+
variable. The value in the register is then read to the variable, either once or at a specified interval.

Syntax

MBREADIREG[/switches] server_handle, mapped_scalar, starting_address[, request_frequency]

632Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

MBREADIREG/a server_handle, mapped_array, array_index, starting_address[, number_of_
elements, request_frequency]

Arguments

server_handle The server’s communication handle (received from the MBOPEN function)

mapped_
scalar /
mapped_array

A valid ACSPL+ variable name (can be either static or standard, and scalar
or array)

array_index (if
the /a switch is
used)

Starting index for the mapping

starting_
address

The starting address of the register to be mapped to the specified ACSPL+
variable.

number_of_
elements

(Optional)
The number of elements that will be mapped (sequentially from the
starting address). The element type depends on the switch that is used. For
example, the /f switch specifies that each element is regarded as a single-
precision floating-point number (32 bits, 2 registers).

request_
frequency

(Optional)
The Modbus request frequency (in milliseconds). The request is sent every
“request_frequency” period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

Switches

Name Description

/s
Indicates a one-time read. The function copies the value from the server’s
register to the mapped variable.

/2 The data read should be interpreted as integer type (16 bit).

/f The data read should be interpreted as float type (32 bit).

/d The data read should be interpreted as double type (64 bit).

/a The mapped variable is an array.

Return Value

On success: A unique request ID

On failure: A runtime error will occur

633Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Comments

> If the mapping request tries to read a location that does not exist on the server, a runtime
error will occur (the user will know if they tried to access an invalid address), and the
request will not be created.

> If an error occurs during the Modbus mapping process, the mapping will stop, and the
MBERR(request_id) will hold the error code. Also, the request will become inactive. To
remove or restore a Modbus request, see the MBUNMAP and MBCLEAR functions.

> The request ID can be used to check if an error has occurred for the request using the
MBERR(request_id). Also, it can be used to unmap a specific request. (The request ID is
unique per request).

> If no switch is specified, the data to be mapped is regarded as 32-bit (2 registers) integer
value.

> Each element is converted to the format of the user’s mapped variable type. For example, if
the user mapped an Integer variable using the /f suffix (each element from the server
device is regarded as a single-precision floating-point value), the value of the element is
converted into a two’s-complement integer representation before it is stored.

> Loss of precision can occur when converting different data types. For example, reading a
real (floating point) value to an integer element will result in truncation, which may cause a
loss of precision.

> A runtime error will occur if the specified mapped_variable length is incompatible with the
specified number_of_elements.

> The maximum number of registers that can be mapped is 32. (32 shorts, 16 integers, 16
floats, or 8 doubles).

> The maximum number of mapping requests is 32 per server device.

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates the mapping of 2 input registers to the client’s ACSPL+ global scalar
variable, where the value read is interpreted as an integer number.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADIREG server_handle, mapped_scalar, starting_address

STOP

634Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 2

This example demonstrates the mapping of 2 input registers to the client’s ACSPL+ global scalar
variable, where the value read is interpreted as a single-precision floating-point number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADIREG/f server_handle, mapped_scalar, starting_

address
STOP

Example 3

This example demonstrates the mapping of 10 input registers to the client’s ACSPL+ global array,
where each element is interpreted as a single-precision floating-point number (2 registers).

D-Buffer:
GLOBAL STATIC REAL mapped_array(20)

Buffer 1:
INT server_handle, starting_address, starting_index, number_of_

elements, request_id
starting_index = 10
starting_address = 0 !First input register address
number_of_elements = 5
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADIREG/fa server_handle, mapped_array, starting_

index, starting_address, number_of_elements
STOP

Example 4

This example demonstrates a one-time mapping of 2 input registers to the client’s ACSPL+ global
scalar variable, where the value read is interpreted as a single-precision floating-point number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADIREG/fs server_handle, mapped_scalar, starting_

address
STOP

Figure 4-3 illustrates the mapping of two Modbus device registers to a 32-bit little-endian variable.

635Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-3. Example Mapping

4.7.6 MBWRITEHREG

Description

The MBREADIREG function is used to map a client's ACSPL+ variable to a Modbus server's register.
The value in the client variable is then written to the server's register, either once or at a defined
interval.

Syntax

MBWRITEHREG[/switches] server_handle, mapped_scalar, starting_address[, request_frequency]

MBWRITEHREG/a server_handle, mapped_array, array_index, starting_address[, number_of_
elements, request_frequency]

Arguments

server_handle The server’s communication handle (received from the MBOPEN function).

mapped_
scalar /
mapped_array

A valid ACSPL+ variable name (may be either static or standard, and scalar
or array).

array_index(if
the /a switch is
used)

The array index from which mapping will begin.

starting_
address

The starting address of the register to be mapped to the specified ACSPL+
variable.

636Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

number_of_
elements

(Optional)
The number of elements to be mapped (sequentially from the starting
address). The element type depends on the switch used. For example, the
/f suffix specifies that each element is interpreted as a single-precision
floating-point number (32 bits, 2 registers).

request_
frequency

The Modbus request frequency (in milliseconds). The request is sent every
"request_frequency" period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

Switches

/s Generates a single write request

/2 The data should be written as a 16-bit integer type

/f The data should be written as a 32-bit float type

/d The data should be written as a 64-bit double type

/a The mapped variable is an array

Return Value

On success: A unique request ID

On failure: A runtime error will occur

Comments

> If the mapping request tries to write a location that does not exist on the server, a runtime
error will occur (the user will know if they tried to access an invalid address), and the
request will not be created.

> If an error occurs during the Modbus mapping process, the mapping will stop, and the
MBERR(request_id) will hold the error code. Also, the request will become inactive. To
remove or restore a Modbus request, see the MBUNMAP and MBCLEAR functions.

> The request ID can be used to check if an error has occurred for the request using the
MBERR(request_id). Also, it can be used to unmap a specific request. (The request ID is
unique per request).

> If no switch is specified, the data to be mapped is regarded as 32-bit (2 registers) integer
value.

> Each element is converted to the format of the user’s mapped variable type. For example, if
the user mapped an Integer variable using the /f suffix (each element from the server
device is regarded as a single-precision floating-point value), the value of the element is
converted into a two’s-complement integer representation before it is stored.

637Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> Loss of precision can occur when converting different data types. For example, reading a
real (floating point) value to an integer element will result in truncation, which may cause a
loss of precision.

> A runtime error will occur if the specified mapped_variable length is incompatible with the
specified number_of_elements.

> The maximum number of registers that can be mapped is 32. (32 shorts, 16 integers, 16
floats, or 8 doubles).

> The maximum number of mapping requests is 32 per server device.

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates the mapping of 2 input registers to the client’s ACSPL+ global scalar
variable, where the mapped variable value is interpreted as an integer value.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
mapped_scalar = 100
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITEHREG server_handle, mapped_scalar, starting_

address
STOP

Example 2

This example demonstrates the mapping of 2 input registers to the client’s ACSPL+ global scalar
variable, where the mapped variable value is interpreted as a single-precision floating-point
number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
mapped_scalar = 100.25
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITEHREG/f server_handle, mapped_scalar, starting_

address
STOP

638Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 3

This example demonstrates the mapping of 10 input registers to the client’s ACSPL+ global array,
where each element is interpreted as a single-precision floating-point number (2 registers).

D-Buffer:
GLOBAL STATIC REAL mapped_array(20)

Buffer 1:
INT server_handle, starting_address, starting_index, number_of_

elements, request_id
starting_index = 10
starting_address = 0 !First input register address
number_of_elements = 5
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITEHREG/fa server_handle, mapped_array, starting_

index, starting_address, number_of_elements
STOP

Example 4

This example demonstrates a one-time mapping of 2 input registers to the client’s ACSPL+ global
scalar variable, where the mapped variable value is interpreted as a single-precision floating-point
number.

D-Buffer:
GLOBAL STATIC REAL mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
mapped_scalar = 1.1
starting_address = 0 !First input register address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITEHREG/fs server_handle, mapped_scalar, starting_

address
STOP

Figure 4-4 illustrates the mapping of a 32-bit little-endian variable to two Modbus device registers.

639Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-4. Example Mapping

4.7.7 MBREADCOIL

Description

The MBREADCOIL function is used to map a Modbus server coil to a specified ACSPL+ variable and
read the state of the coil.

Syntax

MBREADCOIL[/switches] server_handle, mapped_scalar, starting_address[, number_of_coils,
request_frequency]

MBREADCOIL/a server_handle, mapped_array, array_index, starting_address[, number_of_coils,
request_frequency]

Arguments

server_handle
The server’s communication handle (received from the MBOPEN
function)

mapped_scalar /
mapped_array

A valid ACSPL+ variable name (may be either static or standard, and
scalar or array)

array_index (if the /a
switch is used)

The array index from which mapping will begin.

starting_address
The starting address of the coils to be mapped to the specified
ACSPL+ variable.

number_of_coils
(Optional)
The number of coils to map (sequentially from starting_address)

640Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

request_frequency

(Optional)
The Modbus request frequency (in milliseconds). The request is
sent every “request_frequency” period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

Switches

/s A one-time read. Copies the value from specified coils to mapped_scalar.

/a The mapped variable is an array

/b
Bitwise mapping. Coils are mapped to bits of the specified variable rather than to
successive elements of an array.

Return Value

On success: A unique request ID

On failure: A runtime error will occur

Comments

> If the mapping request tries to read to or write from a location that does not exist on the
server, a runtime error will occur (the user will know if they tried to access an invalid
address), and the request will not be created.

> If an error occurs during the Modbus mapping process, the mapping will stop and MBERR
(request_id) will hold the error code. Also, the request will become inactive. To remove or
restore a Modbus request, see the MBUNMAP and MBCLEAR functions.

> The request ID can be used to check if an error has occurred for the request using MBERR
(request_id). The request ID can also be used for unmapping a specific request. (The request
ID is unique per request.)

> A runtime error will occur if the specified mapped_scalar length is incompatible with the
specified number_of_coils.

> The maximum number of coils that can be mapped is 32.

> The maximum number of mapping requests is 32 per server device.

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the Server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates mapping a server coil to the client’s ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

641Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADCOIL server_handle, mapped_scalar, starting_address

STOP

Example 2

This example demonstrates mapping three server coils to the client’s ACSPL+ global array.

D-Buffer:
GLOBAL STATIC INT mapped_array(5)

Buffer 1:
INT server_handle, starting_address, number_of_coils
INT array_index, request_id
array_index = 2
number_of_coils = 3
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADCOIL/a server_handle, mapped_array, array_index,

starting_address, number_of_coils
STOP

Example 3

This example demonstrates bitwise mapping of 20 server coils to the client’s ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, number_of_coils, request_id
number_of_coils = 20
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADCOIL/b server_handle, mapped_scalar, starting_

address, number_of_coils
STOP

Example 4

This example demonstrates a one-time mapping from a server coil to the client’s ACSPL+ global
variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection

642Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

request_id = MBREADCOIL/s server_handle, mapped_scalar, starting_
address
STOP

Figure 4-5 illustrates the mapping of a server coil to an integer variable.

Figure 4-5. Example Mapping

4.7.8 MBWRITECOIL

Description

The MBWRITECOIL function is used to map a Modbus server coil to a specified ACSPL+ variable and
write the variable's value to the coil.

Syntax

MBWRITECOIL[/switches] server_handle, mapped_scalar, starting_address[, number_of_coils,
request_frequency]

MBWRITECOIL/a server_handle, mapped_array, array_index, starting_address[, number_of_coils,
request_frequency]

Arguments

server_handle
The server’s communication handle (received from the MBOPEN
function)

mapped_scalar /
mapped_array

A valid ACSPL+ variable name (can be either static or standard, and
scalar or array)

array_index(if the /a
switch is used)

The array index from which mapping will begin.

643Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

starting_address
The starting address of the coils to be mapped to the specified
ACSPL+ variable.

number_of_coils
(Optional)
The number of coils to map (sequentially from starting_address)

request_frequency

(Optional)
The Modbus request frequency (in milliseconds). The request is sent
every “request_frequency” period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

Switches

/s A one-time write. Copies the value from specified coils to mapped_scalar.

/a The mapped variable is an array

/b
Bitwise mapping. Coils are mapped to bits of the specified variable rather than to
successive elements of an array.

Return Value

On success: A unique request ID

On failure: A runtime error will occur

Comments

> If the mapping request tries to read from or write to a location that does not exist on the
server, a runtime error will occur (the user will know if they tried to access an invalid
address), and the request will not be created.

> If an error has occurred during the mapping process, the mapping for the request will stop
and MBERR(request_id) will hold the error code that occurred. Also, the request will become
inactive. To remove or restore a Modbus request, see the MBUNMAP and MBCLEAR
functions.

> The request ID can be used to check if an error has occurred for the request using MBERR
(request_id). Also, it can be used for unmapping a specific request. (The request ID is unique
per request.)

> A runtime error will occur if the specified mapped_scalar length is incompatible with the
specified number_of_coils.

> The maximum number of coils that can be mapped is 32.

> The maximum number of mapping requests is 32 per server device.

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the Server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

644Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 1

This example demonstrates mapping a server coil to the client’s ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
mapped_scalar = 1
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITECOIL server_handle, mapped_scalar, starting_

address
STOP

Example 2

This example demonstrates mapping three server coils to the client’s ACSPL+ global array.

D-Buffer:
GLOBAL STATIC INT mapped_array(5)

Buffer 1:
INT server_handle, starting_address, number_of_coils
INT array_index, request_id
number_of_coils = 3
array_index = 2
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITECOIL/a server_handle, mapped_array, array_index,

starting_address, number_of_coils
STOP

Example 3

This example demonstrates bitwise mapping of 20 server coils to the client’s ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, number_of_coils, request_id
number_of_coils = 20
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITECOIL/b server_handle, mapped_scalar, starting_

address, number_of_coils
STOP

645Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 4

This example demonstrates a one-time mapping from a server coil to the client’s ACSPL+ global
variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 1 !First Coil address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBWRITECOIL/s server_handle, mapped_scalar, starting_

address
STOP

Figure 4-6 illustrates the mapping of an integer variable to a server coil.

Figure 4-6. Example Mapping

4.7.9 MBREADDIN

Description

The MBREADDIN function maps a Modbus server discrete input to an ACSPL+ variable.

Syntax

MBREADDIN[/switches] server_handle, mapped_scalar, starting_address[, number_of_discrete_
inputs, request_frequency]

MBREADDIN/a server_handle, mapped_array, array_index, starting_address[, number_of_discrete_
inputs, request_frequency]

646Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

server_handle
The server’s communication handle (received from the MBOPEN
function)

mapped_scalar /
mapped_array

A valid ACSPL+ variable name (can be either static or standard, and
scalar or array)

array_index (if the /a
switch is used)

The array index from which mapping will begin.

starting_address
The starting address of the discrete inputs to be mapped to the
specified ACSPL+ variable.

number_of_discrete_
inputs

(Optional)
The number of discrete inputs to map (sequentially from starting_
address)

request_frequency

(Optional)
The Modbus request frequency (in milliseconds). The request is
sent every “request_frequency” period.

Default value: 10 milliseconds

Minimum value: 5 milliseconds

Switches

/s
A one-time read. Copies the value from the specified discrete input to mapped_
scalar.

/a The mapped variable is an array

/b
Bitwise mapping. Discrete inputs are mapped to bits of the specified variable rather
than to successive elements of an array.

Return Value

On success: A unique request ID

On failure: A runtime error will occur

Comments

> If the mapping request tries to read to or write from a location that does not exist on the
server, a runtime error will occur (the user will know if they tried to access an invalid
address), and the request will not be created.

> If an error has occurred during the mapping process, the mapping for the request will stop,
and MBERR(request_id) will hold the error code that occurred. Also, the request will become
inactive. To remove or restore a Modbus request, see the MBUNMAP and MBCLEAR
functions.

647Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> The request ID can be used to check if an error has occurred for the request using MBERR
(request_id). Also, it can be used for unmapping a specific request. (The request ID is unique
per request.)

> A runtime error will occur if the specified mapped_scalar length is incompatible with the
specified number_of_discrete_inputs.

> The maximum number of discrete inputs that can be mapped is 32.

> The maximum number of mapping requests is 32 per server device.

> If repeated timeout errors occur during the mapping process, it is recommended to use a
single-time mapping. Such errors may indicate that the Server device is having problems
keeping up with the request rate. (This might be required for Festo AG & Co. KG and
Beckhoff I/O devices.)

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates mapping a server’s discrete input to the client’s ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 1 !First discrete input address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADDIN server_handle, mapped_scalar, starting_address

STOP

Example 2

This example demonstrates mapping three of the server’s discrete inputs to the client’s ACSPL+
global array.

D-Buffer:
GLOBAL STATIC INT mapped_array(5)

Buffer 1:
INT server_handle, starting_address, number_of_coils
INT array_index, request_id
array_index = 2
number_of_discrete_inputs = 3
starting_address = 1 !First discrete input address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADDIN/a server_handle, mapped_array, array_index,

starting_address, number_of_discrete_inputs
STOP

648Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example 3:

This example demonstrates bitwise mapping of 20 of the server’s discrete inputs to the client’s
ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, number_of_discrete_inputs,

request_id
number_of_discrete_inputs = 20
starting_address = 1 !First discrete input address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADDIN/b server_handle, mapped_scalar, starting_

address, number_of_discrete_inputs
STOP

Example 4

This example demonstrates a one-time mapping from a server’s discrete input to the client’s
ACSPL+ global variable.

D-Buffer:
GLOBAL STATIC INT mapped_scalar

Buffer 1:
INT server_handle, starting_address, request_id
starting_address = 1 !First discrete input address
server_handle = MBOPEN(“10.0.0.100”) !Opens a Modbus connection
request_id = MBREADDIN/s server_handle, mapped_scalar, starting_

address
STOP

4.7.10 MBUNMAP

Description

The MBUNMAP function unmaps a specific request using the request ID.

Syntax

MBUNMAP [request_id]

Arguments

request_id
(Optional)
A request ID received from the MBREAD or MBWRITE function

Return Value

The number of requests that have been unmapped (0 or 1).

Comments

> Unmapping a request will also clear its error code(if such exists) from the MBERR array.

> If no request ID is specified, all active Modbus requests will be removed.

649Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates the unmapping of a specific Modbus request using the request ID.

MBUNMAP request_id
STOP

Example 2

This example demonstrates the unmapping of all active Modbus requests.

MBUNMAP
STOP

4.7.11 MBCLEAR

Description

The MBCLEAR function clears the error codes from the Modbus requests error array (MBERR) and
reactivates the requests that experienced the error condition.

Syntax

MBCLEAR [request_id]

Arguments

request_id
(Optional)
A request ID received from the MBREAD or MBWRITE function.

Return Value

None

Comments

If request_id is not specified, the entire Modbus requests error array(MBERR) will be cleared (set to
0) and all request that experienced errors will be reactivated.

See Section 7.3, ACSPL+ Runtime Errors for supported error codes

Example 1

This example demonstrates how to clear a Modbus error and reactivate the relevant request.

MBCLEAR request_id
STOP

Example 2

This example demonstrates how to clear all Modbus errors and reactivate all Modbus requests.

MBCLEAR
STOP

650Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.7.12 MBERR

Description
MBERR is an integer array with one element for each possible Modbus request ID (between 0 - 95).
It holds the most recent Modbus error code that occurred for the request during the communication
process.

Table 4-6. Modbus Error Codes

Error
Code

Description

0 No Error

8001
Illegal Function - Function code received in the query is not recognized or
allowed by the server.

8002
Illegal Data Address - Data addresses of some or all the required entities are not
allowed or do not exist in the server.

8003
Illegal Data Value - A value contained in the query data field is not an allowable
value for the server.

8004
Server Device Failure - An unrecoverable error occurred while the server was
attempting to perform the requested action.

8005
Acknowledge - Server has accepted the request and is processing it, but a long
duration of time is required. This response is returned to prevent a timeout
error from occurring in the client.

8006
Server Device Busy - Server is engaged in processing a long-duration
command. The client should retry later.

8012
Transaction Identifier Mismatch – The received response transaction identifier
did not match the expected value.

8013
Response Length Mismatch - The received response length did not match the
expected length.

8014
Response Out of Bounds – The received response value is invalid. This may be
due to the value being out of the allowed range, an attempt to write to a
protected variable, etc.

8015
Timeout – No response has been received from the server device for the
timeout period(5 seconds). The connection with the server device has been
terminated.

8016 Connection Closed - The connection with the server device has been closed.

651Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Comments

MBERR can be cleared by unmapping the erroneous request using the MBUNMAP function or by
activating the erroneous request using the MBCLEAR function.

Example

This example demonstrates monitoring the error state of a Modbus mapping request.

D-buffer:
GLOBAL INT request_id

Buffer 1:
request_id = MBWRITEHREG server_handle, mapped_scalar, starting_

address

ON MBERR(request_id)
DISP “An error has occurred for the request, request ID=”,request_id
!Here we decide how we would like to handle this error, un-mapping
!the request, closing the communication channel, or clearing the
!fault and restore the request to an active state
.
.
.
MBCLEAR request_id !For example, clearing the error of the request,

!and restoring it to an active state
RET
STOP

Tag

403

Accessibility

Read-Only

4.7.13 #MBMAPREP

Description

The #MBMAPREP command displays a report of all the active Modbus connections and mapped
variables.

Syntax

#MBMAPREP

652Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

4.8 Servo Processor Functions

SPiiPlus™, a proprietary ACS Motion Control Servo Processor (SP), executes the real-time tasks such
as implementation of the real time control algorithms. Each SPiiPlus can control from two to eight
axes (depending on the product). The SPiiPlus includes all the necessary peripherals that are needed

653Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

for a high performance axis control, such as encoder counters, Digital-to-Analog interface, smart
inputs and outputs.

Servo Processor functions are used to read and monitor SP values.

The number of Servo Processors is model-dependent. Check the controller Hardware
Guide for the specific SPiiPlus model.

The Servo Processor functions are:

Function Description

GETSP Reads a value from the specified SP address

GETSPA Retrieves address of the SP variable specified by name.

GETSPV Reads a value from the specified SP variable name

SETSP Sets a value for the specified SP address

SETSPV Sets a value for the specified SP variable name

4.8.1 GETSP

Description

GETSP reads a value from the specified SP address.

The read value is treated as a signed integer number.

The minimal delay for the function response is more than three MPU cycles.

Syntax

GETSP(int SP, int Address)

Arguments

SP
The SP number in the system. Use getconf(260, axis), where axis is axis in the
system to get the SP number.

Address
Address within the SP.

Get the address by using getspa(SPnumber, varname) command.

For Address it is recommended using the memory address as obtained by GETSPA.

Return Value

Value read from the specified SP address.

654Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

The function causes an error if an SP number is specified other than 0–3, or if an illegal address is
specified.

Example

REAL PAR_ADDRESS
PAR_ADDRESS=GETSPA(0,"PE(0)") ! Get the memory address of PE(0) in SP#0
GETSP(0, PAR_ADDRESS) ! The return value is the PE(0) in SP#0

4.8.2 GETSPA

Description

GETSPA retrieves the SP address of the specified SP variable.

Syntax

int GETSPA(SP_number, “SP_variable”)

Arguments

SP_number The SP number in the system.

SP_variable
String representing the name of an SP variable. In order to avoid unexpected
results, place SP_variable in quotes.

Return Value

Address of the variable in the SP memory, or -1 if the variable does not exist. The return value can be
used in GETSP and SETSP.

Example

XX= GETSPA(0,”axes[0].PE”) !Retrieve the address Position error variable
of axis 0 in SP 0.

4.8.3 GETSPV

This function is obsolete and is replaced by GETSP.

4.8.4 SETSP

The SETSP function is for advanced users only. Misuse of this function may damage the
drive.

Description

SETSP writes a value to the specified SP address.

655Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

SETSP(int SP_number, int Address, value)

Arguments

SP_number The SP number in the system.

Address
Address within the SP.

Look up addresses by using getspa function

value The value to write to the address.

Error Conditions

Error 3126, Illegal SP number.

Example

REAL PAR_ADDRESS
PAR_ADDRESS=GETSPA(0,"axes[0].params[0].SLVKP") !Gets the memory
address of axes[0].params[0].SLVKP
SETSP(0, PAR_ADDRESS, 1000) !Changes the value of the axes
[0].params[0].SLVKP in SP 0 to 1000.

4.8.5 SETSPV

This function is obsolete and is replaced by SETSP.

4.9 Signal Processing Functions

The Signal Processing functions are:

Function Description

COPY The function copies one array to another.

DEADZONE Implements dead-zone routine

DSIGN Implements a dynamic version of the standard SIGN function.

DSTR Converts a string to an integer array.

EDGE Returns 1 on positive edge of x

INP
Reads data characters from the specified channel and stores them into
integer array

656Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

INTGR Implements an integrator with DEADZONE and SAT.

LAG Provides delayed switching on argument change (anti-bouncing effect)

MAP Implements a table-defined function with constant step

MAPB Implements a one-dimensional uniform B-spline interpolation

MAPN
One-dimensional non-uniform linear interpolation (replaces the obsolete
MAPBY1 and MAPBY2 functions)

MAPS
One-dimensional non-uniform linear interpolation (replaces the obsolete
MAPBY1 and MAPBY2 functions)

MAPNB One-dimensional non-uniform b-spline

MAPNS One-dimensional non-uniform Catmull-Rom spline

MAPS One-dimensional uniform Catmull-Rom spline

MAP2
Implements a table-defined function with two arguments and constant
step along each argument.

MAP2B Two-dimensional uniform b-spline

MAP2N
Two-dimensional non-uniform linear interpolation (replaces the obsolete
MAP2FREE function)

MAP2NB Two-dimensional non-uniform b-spline

MAP2NS Two-dimensional non-uniform Catmull-Rom spline

MAP2S Two-dimensional uniform Catmull-Rom spline

MATCH
Calculates axis position that matches current reference position of the
same axis with zero offset.

RAND Implements a random number generator.

ROLL Calculates a result rolled-over to within one pitch.

SAT Implements a saturation characteristic

657Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.9.1 DEADZONE

Description

DEADZONE returns values based on a defined analog or other input signal with a defined
symmetrical or asymmetrical dead zone around zero.

DEADZONE is useful for anti-bouncing effect.

Syntax

DEADZONE (input_signal, zone1[,zone2])

Arguments

input_
signal

Any real number or integer expression

zone1
Any real number or integer expression for a symmetrical deadzone. See
Example 1.

zone2
Any real number or integer expression, required for an asymmetrical
deadzone requires two values. See Example 2.

Return Value

DEADZONE returns a real number as follows:

If - zone < input_signal < zone, return value = 0

If input_signal < -zone, return value = input_signal + zone

If: input_signal > zone, return value = input_signal - zone

Error Conditions

A negative zone range returns Error 3045, Numerical Error in Standard Function.

Examples

Example 1

Symmetrical Dead Zone

In this example, illustrated in Figure 4-7, input_signal ranges from -20: +20, and creates a
symmetrical dead zone from -10: +10.

return_value = DEADZONE(input_signal,10)

658Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-7. Symmetrical Dead Zone Example

Example 2

Asymmetrical Dead Zone

In this example, illustrated in Figure 4-8, input_signal ranges from -20: +20, and creates an
asymmetrical dead zone from -5 – +15.

return_value = DEADZONE(input_signal,-5,10)

Figure 4-8. Asymmetrical Dead Zone Example

659Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.9.2 DSIGN

Description

DSIGN returns values between -1 to 1 based on a defined input variable with defined delay time and
ramp time.

Syntax

real DSIGN(X, Delay_Time, Ramp_Time)

Arguments

X Input variable name declared as real or real expression.

Delay_Time
Real number that determines on zero crossing of X,
continues the previous return value for defined delay
time in msec.

Ramp_Time
Real number that controls the rate of the returned value
change between -1 to 1 (and vice versa), defined in
msec.

Return Values

0: when the input variable is < zero while Ramp Time = 0.

1: when the input variable is > zero while Ramp Time= 0.

-1 to 1: when the input variable changes between positive to negative (or vice versa), while Ramp_
Time is > 0.

Error Conditions

Delay time and ramp time should be positive. If any of them becomes negative, Error 3045,
Numerical Error in Standard Function appears.

Example

REAL XX,YY
YY = DSIGN(XX,50,100)
STOP

Figure 4-9 illustrates the DSIGN function.

660Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-9. DSIGN Function Example

4.9.3 DSTR

Description

DSTR converts a string to an integer array based on an ASCII transformation code. The function
decomposes a string to characters and assigns the characters to the sequential elements of the
variable array.

Each ASCII character is represented as its numerical value and stored in a separate element of the
array.

Syntax

int DSTR(string, array_name, [start_index,] [number])

Arguments

string String of characters enclosed in double quotation marks.

array_name User-defined integer array.

start_index

Index in the array from where the transformed numbers will be placed.

If start_index is omitted, the assignment starts from the first element of the
array.

number

Number of characters from the string to be transformed.

If number is omitted, the function assigns all characters of the string. If
number is specified, the function assigns the specified number of characters.
In both cases the assignment stops when the last array element is reached.

Return Value

The number of actually transformed characters.

661Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

In the example below DSTR transforms each of "ACS-Motion_Control" characters to its
corresponding numeric value and assigns then to a user defined array "BIBI" (each character to a
separate array member. BIBI content is as follows:

65 67 83 45 84 69 67 72 56 48

GLOBAL INT BIBI(10)
DSTR("ACS-Motion_Control",BIBI)
STOP

4.9.4 EDGE

Description

EDGE returns 0 or 1, based on a defined input variable. EDGE is mainly useful in PLC implementation
when an action must be taken once a condition becomes true.

Syntax

real EDGE(X)

Arguments

X Input real variable name or real expression.

Return Value

EDGE returns 1 when the input variable changes from 0 to (+1) or from 0 to (-1) until the input
variable changes to other values. The function returns 0 in all other cases.

Error Conditions

None

Example

GLOBAL REAL XX,XI,YY !Declares three local variables
XX=-5 ; XI=1 !Assigns values to the variables XX and XI.
WHILE 1 !Run the following routine forever
XX=XX+XI
YY = EDGE(XX)
IF (XX>5) | (XX<-5) XI=-XI !Keeps XX between -5 to 5.
END !Ends IF END !Ends WHILE
STOP !Ends program

Figure 4-10 illustrates the EDGE function.

662Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-10. EDGE Function Example

4.9.5 INTGR

Description

INTGR returns an integrator with optional deadzone and saturation limits.

Syntax

real INTGR(X, Deadzone, Min, Max[,Initial_Value])

Arguments

X Real variable name or real expression.

Deadzone
A real number. When the Deadzone value falls into the range of -
Deadzone to +Deadzone, INTGR retains its previous value as if X = 0.

Min A real number representing the low integrator saturation limit.

Max A real number representing the high integrator saturation limit.

Initial_Value A real number setting the initial value of the return value. (optional)

Return Value

INTGR returns a value in the range from Min to Max.

Error Conditions

None

Example

Input variable XX is changing between -20 to +20.

663Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

GLOBAL REAL YY, XX !Defines global real variables.
REAL ZZ !Defines increment variable as real
MARK: !Set GOTO line
ZZ=0.1; XX=-20 !Set variable values
WHILE XX<=20 !Set upper limit for XX

XX=XX+ZZ !Set increment for XX
YY=INTGR(XX,5,-10,10,20)

END !End WHILE
WHILE XX>=-20 !Set lower limit for XX

XX=XX-ZZ !Set increment for XX
YY=INTGR(XX,5,-10,10,20)

END !End WHILE
GOTO MARK !GOTO MARK to create a program loop
STOP !End program

Figure 4-11 illustrates the INTGR function.

Figure 4-11. INTGR Function Example

4.9.6 LAG

Description

LAG returns values based on a defined input signal with defined up delay or down delay. This
function is useful for an anti-bouncing effect.

Syntax

LAG(X, up_delay, down_delay)

664Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

X

Real variable name or real expression.

Although LAG accepts any real or integer argument for X, the typical use
implies a logical X argument, for example, an integer variable or expression
that supplies only 0 or 1. If X supplies values other than 0 or 1, LAG treats any
non-zero value as 1.

p_delay A real number representing the delay on the positive edge in msec.

down_
delay

A real number representing the delay on the negative edge in msec.

Return Value

1: when X remains non-zero for at least up_delay msec.

0: when X remains zero for at least down_delay msec.

Error Conditions

None

Example

The example here demonstrates LAG by generating a reference signal XX that changes from 0 to 1
every 100 msec, and based on XX and YY, implements a lag of 50msec and 20msec.

INT XX,YY,XT !Define three integers
XT=TIME; XX=0 !XT equals the time elapsed from

!startup. XX equal zero.
WHILE 1 !Run an infinite routine
IF TIME-XT>100; XX=^XX; XT=TIME; END !Switch the value of XX - from ON
to

!OFF
YY=LAG(XX,20,50) !YY is a returned value that is delayed

!20msec after the transfer of XX from
!0 to 1 and delayed 50msec after the
!transfer of XX from 1 to 0

END !Ends WHILE
STOP !Ends program

Figure 4-12 illustrates the LAG function.

665Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-12. LAG Function Example

4.9.7 Interpolation Functions

There are a number of interpolation methods between points among them are Linear and Spline.

4.9.7.1 Linear interpolation

Linear interpolation of function y(x) between distant points a and b are calculated as follows:

4.9.7.2 Spline interpolation

A spline is a special function defined piecewise by polynomials. The spline is a piecewise polynomial
function spread over an interval [a,b] consists of polynomial pieces, such that:

a = t0 < t1 < t2 < ...< tk-2 < tk-1 = b
The points:ti are called knots. The vector is called a knot vector for the spline. If the knots are
equidistantly distributed in the interval [a,b], we say the spline is uniform, otherwise we say it is non-
uniform.

In many cases functional dependence between two or more values cannot be expressed as an
analytic formula. The most common presentation of those functions is a table of function values in
specific points.

For example, a machine axis was graduated with an external laser interferometer. The result of
graduation is a table like the following:

666Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Commande
d position
(x)

100 200 300 400 500 600 700 …

Actual
position (p)

103 199 294 402 500 598 705 …

The table defines a functional dependence p=f(x) that cannot be expressed analytically.

The argument values for x in the definition table are knots, and the function values for p are control
points.

A 3rd order polynomial spline provides an approximation of the table-driven function that can
provide the function value not only in the knots, but at any point. Between each two knots the
spline is expressed as:

where coefficients a0, a1, a2, a3 have different values at different intervals.

The SPiiPlus controller also supports two-dimensional splines. In this case, the definition table is a
two-dimensional matrix. Knot points are defined for two arguments x and y, and the matrix
contains corresponding p values. Knot values divide the XY plane into rectangular cells. The matrix
defines the function values in the cell vertices. Within each cell, the interpolating spline is expressed
as:

Many different spline approximations can be provided for one definition table. The SPiiPlus
controller supports two kinds of splines: Catmull-Rom and B-Splines (see description below).

If the distance between the knots in the table is constant, the spline is called uniform. On the
contrary, a non-uniform spline corresponds to a table that contains function values in arbitrary
points. However, the definition table always arranges the knot values in ascending order, so that xi
< xi+1.

All knot points constitute the definition range of the spline. Figure 4-13 illustrates definition range of
a function defined with six non-uniform knots:

Figure 4-13. Spline Definition Range

667Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

In a two-dimensional case, definition range is a rectangular area, as illustrated in Figure 4-14:

Figure 4-14. Two-Dimensional Spline Definition Range

One-Dimensional Catmull-Rom Spline

Assume a definition table provides N control points p0, p1, p2… pN-1 in knots x0, x1, x2… xN-1.

The Catmull-Rom construction process is described as follows:

> At each internal knot xi (1 < i < N-2) calculate the derivative:

 vi = (pi+1 - pi-1)/(xi+1 - xi-1)

> At the first and last knots assume zero derivative: v0 = vN-1 = 0.

> In interval i (1 < i < N-2), build a 3rd order polynomial p=f(x) that satisfies four bound
conditions pi, vi, pi+1, vi+1.

> Beyond the definition range the spline is defined as follows:

p = p0 if x < x0

p = pN-1 if x > xN-1

Figure 4-15 illustrates a Catmull-Rom spline that interpolates a 5-component definition table.

668Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-15. 5-Point Catmull-Rom Spline

Features of the Catmull-Rom spline:

> The spline is C1-continuous, meaning the curve and its first derivative are continuous
functions. The second derivative has discontinuities in the knot points.

> The curve interpolates all control points; meaning that the curve goes through each control
point.

> At internal control point number i, the first derivative vector is parallel to the line connecting
control points i-1 and i+1.

> At the first and the last control points, the first derivative is zero.

> The spline yields a constant value equal to p0 on the interval from - to x0.

> The spline yields constant value equal to pN-1 on the interval from xN-1 to + .

One-Dimensional B-spline

Assume a definition table provides N control points p0, p1, p2… pN-1 in knots x0, x1, x2… xN-1.

Unlike the Catmull-Rom spline, a B-Spline does not go through the control points. Actually, it
approximates the control points as illustrated in Figure 4-16.

669Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-16. B-Spline - Approximation of Points

Compared to a Catmull-Rom spline, a B-Spline generates a smoother curve. Used in the controller, a
B-spline provides continuous velocity and acceleration; where Catmull-Rom spline provides
continuous velocity only, and acceleration may change by jumping at the control points.

Features of the B-Spline:

> The spline is C2-continuous, meaning the curve, its first and second derivatives are all
continuous functions.

> The curve approximates the control points; and does not go through each control point.

> The spline yields changing value in the interval from x0 – (x1 – x0) to xN-1+(xN-1 – xN-2).

> The spline yields constant value equal to p0 in the interval from- to x0 – (x1 – x0).

> The spline yields constant value equal to pN-1 in the interval from xN-1+ (xN-1 – xN-2) to + .

Not-passing the control points is not always a drawback. If values p0, p1, p2… pN-1 are obtained from
some measuring process, the values include measuring error that has a stochastic component.
B-Spline tends to filter out the stochastic error, thereby improving overall accuracy.

Two-Dimensional Splines

The SPiiPlus NT controllers support two-dimensional Catmull-Rom and B-Splines.

A two-dimensional spline approximates a definition table that provides NxM control points p00, p01,
…p0,M-1, p10, p11,… pN-1,M-1 on the grid defined by knots x0, x1, x2… xM-1 and y0, y1, y2… yN-1.

A two-dimensional spline is defined as tensor product of two one-dimensional splines. Two-
dimensional splines share many features with the corresponding one-dimensional splines, for
example:

670Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Catmull-Rom Spline Surface B-Spline Surface

C1-continuous C2-continuous

Interpolates control points Approximates control points

A section of a two-dimensional spline surface along any direction provides a curve, which is a
corresponding one-dimensional file. For example, a two-dimensional Catmull-Rom spline is cut on
the grid line that corresponds to knot y2. The section is a one-dimensional Catmull-Rom spline built
upon control points p20, p21, p22, … p2,M-1.

The behavior of a two-dimensional spline beyond the definition range is more complex than in the
case of a one-dimensional spline. Figure 4-17 illustrates the Catmull-Rom spline beyond the
definition range:

Figure 4-17. Catmull-Ron Spline Beyond the Definition Range

The behavior of Catmull-Rom depends on the area as follows:

> Within definition range: function of two arguments p(x, y).

> Southeast to definition range: constant value equal to control point p00.

> Northeast to definition range: constant value equal to control point pN-1,0.

> Northwest to definition range: constant value equal to control point pN-1,M-1.

> Southwest to definition range: constant value equal to control point p0,M-1.

> South to definition range: function of x, ps(x) = p(x, y0)

> North to definition range: function of x, pn(x) = p(x, yN-1)

> West to definition range: function of y, pw(y) = p(x0, y)

> East to definition range: function of y, pe(y) = p(xM-1, y)

671Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Similar to one-dimensional B-spline, two-dimensional B-spline has an extended range of result
change. To specify the extended range, let us define four artificial knot points:

x-1= x0 – (x1 – x0)

xM = xM-1 + (xM-1 – xM-2)

y-1 = y0 – (y1 – y0)

xN = xN-1 + (xN-1 – xN-2)

Then, the extended range spans from x-1 to xM and from y-1 to yN.

Area map of a B-spline is similar to the Catmull-Rom spline, but the extended range takes place of
the definition range:

Figure 4-18. B-Spline Map

4.9.7.3 MAP

Description

MAP returns a value from an array of points per input variable value, base value of the variable and
fixed defined intervals of the variable. The return values between the array points are linearly
interpolated. MAP is useful for creating a correction table for mechanical error compensation.

Syntax

MAP(X, array, base, step)

Arguments

X Real variable name or real expression.

array The name of a real one-dimensional array that specifies points

base
A real number representing the value of XX that corresponds to the first point in
array.

672Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

step
A real number representing the value of XX that defines fixed intervals
between the array points.

Return Value

MAP returns a linearly interpolated value from the array for each value of XX.

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Example

REAL ARRAY(5);REAL XX; REAL YY; REAL XI
!Defines array ARRAY, and variables XX, YY,and XI.
!-------------------- Assign values to ARRAY array ---------------------
ARRAY(0)= -10; ARRAY(1)=3; ARRAY(2)=5; ARRAY(3)=14; ARRAY(4)=12

!Assign values to ARRAY
XX=-20; XI=0.1 !Assign values to XX and XI
WHILE XX<20 !Set conditions
XX=XX+XI
YY=MAP(XX,ARRAY,-10,5) !MAP command where:

!XX is a variable name
!ARRAY is a one-dimensional point array
!-10 is the value of XX that corresponds to base
!point!5 is the value of XX that defines fixed intervals
!between the ARRAY points.

END !Ends mapping
STOP !Ends program

Table 4-7 shows the XX and YY values.

Table 4-7. MAP Array

XX -20 -10 -7 -5 0 5 10 15 20

ARRAY N/A -10 N/A 3 5 14 12 N/A N/A

YY -10 -10 -2.2 3 5 14 12 12 12

Figure 4-19 illustratesIllustration of this MAP example on the Scope.

673Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-19. MAP Example on the Scope

4.9.7.4 MAPB

Description

MAPB returns a value from an array of points according to an input variable value, base value of the
variable and fixed defined intervals of the variable. The return values between the array points are
interpolated by a third order B-spline. MAPB is useful for creating a correction table for mechanical
error compensation.

Syntax

MAPB(XX, array, base, step)

Arguments

XX Real variable name or real expression.

array The name of a real one-dimensional array that specifies points

base
A real number representing the value of XX that corresponds to the first point in
array.

step
A real number representing the value of XX that defines fixed intervals
between the array points.

Return Value

MAPB returns the third order B spline interpolated value from the array according to the value of
variable XX.

Error Conditions

The function detects the following error conditions:

674Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Example

REAL ARRAY(5);REAL XX; REAL YY; REAL XI
!Defines array ARRAY, and variables XX,YY, and XI
!------------------ Assign point values to ARRAY array ------------------

ARRAY(0)= -10; ARRAY(1)=3; ARRAY(2)=5; ARRAY(3)=14; ARRAY(4)=12
XX=-20; XI=0.1 !Assign values to XX and XI
WHILE XX<20 !Set conditions
XX=XX+XIYY=MAPB(XX,ARRAY,-10,5) !MAPB command where:!XX is a variable
name

!ARRAY is a one-dimensional point array
!-10 is the value of XX that corresponds to base
!point
!5 is the value of XX that defines fixed
intervals
!between the ARRAY points.

END !Ends mapping
STOP !Ends program

Table 4-8 shows the XX and YY values.

Table 4-8. MAPB Array

XX -20 -10 -7 -5 0 5 10 15 20

ARRA
Y

N/A -10 N/A 3 5 14 12 N/A N/A

YY -10
-
7.83

-
2.45

1.16 6.16 12.33 12.33 12 12

Figure 4-20 illustrates this MAPB example on the Scope.

675Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-20. MAPB Example on the Scope

4.9.7.5 MAPN

Description

MAPN returns a value from an array of points according to the value of an input variable, and a look-
up array. The return values between the array points are linearly interpolated. MAPN is useful for
creating a correction table for mechanical error compensation.

Syntax

MAPN(XX, X_table, Y_table)

Arguments

XX Real variable name or real expression.

X_table
The name of a real one-dimensional array that specifies the values of XX that
correspond to the point array.

Y_table The name of a real one-dimensional array that specifies points.

Return Value

MAPN returns a linearly interpolated value from the array according to the value variable XX.

> To obtain a valid return value from the MAPN function after the Y_table array is
changed, the buffer must be recompiled before calling the MAPN function.

> If a MAPN function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

676Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

The function detects the following error conditions:

> The Xtable or Ytable argument has the wrong dimension

> The arguments in Xtable are not arranged in ascending order.

Example

REAL Xtable(5);REAL Ytable(5);REAL XX; REAL YY; REAL XI!Defines arrays
Xtable, Ytable, and variables XX,
!YY, and XI.
!-------------------- Assign values to Xtable array ---------------------
Xtable(0)= -10;Xtable(1)=-3;Xtable(2)=6;Xtable(3)=12;Xtable(4)=14
!-------------------- Assign values to Ytable array ---------------------
Ytable(0)= -10;Ytable(1)=3;Ytable(2)=5;Ytable(3)=14;Ytable(4)=4
XX=-20; XI=0.1 !Assigns values to XX and XI.
WHILE XX<20 !Set conditions.
XX=XX+XI
YY=MAPN(XX,Xtable,Ytable)!MAPN where: !XX is the defined variable.

!Xtable is a one-dimensional point array that
!specifies the values of XX corresponding to the
!point array.
!Ytable is a one-dimensional array that specifies
!points.

END !Ends mapping
STOP !Ends program

Table 4-9 shows the XX and YY values.

Table 4-9. MAPN Array

XX -20 -10 -7 -3 6 12 14 15 20

ARRAY N/A -10 N/A -3 6 12 12 N/A N/A

YY -10 -10 -4.42 -3 6 12 14 14 14

Figure 4-21 illustrates this MAPN example on the Scope.

677Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-21. MAPN Example on the Scope

4.9.7.6 MAPNB

Description

MAPNB returns a value from a pre-defined control point array based on a defined variable and a
look-up table. The return values between the table intervals are interpolated according to a third
order B-spline. MAPNB is useful for creating a correction table for mechanical error compensation.

Syntax

MAPNB(XX, X_table, Y_table)

Arguments

XX Real variable name or real expression.

X_table
The name of a real one-dimensional array that specifies the values of XX that
correspond to the point array.

Y_table The name of a real one-dimensional array that specifies points.

Return Value

MAPNB returns the third order B spline interpolated value from the Y_table per variable XXvalue.

> To obtain a valid return value from the MAPNB function after the Y_table array
is changed, the buffer must be recompiled before calling the MAPNB function.

> If a MAPNB function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

678Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

The function detects the following error conditions:

> The X_table or Y_table argument has the wrong dimension

> The arguments in X_table are not arranged in ascending order sequence.

Example

REAL Xtable(5);REAL Ytable(5);REAL XX; REAL YY; REAL XI
!Defines arrays Xtable, Ytable, and variables XX,
!YY, and XI.
!-------------------- Assign values to Xtable array ---------------------
Xtable(0)= -10; Xtable(1)=-3; Xtable(2)=6; Xtable(3)=12; Xtable(4)=14
!-------------------- Assign values to Ytable array ---------------------
Ytable(0)= -10; Ytable(1)=3; Ytable(2)=5; Ytable(3)=14; Ytable(4)=4
XX=-20; XI=0.1 !Assigns values to XX and XI.
WHILE XX<20 !Set conditions.
XX=XX+XI
YY=MAPNB(XX,Xtable,Ytable)!MAPNB where:

!XX is the defined variable.
!Xtable is a point array that specifies the values
!of XX corresponding to the point array.
!Ytable is an array that specifies Y points.

END !Ends mapping
STOP !Ends program

Table 4-10 shows the XX and YY values.

Table 4-10. MAPNB Array

XX -20 -10 -7 -3 6 12 14 15 20

ARRA
Y

N/A -10 N/A -3 6 12 12 N/A N/A

YY -10
-
8.02

-
4.65

-
0.41

7.64 9.23 5 4.124 4

Figure 4-22 illustrates this MAPNB example on the Scope.

679Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-22. MAPNB Example on the Scope

4.9.7.7 MAPNS

Description

MAPNS returns a value from an array of points according to the value of an input variable, and a
look-up array. The return values between the array points are interpolated according to a third order
Catmull-Rom spline. MAPNS is useful for creating a correction table for mechanical error
compensation.

Syntax

MAPNS(XX, X_table, Y_table)

Arguments

XX Real variable name or real expression.

X_table
The name of a real one-dimensional array that specifies the values of XX that
correspond to the point array.

Y_table The name of a real one-dimensional array that specifies points.

Return Value

MAPNS returns the third order Catmull-Rom spline interpolated value from the X_table per variable
XX value.

680Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> To obtain a valid return value from the MAPNS function after the Y_table array
is changed, the buffer must be recompiled before calling the MAPNS function.

> If a MAPNS function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

Error Conditions

The function detects the following error conditions:

> The X_table or Y_table argument has the wrong dimension

> The arguments in X_table are not arranged in ascending order sequence.

Example

REAL Xtable(5);REAL Ytable(5);REAL XX; REAL YY; REAL XI
!Defines arrays Xtable, Ytable, and variables XX,
!YY, and XI
!-------------------- Assign values to Xtable array ---------------------
Xtable(0)= -10; Xtable(1)=-3; Xtable(2)=6; Xtable(3)=12; Xtable(4)=14
!-------------------- Assign values to Ytable array ---------------------
Ytable(0)= -10; Ytable(1)=3; Ytable(2)=5; Ytable(3)=14; Ytable(4)=4
XX=-20; XI=0.1 !Assigns values to XX and XI.
WHILE XX<20 !Set conditions.
XX=XX+XI
YY=MAPNS(XX,Xtable,Ytable) !MAPNS command where:

!XX is the defined variable.
!Xtable is a one-dimensional point array that
!specifies the values of XX corresponding to the
!point array.
!Ytable is a one-dimensional array that specifies
!points.

END !Ends mapping
STOP !Ends program

Table 4-11 shows the XX and YY values.

Table 4-11. MAPNS Array

XX -20 -10 -7 -3 6 12 14 15 20

ARRAY N/A -10 N/A -3 6 12 12 N/A N/A

YY -10 -10 -4.42 -3 6 12 14 14 14

Figure 4-23 illustrates this MAPNS example on the Scope.

681Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-23. MAPNS Example on the Scope

4.9.7.8 MAPS

Description

MAPS returns a value from an array of points according to the value of an input variable, the base
value of the variable, and the fixed defined intervals. The return values between the array-points
are interpolated according to a third order Catmull-Rom spline. MAPS is useful for creating a
correction table for mechanical error compensation.

Syntax

MAPS(XX, array, base, step)

Arguments

XX Real variable name or real expression.

array The name of a real one-dimensional array that specifies points

base
A real number representing the value of XX that corresponds to the first point in
array.

step
A real number representing the value of XX that defines fixed intervals
between the array points.

Return Value

MAPS returns the third order Catmull-Rom spline interpolated value from the array according to the
value of XX.

Error Conditions

The function detects the following error conditions:

682Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Example

REAL ARRAY(5);REAL XX; REAL YY; REAL XI
!Defines ARRAY a 5 element array, XX, YY, and XI

!-------------------- Assign values to ARRAY array ---------------------
ARRAY(0)= -10; ARRAY(1)=3; ARRAY(2)=5; ARRAY(3)=14; ARRAY(4)=12
XX=-20; XI=0.1 !Assigns values to XX and XI.
WHILE XX<20 !Set conditions.
XX=XX+XI
YY=MAPS(XX,ARRAY,-10,5) !MAPS command where:

!XX is the defined variable.
!ARRAY is a one-dimensional point array.
!-10 is the value of XX that corresponds to
!base point.
!5 is the value of XX that defines fixed
!intervals between the ARRAY points.

END !Ends mapping
STOP !Ends program

Table 4-12 shows the XX and YY values.

Table 4-12. MAPS Array

XX -20 -10 -7 -5 0 5 10 15 20

ARRAY N/A -10 N/A 3 5 14 12 N/A N/A

YY -10 -10 -2.65 3 5 14 12 12 12

Figure 4-24 illustrates this MAPS example on the Scope.

683Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-24. MAPS Example on the Scope

4.9.7.9 MAP2

Description

MAP2 returns a value from a two dimensional point array for each set of two input variable values,
the base values of the input variables, and a fixed, defined interval for the variables. The return
values between the array-points are linearly interpolated. MAP2 is useful for dynamic error
compensation.

Syntax

MAP2(XX, ZZ, table, baseX, stepX, baseY, stepY)

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

table The name of a real two-dimensional array that specifies points

baseX
A real number representing the value of XX that corresponds to the first point
in the array.

stepX
A real number representing the value of XX that defines fixed intervals
between the array points.

baseY
A real number representing the value of ZZ that corresponds to the first point
in the array.

stepY
A real number representing the value of ZZ that defines fixed intervals
between the array points.

684Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

MAP2 returns a linearly interpolated value from the array according to the value of variables XX and
ZZ.

Error Conditions

The function detects the following error conditions:

> Error 3072, Wrong array size, if table has only one dimension.

> Error 3113, The step in the table is zero or negative, when the stepX or stepY arguments are
zero or negative.

Example

GLOBAL REAL XI,XX,YY,ZZ,TABLE(5)(5)
!Defines real variables and 5x5 matrix.

XX=-20;ZZ=10;XI=0.1!Assigns values to the variable.
!-------------------- Assign values to TABLE matrix ---------------------
TABLE(0)(0)=2; TABLE(0)(1)=22; TABLE(0)(2)=6; TABLE(0)(3)=8; TABLE(0)
(4)=10;
TABLE(1)(0)=12; TABLE(1)(1)=-44; TABLE(1)(2)=16; TABLE(1)(3)=18;
TABLE(1)(4)=20; TABLE(2)(0)=22; TABLE(2)(1)=24; TABLE(2)(2)=26;
TABLE(2)(3)=68; TABLE(2)(4)=30; TABLE(3)(0)=12; TABLE(3)(1)=34;
TABLE(3)(2)=59; TABLE(3)(3)=-38; TABLE(3)(4)=40; TABLE(4)(0)=92;
TABLE(4)(1)=44; TABLE(4)(2)=46; TABLE(4)(3)=10; TABLE(4)(4)=90
WHILE ZZ<70
XX=XX+XI !Set conditions
ZZ=ZZ+XI
YY=MAP2(XX,ZZ,TABLE,-10,5,20,10)!MAP2 command where:

!XX and ZZ are variables.
!TABLE is a 2x2 matrix that specifies points.
!-10 is the first XX point in the matrix.
!5 defines the fixed intervals between the XX
points.
!20 is the first ZZ point in the matrix.
!10 defines the fixed intervals between the ZZ
!points.

DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2.
STOP !Ends program

Table 4-13 shows the YY values as a function of XX and ZZ arguments.

685Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Table 4-13. MAP2

Figure 4-25 illustratesthis MAP2 example on the Scope.

Figure 4-25. MAP2 Example on the Scope

4.9.7.10 MAP2B

Description

MAP2B returns a value from a two dimensional array of points according to the value of two input
variables, where the base values of the input variables are fixed and the intervals of the input
variables are defined. The return values between the array-points are interpolated according to a
third order B-spline. MAP2B is useful for dynamic error compensation.

Syntax

MAP2B(XX,ZZ, table, baseX, stepX, baseY, stepY)

686Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

table The name of a real two-dimensional array that specifies points

baseX
A real number representing the value of XX that corresponds to the first point
in the array.

stepX
A real number representing the value of XX that defines fixed intervals
between the array points.

baseY
A real number representing the value of ZZ that corresponds to the first point
in the array.

stepY
A real number representing the value of ZZ that defines fixed intervals
between the array points.

Return Value

MAP2B returns the third order B-spline interpolated value from the array according to the value of
variables XX and ZZ.

The function detects the following error conditions:

> Error 3072, Wrong array size, if table has only one dimension.

> Error 3113, The step in the table is zero or negative, when the stepX or stepY arguments are
zero or negative.

Example

GLOBAL REAL XI,XX,YY,ZZ,T(5)(5)
!Defines real variables and 5x5 matrix.

XX=-20;ZZ=10;XI=0.1!Assigns values to the variables.
!---------------------- Assign values to T matrix ---------------------
T(0)(0)=2;T(0)(1)=22;T(0)(2)=6;T(0)(3)=8;T(0)(4)=10; T(1)(0)=12;
T(1)(1)=-44;T(1)(2)=16;T(1)(3)=18; T(1)(4)=20;T(2)(0)=22;T(2)(1)=24;
T(2)(2)=26; T(2)(3)=68;T(2)(4)=30;T(3)(0)=12;T(3)(1)=34; T(3)(2)=59;
T(3)(3)=-38;T(3)(4)=40;T(4)(0)=92; T(4)(1)=44;T(4)(2)=46;T(4)(3)=10;
T(4)(4)=90
WHILE ZZ<70
XX=XX+XI !Set conditions
ZZ=ZZ+XI
YY=MAP2B(XX,ZZ,T,-10,5,20,10!MAP2B command where:

!XX and ZZ are variables.
!T is a 2x2 matrix that specifies points.
!-10 is the first XX point in the matrix.
!5 defines the fixed intervals between the XX points.
!20 is the first ZZ point in the matrix.
!10 defines the fixed intervals between the ZZ

687Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

!points.
DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2B.
STOP !Ends program

Table 4-14 shows the YY values as a function of XX and ZZ arguements.

Table 4-14. MAP2B

Figure 4-26 illustrates this MAP2B example on the Scope.

Figure 4-26. MAP2B Example on the Scope

4.9.7.11 MAP2N

Description

MAP2N returns a value from a two dimensional array of points according to the value of two input
variables, with look-up arrays for each of the variables. The return values between the array-points
are linearly interpolated. MAP2N is useful for dynamic error compensation.

Syntax

MAP2N(XX,ZZ, table, X_table, Y_table)

688Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

table The name of a real two-dimensional array that specifies points

X_table
A one-dimensional real array that specifies the values of XX that corresponds
the point array.

Y_table
A one-dimensional real array that specifies the values of ZZ that corresponds
the point array.

Return Value

MAP2N returns the linearly interpolated value from the array according to the value of the variables
XX and ZZ.

> To obtain a valid return value from the MAP2N function after the Y_table array
is changed, the buffer must be recompiled before calling the MAP2N function.

> If a MAP2N function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

Error Conditions

The function detects the following error conditions:

> Error 3072, Wrong array size, when table has only one dimension or X_table or Y_table
have the wrong dimension. X_table must contain M elements and Y_table must contain N
elements.

> The values in X_table or Y_table are not sequenced in ascending order.

Example

GLOBAL REAL XI,XX,YY,ZZ,XTABLE(5),YTABLE(5),TABLE(5)(5)
!Defines real variables, two arrays and a 5x5 matrix.

XX=-90;ZZ=0;XI=0.1 !Assigns values to the variables.
!---------------------- Assign values to XTABLE array -------------------
--
XTABLE(0)=13; XTABLE(1)=-8; XTABLE(2)=0; XTABLE(3)=12; XTABLE(4)=51
!---------------------- Assign values to YTABLE array -------------------
--
YTABLE(0)=16; YTABLE(1)=21; YTABLE(2)=80; YTABLE(3)=82; YTABLE(4)=113
!---------------------- Assign values to TABLE matrix -------------------
--
TABLE(0)(0)=2; TABLE(0)(1)=22; TABLE(0)(2)=6; TABLE(0)(3)=8; TABLE(0)
(4)=10
TABLE(1)(0)=12; TABLE(1)(1)=-44; TABLE(1)(2)=16; TABLE(1)(3)=18;

689Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

TABLE(1)(4)=20; TABLE(2)(0)=22; TABLE(2)(1)=24; TABLE(2)(2)=26;
TABLE(2)(3)=68; TABLE(2)(4)=30; TABLE(3)(0)=12; TABLE(3)(1)=34;
TABLE(3)(2)=59; TABLE(3)(3)=-38; TABLE(3)(4)=40; TABLE(4)(0)=92;
TABLE(4)(1)=44; TABLE(4)(2)=46; TABLE(4)(3)=10; TABLE(4)(4)=90
WHILE ZZ<200
XX=XX+XI!Set conditions
ZZ=ZZ+XI
YY=MAP2N(XX,ZZ,TABLE,XTABLE,YTABLE)!MAP2N command where:

!XX and ZZ are variables.
!TABLE is a 5x5 matrix specifying mapping points.
!XTABLE is an array specifying XX points.
!YTABLE is an array specifying ZZ points.

DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2N.
STOP !Ends program

Table 4-15 shows the YY values as a function of XX and ZZ arguments.

Table 4-15. MAP2B

Figure 4-27 illustrates this MAP2N example on the Scope.

690Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-27. MAP2N Example on the Scope

4.9.7.12 MAP2NB

Description

MAP2NB returns a value from a two-dimensional array of points based on the input values of two
variables, with a separate look-up array for one variable, and a separate look-up array for the other
variable. The return values between the array-points are interpolated according to a third-order B-
spline. MAP2NB is useful for dynamic error compensation.

Syntax

MAP2NB(XX,ZZ, Table, X_Table, Y_Table)

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

table The name of a real two-dimensional array that specifies points

X_table
A one-dimensional real array that specifies the values of XX that corresponds
the point array.

Y_table
A one-dimensional real array that specifies the values of ZZ that corresponds
the point array.

Return Value

MAP2NB returns the third-order B-spline interpolated value from the array according to the value of
the variables XX and ZZ.

> To obtain a valid return value from the MAP2NB function after the Y_table array
is changed, the buffer must be recompiled before calling the MAP2NB function.

> If a MAP2NB function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

Error Conditions

The function detects the following error conditions:

> Error 3072, Wrong array size, when table has only one dimension or X_table or Y_table
have the wrong dimension. X_table must contain M elements and Y_table must contain N
elements.

> The values in X_table or Y_table are not sequenced in ascending order.

691Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

GLOBAL REAL XI,XX,YY,ZZ,XTABLE(5),YTABLE(5),TABLE(5)(5)
!Defines real variables, two arrays and a 5x5 matrix.

XX=-90;ZZ=0;XI=0.1 !Assigns values to the variables.
!---------------------- Assign values to XTABLE array -------------------
--
XTABLE(0)=-13; XTABLE(1)=-8; XTABLE(2)=0; XTABLE(3)=12; XTABLE(4)=51
!---------------------- Assign values to YTABLE array -------------------
--
YTABLE(0)=16; YTABLE(1)=21; YTABLE(2)=80; YTABLE(3)=82; YTABLE(4)=113
!---------------------- Assign values to TABLE matrix -------------------
--
TABLE(0)(0)=2; TABLE(0)(1)=22; TABLE(0)(2)=6; TABLE(0)(3)=8; TABLE(0)
(4)=10;
TABLE(1)(0)=12; TABLE(1)(1)=-44; TABLE(1)(2)=16; TABLE(1)(3)=18;
TABLE(1)(4)=20; TABLE(2)(0)=22; TABLE(2)(1)=24; TABLE(2)(2)=26;
TABLE(2)(3)=68; TABLE(2)(4)=30; TABLE(3)(0)=12; TABLE(3)(1)=34;
TABLE(3)(2)=59; TABLE(3)(3)=-38; TABLE(3)(4)=40; TABLE(4)(0)=92;
TABLE(4)(1)=44; TABLE(4)(2)=46; TABLE(4)(3)=10; TABLE(4)(4)=90
WHILE ZZ<200
XX=XX+XI !Set conditions
ZZ=ZZ+XI
YY=MAP2NB(XX,ZZ,TABLE,XTABLE,YTABLE)

!MAP2NB command where:
!XX and ZZ are variables.
!TABLE is a 5x5 matrix specifying mapping points.
!XTABLE is an array specifying XX points.
!YTABLE is an array specifying ZZ points.

DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2N.
STOP !Ends program

Table 4-16 shows the YY values as a function of XX and ZZ arguments.

692Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Table 4-16. MAP2NB

MAP2B illustrates this MAP2NB example on the Scope.

Figure 4-28. MAP2NB Example on the Scope

4.9.7.13 MAP2NS

Description

MAP2NS returns a value from a two-dimensional array of points based on the input values of two
variables, with a separate look-up array for one variable, and a separate look-up array for the other
variable. The return values between the array-points are interpolated according to a third-order
Catmull-Rom spline. The MAP2NS function is useful for dynamic error compensation

Syntax

MAP2NS(XX,ZZ, table, X_table, Y_table)

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

693Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

table The name of a real two-dimensional array that specifies points

X_table
A one-dimensional real array that specifies the values of XX that corresponds
the point array.

Y_table
A one-dimensional real array that specifies the values of ZZ that corresponds
the point array.

Return Value

MAP2NS returns the third-order Catmull-Rom interpolated value from the array according to the
value of the variables XX and ZZ.

> To obtain a valid return value from the MAP2NS function after the Y_table array
is changed, the buffer must be recompiled before calling the MAP2NS function.

> If a MAP2NS function is called without recompiling the buffer, then the return
value is calculated according to the values from the Y_table array that was
provided to the function after the last compilation.

Error Conditions

The function detects the following error conditions:

> Error 3072, Wrong array size, when table has only one dimension or X_table or Y_table
have the wrong dimension. X_table must contain M elements and Y_table must contain N
elements.

> The values in X_table or Y_table are not sequenced in ascending order.

694Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

GLOBAL REAL XI,XX,YY,ZZ,XTABLE(5),YTABLE(5),TABLE(5)(5)
!Defines real variables, two arrays and a 5x5 matrix.

XX=-90;ZZ=0;XI=0.1 !Assigns values to the variables.
!---------------------- Assign values to XTABLE array -------------------
--
XTABLE(0)=13; XTABLE(1)=-8; XTABLE(2)=0; XTABLE(3)=12; XTABLE(4)=51
!---------------------- Assign values to YTABLE array -------------------
--
YTABLE(0)=16; YTABLE(1)=21; YTABLE(2)=80; YTABLE(3)=82; YTABLE(4)=113
!---------------------- Assign values to TABLE matrix -------------------
--
TABLE(0)(0)=2; TABLE(0)(1)=22; TABLE(0)(2)=6; TABLE(0)(3)=8; TABLE(0)
(4)=10;
TABLE(1)(0)=12; TABLE(1)(1)=-44; TABLE(1)(2)=16; TABLE(1)(3)=18;
TABLE(1)(4)=20; TABLE(2)(0)=22; TABLE(2)(1)=24; TABLE(2)(2)=26;
TABLE(2)(3)=68; TABLE(2)(4)=30; TABLE(3)(0)=12; TABLE(3)(1)=34;
TABLE(3)(2)=59; TABLE(3)(3)=-38; TABLE(3)(4)=40; TABLE(4)(0)=92;
TABLE(4)(1)=44; TABLE(4)(2)=46; TABLE(4)(3)=10; TABLE(4)(4)=90
WHILE ZZ<200
XX=XX+XI !Set conditions
ZZ=ZZ+XI
YY=MAP2NS(XX,ZZ,TABLE,XTABLE,YTABLE)

!MAP2NS command where:
!XX and ZZ are variables.
!TABLE is a 5x5 matrix specifying mapping points.
!XTABLE is an array specifying XX points.
!YTABLE is an array specifying ZZ points.

DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2N.
STOP !Ends program

Table 4-17 shows the YY values as a function of XX and ZZ arguments.

695Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Table 4-17. MAP2NS

Figure 4-29 illustrates this MAP2NS example on the Scope.

Figure 4-29. MAP2NS Example on the Scope

4.9.7.14 MAP2S

Description

MAP2S returns a value from a two-dimensional array of points based on the input values of two
variables, the base values of the two variables, and the fixed defined intervals of the two variables.
The return values between the array-points are interpolated according to a third order Catmull-Rom
spline. The MAP2S function is useful for dynamic error compensation.

Syntax

MAP2S(XX,ZZ, table, baseX, stepX, baseY, stepY)

696Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

XX Real variable name or real expression.

ZZ Real variable name or real expression.

table The name of a real two-dimensional array that specifies points

baseX
A real number representing the value of XX that corresponds to the first point
in the array.

stepX
A real number representing the value of XX that defines the fixed intervals
between the array points.

baseY
A real number representing the value of ZZ that corresponds to the first point
in the array.

stepY
A real number representing the value of ZZ that defines the fixed intervals
between the array points.

Return Value

MAP2S returns the third order Catmull-Rom spline interpolated value from the array according to the
value of variables XX and ZZ.

Error Conditions

The function detects the following error conditions:

> Error 3072, Wrong array size, when table has only one dimension.

> Error 3113, The step in the table is zero or negative, when the stepX or stepY arguments are
zero or negative.

697Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

GLOBAL REAL XI,XX,YY,ZZ,TABLE(5)(5)
!Defines real variables and 5x5 matrix.

XX=-20;ZZ=10;XI=0.1 !Assigns values to the variable.
!-------------------- Assign values to TABLE matrix ---------------------
TABLE(0)(0)=2; TABLE(0)(1)=22; TABLE(0)(2)=6; TABLE(0)(3)=8; TABLE(0)
(4)=10;
TABLE(1)(0)=12; TABLE(1)(1)=-44; TABLE(1)(2)=16; TABLE(1)(3)=18;
TABLE(1)(4)=20; TABLE(2)(0)=22; TABLE(2)(1)=24; TABLE(2)(2)=26;
TABLE(2)(3)=68; TABLE(2)(4)=30; TABLE(3)(0)=12; TABLE(3)(1)=34;
TABLE(3)(2)=59; TABLE(3)(3)=-38; TABLE(3)(4)=40; TABLE(4)(0)=92;
TABLE(4)(1)=44; TABLE(4)(2)=46; TABLE(4)(3)=10; TABLE(4)(4)=90
WHILE ZZ<70
XX=XX+XI !Set conditions
ZZ=ZZ+XI
YY=MAP2S(XX,ZZ,TABLE,-10,5,20,10)!MAP2S where:

!XX and ZZ are variables.
!TABLE is a 2x2 matrix that specifies points.
!-10 is the first XX point in the matrix.
!5 defines the fixed intervals between the XX points.
!20 is the first ZZ point in the matrix.
!10 defines the fixed intervals between the ZZ
!points.

DISP XX,ZZ,YY !Displays values of XX, ZZ and YY.
END !Ends MAP2S.
STOP !Ends program

Table 4-18 shows the YY values as a function of XX and ZZ arguments.

Table 4-18. MAP2S

Figure 4-30 illustrates this MAP2S example on the Scope.

698Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Figure 4-30. MAP2S Example on the Scope

4.9.7.15 MATCH

Description

MATCH calculates axis position (APOS) that matches the current reference position (RPOS), based on
CONNECT between APOS and RPOS of the same axis. If there is no CONNECT command, the function
returns the value of RPOS.

Syntax

real MATCH (axis, from, to)

Arguments

axis The axis upon which to apply the MATCH function.

from The start point to begin searching for matching values of APOS.

to The end point to stop searching for matching values of APOS.

Comments

The function is useful only in the case of non-default connections.

The connection must be on the same axis.

The function succeeds if the unique root exists in the specified range. If there are several roots in the
range, the function returns one of them. If the root does not exist, the function results an error.

Return Value

APOS that matches the current RPOS of the same axis.

Error Conditions

Error 3158 - The function cannot find a matching value. The CONNECT formula has no root or the root
is not single.

699Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

GLOBAL REAL ARRAY(6), XX
!-------------------- Assign values to ARRAY array ---------------------
ARRAY(0)= 60; ARRAY(1)=40; ARRAY(2)=90; ARRAY(3)=-40; ARRAY(4)=60;
ARRAY(5)=10
VEL(0)=800 !Set VEL(0)
MFLAGS(0).17=1
CONNECT RPOS(0)=APOS(0)+MAP(APOS(0),ARRAY,100,200)

!The program executes a CONNECT between RPOS and APOS
!for axis X. Where RPOS(0) receives the value of
!APOS(0) added to the value of a MAP function.

DEPENDS X,X
SET APOS(0)=0
SET RPOS(0)=MAP(APOS(0),ARRAY,100,200)
PTP X, 1300 !A PTP command sends the motor to 1300 counts,

!while the motor is in motion a MATCH function is
!calculated and displayed along with RPOS(0) and
!APOS(0).

WHILE MST(0).#MOVE
WAIT 300
XX=MATCH(X,0,1300) !The MATCH function calculates the root of the

!current RPOS(0) based on the CONNECT formula.
DISP RPOS(0), APOS(0), XX
END
STOP !Ends program

The output of the program displays the following RPOS(0), APOS(0) values, and the value of MATCH.
Notice that MATCH values are very close to APOS(0) values:

RPOS(0) APOS(0) MATCH

273.76 228 226.4

554 472.8 471.2

684 717.6 716

1005.6 962.4 960.8

1215.6 1207.2 1205.6

1310 1300 1300

4.9.7.16 RAND

Description

RAND generates a random number

700Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

real RAND(min, max[,seed])

Arguments

min Lower boundary of the interval from which randomized number will be selected.

max Upper boundary of the interval from which randomized number will be selected.

seed

Sets the random sequence generator. The number range is limited only by the
controller register size - 32bit.

If omitted, the controller uses ACSPL+ TIME variable as the seed.

Comments

RAND can generate only one random number per seed number (per interval). For generating a
series of random numbers use TIME as the seed. In this case the series of random numbers will be in
ascending order.

Return Value

The randomized generated number.

Error Conditions

None

Example

RAND (-45,45,TIME)

4.9.7.17 ROLL

Description

The ROLL function returns a result rolled-over to within a defined Pitch (range), as illustrated below.

Syntax

ROLL(X, Pitch)

Arguments

X Variable name declared as real or a real expression.

Pitch
A range from 0 to Pitch (positive real value) where the return value will be
rolled-over.

701Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

X - if X falls within the range from 0 to Pitch.

or

|X|/Pitch - FLOOR(|X|/Pitch)*Pitch, if X is less than or greater than Pitch.

Error Conditions

None

Example:

YY=ROLL(XX,10) !Input variable XX is changing between -
!20 to 20.

Figure 4-31 illustrates this ROLL example on the Scope.

Figure 4-31. ROLL Example on the Scope

4.9.7.18 SAT

Description

SAT returns a result of defined saturation range

Syntax

real SAT(X, Min, Max)

Arguments

X Variable name declared as real or a real expression.

Min Low saturation value. Must be a real number.

Max High saturation value. Must be a real number.

702Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Return Value

X - if the X value falls inside the SAT range.

Min - if X value is less than the SAT range.

Max - if X value is greater than SAT range.

Error Conditions

None

Example

GLOBAL REAL YY,ZZ,XX
EYAL:
ZZ=-20;XX=0.1
WHILE ZZ<=20

ZZ=ZZ+XX
YY=SAT(ZZ,-5,15)

END
ZZ=20;XX=0.1
WHILE ZZ>=-20

ZZ=ZZ-XX
YY=SAT(ZZ,-5,15)

END
GOTO EYAL
STOP

Figure 4-32 illustrates this SAT example on the Scope.

Figure 4-32. SAT Example on the Scope

4.10 Laser Control Functions

The laser control functions are:

703Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

LCMODULATION
Initializes Pulse modulation mode and
sets initial values for the unit internal
registers.

LCFixedDist
Initializes the fixed distance pulse firing
mode.

LCFixedInt
Initializes the fixed distance pulse firing
mode.

LCRandomDist
Initializes either array based pulse
firing mode or gating mode.

LCTickle Initializes Tickle mode.

LCZone Sets a laser operation zone area.

LCZoneGet
Returns the limits of the laser
operation zone that was previously
defined.

LCZoneSet
Changes the minimal and/or maximal
laser operation zone limit.

LCStop
Stops any previously initialized laser
mode and resets the previously
defined mode parameters.

LCSignalSet
Configures the laser control signal (LCS)
output conditioning state.

LCSignalGet
Returns the laser control signal (LCS)
output conditioning state.

LCOutputSet Configures the laser physical outputs.

LCOutputGet
Returns the laser outputs
configuration.

LCDelaySet
Sets the pulse generation delay in
microseconds.

LCDelayGet
Returns the actual currently configured
delay in microseconds.

AxListAsMask Mask for defining axes.

704Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.10.1 LCMODULATION

The function initializes Pulse modulation mode and sets initial values for the unit internal registers.
Which Laser Control unit is initialized is determined by the index argument.

The Laser Control unit can be initialized irrespective if the corresponding axis is enabled or disabled.

Syntax

LCMODULATION (Index, Mode, ModulationFrequency, Width, DutyCycle, AxesUsed,
[MinValue, MaxValue, MinVelocity, MaxVelocity])

Arguments

Arguments Comments

Index

Defines which Laser Control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in
the network. The last index of allocated logical axes should be
specified.

For example, if LCM gets network indexes (logical axes) 4,5,6,7,
so index 7 should be used for referring the specific LCM
module.

Mode

Operation mode:

1. Mode with fixed frequency

2. Mode with fixed pulse width

3. Mode with fixed duty cycle

Modes 1 – 3 are incompatible modes, i.e. setting any of these
modes automatically disables the previously set mode.

In order to stop any of previously defined modes, 0 value is
used.

ModulationFrequency

Pulse modulation frequency in Hz, range from 0.035Hz to
1MHz

In mode = 1, the frequency is fixed and is not changed during
the process.

In mode = 2 or 3, the function only sets the initial frequency.

If AxesUsed parameter is defined, during the process the
controller will automatically update the frequency as function
of vector velocity of the axes referred by AxesUsed.

If AxesUsed parameter is zero, the application is responsible to
update PFGPAR variable with frequency value.

Width
Pulse Width in milliseconds, range from 6.67nsec to 28.60sec.

Only has effect in mode = 2.

705Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

DutyCycle

Duty cycle in percentage, range from 0 to 100%.

In mode = 1, the function only sets the initial duty cycle.

If AxesUsed parameter is defined, during the process the
controller will automatically update duty cycle as function of
vector velocity of the axes referred by AxesUsed.

If AxesUsed parameter is zero, the application is responsible to
update PFGPAR variable with duty cycle value, see Duty cycle
or frequency update for details.

In mode = 2, the argument has no effect, as duty cycle is
automatically calculated by the unit as function of frequency.

In mode = 3, the duty cycle is fixed and is not changed during
the process.

In mode = 4, the parameters is ignored.

AxisUsed

Mask that defines which axes are used to calculate vector
velocity for controlling duty cycle (mode 1) or frequency (modes
2 and 3).

For example, the following mask defines that axes 0 and 2
should be used for vector velocity calculation:

0b0101 (0b – is a prefix for binary value specification) or

0x5 (0x – is a prefix for hexadecimal value specification)

To simplify the mask specification, the special ACSPL+ helper-
function can be used:

AxesUsed = AxListAsMask(0,2)

Only first 32 axes (0..31) can be referred by AxesUsed. If no
mask is specified, the application is responsible to update
PFGPAR variable, see Duty cycle or frequency update.

MinValue

[Optional] Minimal value of duty cycle in percentage (if mode =
1) or frequency in Hz (if mode = 2 or mode = 3) if calculated
vector velocity equals or below MinVelocity, see Figure 4-33.

By default, minimal value of duty cycle is 0% and frequency is
0.035Hz .

MaxValue

[Optional] Maximal value of duty cycle in percentage (if mode =
1) or frequency in Hz (if mode = 2 or mode = 3) if calculated
vector velocity equals or above MaxVelocity, see Figure 4-33.

By default, maximal value of duty cycle is 100% and frequency
is 1MHz.

706Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

MinVelocity

[Optional] Minimal velocity for duty cycle or frequency
calculation. Below the minimal value, duty cycle or frequency
will be limited by MinValue or default, if MinValue is not
specified, see Figure 4-33.

By default, minimal velocity is zero.

MaxVelocity

[Optional] Maximal velocity for duty cycle or frequency
calculation. Above the maximal value, duty cycle or frequency
will be limited by MaxValue or default, if MaxValue is not
specified, see Figure 4-33.

By default, maximal velocity is defined by XVEL parameter.

Figure 4-33. Velocity

Status

Modulation active/not active status is represented in AST.#LCMODUL (bit 22).

Example

Add example for regular mode and tickle mode initialization.

LCMODULATION (Laser, ! Laser index in the system
1, ! Mode with fixed frequency

5000, ! Frequency 5kHz
0.001, ! Pulse width 1 microsec

0, ! Initial duty cycle 0%
0x03, ! Vector velocity of axis 0 and 1 defines duty cycle

0, ! No Constant Spacing mode

707Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

0, 100, ! Minimal 0% and maximal 100% duty cycle
10, 1000) ! Minimal 10mm/sec and maximal 1000mm/sec velocity

Vector velocity indication (GVEL)

If AxesUsed parameter specifies involved axes mask, then the function calculates the vector
velocity of all involved axes. The calculated vector velocity is indicated in GVEL parameter. The GVEL
parameter index should corresponds to the last (fourth) local logical axis of the specific LCM unit. For
example, if LCM gets network indexes (logical axes) 4,5,6,7, so index 7 should be used for monitoring
the calculated vector velocity.

4.10.1.1 Duty cycle or frequency update

The LCMODULATION function provides ability to automatically calculate vector velocity of the axes
involved in a specific motion and update either a laser output duty cycle or frequency accordingly
with the actual vector velocity.

In some cases, the user needs to implement more complex user-specific function for duty cycle or
frequency update. In this case AxesUsed argument should be zero and the user is responsible to
update duty cycle or frequency using PGFPAR parameter.

4.10.1.2 Duty cycle or Frequency monitoring

The controller provides ability to monitor an actual frequency or duty cycle at real-time by means of
LCFREQ and LCDC controller variables.

LCFREQ and LCDC are real type array of 64 elements. Each element corresponds to the specific axis
that belongs to LCM unit. The same index that is defined in LCMODULATION should be used as index
for LCFREQ and LCDC reference.

Type Accessibility Description

LCFREQ Real Array 0..63 Read-only

Indicates an actual
frequency in [Hz] for
modes 2 and 3, or
configured frequency
value for mode 1.

LCDC Real Array 0..63 Read-only

Indicates an actual
duty cycle in [%] for
modes 1, or
configured duty cycle
value for mode 2 and
3.

4.10.2 LCFixedDist

The function initializes the fixed distance pulse firing mode. This mode is useful if a laser be should
be activated with specified fixed intervals between activations along the motion trajectory.

As pulses are generated along an actual motion trajectory. The AxesUsed argument defines which
axes are used for multi-axis trajectory generation.

708Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

The arguments StartPosition, StopPosition defines start and last points in the user units relatively
the user origin, defined by InitOffset. The pulse are generated with constant interval, defined by
Interval.

Additionally, number of extra pulses, specified by ExtraPulses, with period, specified by ExtraPeriod,
can be generated after each pulse at Interval position.

The UserVector argument provides ability to implement user-defined multi-axes trajectory. The
AxesUsed argument should be zero in this case.

The MinPosition and MaxPosition arguments define an operation zone range along the multi-axes
trajectory. The laser pulses start outputting after reaching MinPosition and stop outputting after
reaching MaxPosition.

Syntax

LCFIXEDDIST (Index, AxesUsed, Width, StartPosition, Interval, StopPosition
[, InitOffset, ExtraPulses, ExtraPeriod, PulseResolution, UserVector,
MinPosition, MaxPosition])

Arguments

Arguments Comments

Index

Defines which Laser Control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in the
network. Third index of allocated logical axes should be specified.

For example, if LCM gets network indexes (logical axes) 4,5,6,7, so
index 6 should be used for referring the specific LCM module.

AxesUsed

Mask that defines the axes, which are used for generating pulses
along the multi-axis motion trajectory.

For example, the following mask defines that axes 0 and 2 should be
used for vector velocity calculation:

0b0101 (0b – is a prefix for binary value specification) or

0x5 (0x – is a prefix for hexadecimal value specification)

Only first 32 axes (0..31) can be referred by AxesUsed.

If AxesUsed is zero and UserVector is zero, the previously defined
fixed distance pulse firing mode is canceled.

The AxesUsed should be zero, if UserVector is used for user-defined
trajectory calculation.

Width
Pulse Width in milliseconds, from 0.00002664msec (26.64nsec) to
1.745msec

709Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

StartPosition

Specifies a start position along the multi-axis motion trajectory. The
pulses start generating after reaching this position.

The StartPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

Interval

Specifies an interval between pulses along the multi-axis motion
trajectory.

The Interval is specified in the user units of the axes, defined by
AxesUsed

StopPosition

Specifies a last position along the multi-axis motion trajectory. The
pulses stop generating after reaching this position.

The StopPosition is specified relatively to the user origin, defined by
InitOffset and the user units of the axes, defined by AxesUsed.

InitOffset

[Optional] Specifies an initial positon offset of multi-axis trajectory
relatively to the user origin.

By default, the function initializes an initial position of multi-axis
trajectory as current actual positon of the involved axes at the
moment the function is called, so InitOffset is zero.

For all functions:

> For multi-axes-trajectory, the InitOffset should
be omitted or set to zero. This causes the
trajectory calculation to start from the current
position.

> For single-axis trajectory, if APOS of the axis,
which is specified in AxesUsed, is provided as
an argument, then both RPOS of the real axis
and the virtual axis will match.

ExtraPulses

[Optional] Number of additional pulses to be generated with
ExtraPeriod period after each pulse at each Interval position.

By default, no extra pulses are generated.

ExtraPeriod

[Optional] Time period in milliseconds for ExtraPulses additional
pulses to be generated after each pulse at each Interval position.

By default, no extra pulses are generated.

710Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

PulseResolution

[Optional] Pulse Resolution in user units.

If the parameter is omitted or specified as zero, then the function
automatically calculates the most optimal pulse resolution according
with maximal velocity (XVEL) of the axes, defined by AxesUsed, and
the internal pulse generator maximal frequency, which is 12.5MHz.

An actual pulse resolution is indicated in STEPF parameter.

If the user needs to modify the resolution (higher or lower), this
parameter allows to do it.

The width of internal pulse generator is initialized to its minimal
value of 40nsec to allow achieving the maximal pulses frequency.

For ALL functions - if the specified resolution causes the
pulse generator frequency to reach its maximal value
during the motion, then the Velocity Limit fault is raised
and the LCM stops generating pulses.

UserVector

[Optional] The user defined global real scalar variable that contains
result of multi-axes trajectory calculation. This option is used if it’s
required that pulse will be generated along a user-defined multi-
axes trajectory, which implements some custom coordinate system
transformation.

Usually, user defined global scalar variable should be updated each
controller cycle, so the calculation should be done in a separate
buffer inside an endless LOOP statement.

The argument should be zero, if AxesMask is defined.

MinPosition

[Optional] Specifies a minimal position of the operation zone along
the motion trajectory. The laser pulses start outputting after
reaching this position.

The MinPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

MaxPosition

[Optional] Specifies a maximal position of the operation zone along
the motion trajectory. The laser pulses stop outputting after reaching
this position.

The MaxPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

Example

LCFIXEDDIST (Laser, ! Laser index in the system
0x03, ! Axis 0 and 1 defines multi-axis trajectory for

generating pulses

711Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

0.001, ! Pulse width 1 microsec
100, ! First pulse position
10, ! Spacing between pulses is user 10 units (μm, mm)
000) ! Last pulse position

4.10.3 LCFixedInt

The function is similar to the LCFixedDist distance and also initializes the fixed distance pulse firing
mode.

Unlike the LCFixedDist function, the LCFixedInt function does not provide the ability of Extra Pulses
generation.

Also the LCFixedInt function does not contain the StartPosition, StopPosition, and PulseResolution
specifications.

All other capabilities of LCFixedDist function are supported.

This mode is useful if a laser is to be activated at specified fixed intervals between activations along
the motion trajectory.

As pulses are generated along an actual motion trajectory, the AxesUsed argument defines which
axes are used for multi-axis trajectory generation.

The user origin is defined by InitOffset. The pulse are generated with constant interval, defines by
Interval.

The UserVector argument provides ability to implement user-defined multi-axes trajectory. The
AxesUsed argument should be zero in this case.

The MinPosition and MaxPosition arguments define an operation zone range along the multi-axes
trajectory. The laser pulses start outputting after reaching MinPosition and stop outputting after
reaching MaxPosition.

Syntax

LCFIXEDINT (Index, AxesUsed, Width, Interval, [, InitOffset, UserVector,
MinPosition, MaxPosition])

Arguments

Arguments Comments

Index

Defines which Laser Control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in the
network. First index of allocated logical axes should be specified.

For example, if LCM gets network indexes (logical axes) 4,5,6,7, so index
6 should be used for referring the specific LCM module.

712Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

AxesUsed

Mask that defines the axes, which are used for generating pulses along
the multi-axis motion trajectory.

For example, the following mask defines that axes 0 and 2 should be
used for vector velocity calculation:

0b0101 (0b – is a prefix for binary value specification) or

0x5 (0x – is a prefix for hexadecimal value specification)

Only first 32 axes (0..31) can be referred by AxesUsed.

If AxesUsed is zero and UserVector is zero, then the previously defined
fixed distance pulse firing mode is canceled.

The AxesUsed should be zero, if the UserVector is used for user-defined
trajectory calculation.

Width
Pulse Width in milliseconds, range from 0.00008ms (80nsec) to
0.08188msec (81.88µsec).

Interval

Specifies an interval between pulses along the multi-axis motion
trajectory.

The Interval is specified in the user units of the axes, defined by
AxesUsed

InitOffset

[Optional] Specifies an initial positon offset of multi-axis trajectory
relatively to the user origin.

By default, the function initializes an initial position of multi-axis
trajectory as current actual positon of the involved axes at the moment
the function is called, so InitOffset is zero.

UserVector

[Optional] The user defined global scalar variable that contains result of
multi-axes trajectory calculation. This option is used if it’s required that
pulse will be generated along a user-defined multi-axes trajectory,
which implements some custom coordinate system transformation.

Usually, user defined global real scalar variable should be updated each
controller cycle, so the calculation should be done in a separate buffer
inside an endless LOOP statement.

The argument should be zero, if AxesMask is defined.

MinPosition

[Optional] Specifies a minimal position of the operation zone along the
motion trajectory. The laser pulses start outputting after reaching this
position.

The MinPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

713Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

MaxPosition

[Optional] Specifies a maximal position of the operation zone along the
motion trajectory. The laser pulses stop outputting after reaching this
position.

The MaxPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

Example

LCFIXEDINT (Laser, ! Laser index in the system
0x03, ! Axis 0 and 1 defines multi-axis trajectory for

generating pulses
0.001, ! Pulse width 1 microsec
10) ! Spacing between pulses is user 10 units (um, mm)

4.10.4 LCRandomDist

The function initializes either array based pulse firing mode or gating mode.

As pulses are generated along an actual motion trajectory, the AxesUsed argument defines which
axes are used for multi-axis trajectory generation.

The Mode parameter defines either Pulse Firing or Gating mode is initialized.

The arguments FirstIndex, LastIndex define a first and a last elements in the Points array. Only
elements from FirstIndex to LastIndex define points where pulses will be fired. Point coordinates
are defined in the user units relatively to the user origin, defined by InitOffset.

The States argument is used for array based gating mode, where a laser is to be switched on/off at
the predefined locations.

Additionally, the number of extra pulses, specified by ExtraPulses, with a period, specified by
ExtraPeriod, can be generated after each pulse.

The Inversion argument defines if the pulse and state output need to be inverted.

The UserVector argument provides the ability to implement a user-defined multi-axes trajectory.
The AxesUsed argument should be zero in this case.

The MinPosition and MaxPosition arguments define an operation zone range along the multi-axes
trajectory. The laser pulses start outputting after reaching MinPosition and stop outputting after
reaching MaxPosition.

Syntax

LCRANDOMDIST (Index, Mode, AxesUsed, Width, FirstIndex, LastIndex, Points[, States, InitOffset,
ExtraPulses, ExtraPeriod, Inversion, PulseResolution, UserVector, MinPosition, MaxPosition])

Arguments

Arguments Comments

Index

Defines which Laser Control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in the
network. Third index of allocated logical axes should be specified.

714Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

For example, if LCM gets network indexes (logical axes) 4,5,6,7, then
index 6 is to be used for referring the specific LCM module.

Mode

Defines which mode, Pulse Firing or Gating, is initialized.

1 – Pulse Firing mode

2 – Gating mode

For Gating mode, States argument should be specified.

AxesUsed

Mask that defines the axes, which are used for generating pulses
along the multi-axis motion trajectory.

For example, the following mask defines that axes 0 and 2 should be
used for vector velocity calculation:

0b0101 (0b – is a prefix for binary value specification) or

0x5 (0x – is a prefix for hexadecimal value specification)

Only first 32 axes (0..31) can be referred by AxesUsed.

If AxesUsed is zero and UserVector is zero, then the previously
defined fixed distance pulse firing mode is canceled.

The AxesUsed should be zero, if the UserVector is used for the user-
defined trajectory calculation.

Width
Pulse Width in milliseconds, range from 0.00002664msec
(26.64nsec) to 1.745msec

FirstPoint
Specifies a first element in the Points and States arrays. The pulses
start generating after reaching the position defined in this element.

LastPoint
Specifies a last element in the Points array. The pulses stop
generating after reaching the position defined in this element.

Points

Array of points. Each element of the array defines the point where
pulse should be fired.

The point coordinates are specified relatively to the user origin,
defined by InitOffset in the user units of the axes, defined by
AxesUsed.

States

[Optional] Array of states. Each element of the array defines whether
the laser should be switched On or OFF.

States is only used for the Array based Gating Mode.

InitOffset

[Optional] Specifies an initial positon offset of multi-axis trajectory
relatively to the user origin.

By default, the function initializes an initial position of multi-axis
trajectory as current actual positon of the involved axes at the
moment the function is called, so InitOffset is zero.

715Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

ExtraPulses

[Optional] Number of additional pulses to be generated with
ExtraPeriod period after each pulse at each Interval position.

By default, no extra pulses are generated.

ExtraPeriod

[Optional] Time period in milliseconds for ExtraPulses additional
pulses to be generated after each pulse at each Interval position.

By default, no extra pulses are generated.

Inversion

[Optional] Inversion of pulse and states output logic

0 (default) – no inversion

1 – inversion

PulseResolution

[Optional] Pulse Resolution in user units.

If the parameter is omitted or specified as zero, the function
automatically calculates the most optimal pulse resolution according
with maximal velocity (XVEL) of the axes, defined by AxesUsed, and
the internal pulse generator maximal frequency, which is 12.5MHz.

An actual pulse resolution is indicated in STEPF parameter.

If the user needs to modify the resolution (higher or lower), this
parameter allows to do it.

The width of internal pulse generator is initialized to its minimal
value of 40nsec to allow achieving the maximal pulses frequency.

UserVector

[Optional] The user defined global real scalar variable that contains
result of multi-axes trajectory calculation. This option is used if it’s
required that pulse will be generated along a user-defined multi-
axes trajectory, which implements some custom coordinate system
transformation.

Usually, user defined global scalar variable should be updated each
controller cycle, so the calculation should be done in a separate
buffer inside an endless LOOP statement.

The argument should be zero, if AxesMask is defined.

MinPosition

[Optional] Specifies a minimal position of the operation zone along
the motion trajectory. The laser pulses start outputting after
reaching this position.

The MinPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

716Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

MaxPosition

[Optional] Specifies a maximal position of the operation zone along
the motion trajectory. The laser pulses stop outputting after reaching
this position.

The MaxPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

Example

LCFIXEDDIST (Laser, ! Laser index in the system
0x03, ! Axis 0 and 1 defines multi-axis trajectory for generating pulses
0.001, ! Pulse width 1 microsec
100, ! First pulse position
10, ! Spacing between pulses is user 10 units (um, mm)
000) ! Last pulse position

4.10.5 LCTickle

The function initializes Tickle mode. In this mode the laser control unit generates a signal at constant
frequency and with constant width. Usually, this mode is used for those types of lasers that require
gas ionization, during the time period when laser processing is off. By maintaining this mode, the
laser will respond faster and more predictably, when the laser processing resumes.

Once this mode is initialized, the laser control unit constantly generates pulses, irrespective to any
other operational modes. By default, the tickle mode generate pulses to the same output pin, which
is used for the operational modes. In this case, the tickle mode pulses are superimposed on
operational mode pulses. If necessary, the tickle mode pulses can be redirected to other available
pins, see Physical outputs configuration for details.

Syntax

LCTICKLE (Index, Frequency, Width[,Connector])

Arguments Comments

Index

Defines which laser control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in the network.
The last index of allocated logical axes should be specified.

For example, if LCM gets network indexes (logical axes) 4,5,6,7, so index 7
should be used for referring the specific LCM module.

Frequency

Tickle frequency in Hz

Minimal frequency is 1149Hz, maximal frequency is 100,000Hz

Not any frequency can be configured, so the function automatically
rounds the specified frequency to the nearest supported value.

Actual value of the configured tickle frequency is updated in LCTFREQ
variable. The same index that is defined in LCTICKLE should be used as
index for LCTFREQ.

717Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Width

Pulse Width in milliseconds.

Minimal width is 0.000107msec (106nsec), maximal width is 0.0273msec
(27.3µsec)

Not any width can be configured, so the function automatically rounds the
specified width to the nearest supported value.

Actual value of the configured tickle pulse width is updated in LCTWIDTH
variable. The same index that is defined in LCTICKLE should be used as
index for LCTWIDTH.

Connector

[Optional] Specifies which connector (J1/J2/J3) to output tickle pulses for:

1 - J1

2 - J2

3 - J3

4.10.6 LCZone

Syntax

LCZONE (Index, AxesUsed, MinPosition, MaxPosition [, InitOffset,
PulseResolution])

Arguments Comments

Index

Defines which Laser Control unit is referred.

The system allocates 4 indexes (logical axes) for each LCM in the
network. The Index parameter should corresponds to the first logical
axis (for Zone 0), second logical axis (for Zone 1) or third logical axis
(Zone 2) of the specific LCM unit.

For example, if LCM gets network indexes (logical axes) 4,5,6,7, so
index 4 should be used for referring Zone 0. It’s recommended to
refer only Zone 0 or Zone 1, as Zone 2 is used by LCFixedDist or
LCFixedInt functions.

AxesUsed

Mask that defines the axes, which are used for generating single-
axis or multi-axis trajectory that is used for comparing its actual
position with operation zone boundaries. The laser pulses are
allowed to be outputted only within operation zone.

For example, the following mask defines that axes 0 and 2 should be
used for vector velocity calculation:

0b0101 (0b – is a prefix for binary value specification) or

0x5 (0x – is a prefix for hexadecimal value specification)

Only first 32 axes (0..31) can be referred by AxesUsed.

If AxesUsed is zero, the previously defined zone is canceled.

718Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

MinPosition

Specifies a minimal position of the operation zone along the motion
trajectory. The laser pulses start outputting after reaching this
position.

The MinPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

MaxPosition

Specifies a maximal position of the operation zone along the motion
trajectory. The laser pulses stop outputting after reaching this
position.

The MaxPosition is specified relatively to the user origin, defined by
InitOffset and in the user units of the axes, defined by AxesUsed.

InitOffset

[Optional] Specifies an initial positon offset of multi-axis trajectory
relatively to the user origin.

By default, the function initializes an initial position of multi-axis
trajectory as current actual positon of the involved axes at the
moment the function is called, so InitOffset is zero

PulseResolution

[Optional] Pulse Resolution in user units.

If the parameter is omitted or specified as zero, the function
automatically calculates the most optimal pulse resolution according
with maximal velocity (XVEL) of the axes, defined by AXESUSED, and
the internal pulse generator maximal frequency, which is 12.5MHz.

An actual pulse resolution is indicated in STEPF parameter.

If the user needs to modify the resolution (higher or lower), this
parameter allows to do it.

The width of internal pulse generator is initialized to its minimal
value of 40nsec to allow achieving the maximal pulses frequency.

Example

LCZONE (Laser, ! Laser index in the system
0, ! Zone 0 is used
0, ! Zone is defined for the axis 0

1000, 2000) ! Laser zone range is 1000 … 2000

Vector path indication (GPATH)

If the AxesUsed parameter specifies involved an axes mask, then the function calculates the single-
axis or multi-axis trajectory path. The current value of the path is indicated in the GPATH parameter.
The GPATH parameter index corresponds to the first logical axis (for Zone 0), second logical axis (for
Zone 1) or third logical axis (Zone 2) of the specific LCM unit. For example, if LCM gets network
indexes (logical axes) 4,5,6,7, then index 5 is to be used for monitoring the current vector path for
the Zone 1.

719Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

4.10.6.1 LCZoneSet

The minimum and maximum zone limit can be changed using LCZoneSet function.

Syntax

LCZONESET (Index, MinPosition, MaxPosition)

Arguments

Arguments Comments

Index Should specify the same zone that was defined by LaserZone function.

MinPosition

Specifies a minimal position of the operation zone along the motion
trajectory. The laser pulses start outputting after reaching this position.

The MinPosition is specified relatively to the initial position and in the
user units, calculated by LaserZone function.

MaxPosition

Specifies a maximal position of the operation zone along the motion
trajectory.The laser pulses stop outputting after reaching this position.

The MaxPosition is specified relatively to the initial position and in the
user units, calculated by LaserZone function.

Example

LCZONESET (Zone0, ! Laser index in the system
1000, 2000) ! Laser zone range is 1000 … 2000

4.10.6.2 LCZoneGet

The function LCZoneGet returns the limits of the laser operation zone that was previously defined
by LCZone function or by LCZoneSet function.

Syntax

LCZONEGET (Index, ZoneLimit)

Arguments

Arguments Comments

Index Should specify the same zone that was defined by LaserZone function.

ZoneLimit
0 – to get a minimal zone limit

1 - to get a maximal zone limit

Return Value

The function returns the currently configured limit of the specified laser zone.

720Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

MinLimit = LCZONEGET (Zone0, ! Laser index in the system
0) ! Minimal limit of the zone

4.10.7 LCStop

The function stops any previously initialized laser mode and resets the previously defined mode
parameters. The function is useful in order to ensure that any of the previously defined modes are
stopped.

Syntax

LCStop (Index)

Arguments

Arguments Comments

Index
Designates the specific axis to which stopping and resetting the mode will
be applied

4.10.8 LCSignalSet

The function configures LCS output conditioning state.

Syntax

LCSignalSet (Index, ConditionMask)

Arguments

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4
axes for each LCM in the network. First of the allocated axes should be
specified.

721Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

ConditionMask

Bit code that defines the logic condintions for Laser Control Signal
(LCS) outputing.

By default, the LCS is generated with no dependance on other signals.
Means that only bit 11 (LCS) is set.

Using this function, the user can define additional conditions for LCS
outputing. Each bit that is set to 1, adds the dependance of LCS on the
specific internal signal.

For example, if necessary that LCS (bit 11) is generated only if InRange
0 signal (bit 4) is “1” and PEG State 0 (bit 12) is “1”, then the bit code
0x00001810 should be defined: bits 4, 11 and 12 are set.

Bit Signal

0 P/D Pulse 0

1 P/D Dir 0

2

PEG Pulse

The bit is automatically set by LCFixedDist function
or LCRandomDist function in case of the Pulse Firing
Mode

3 PEG Active

4
InRange 0

The bit is automatically set by LCZone function

5 P/D Pulse 1

6 P/D Dir 1

7
InRange 1

The bit is automatically set by LCZone function

8 P/D Pulse 2

9 P/D Dir 2

10

InRange 2

The bit is automatically set by LCZone function or
LCRandomDist or LCFixedDist or LCFixedInt

11
Laser Control Signal (by default = 1)

The bit is automatically set by LCModulation function

722Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Bit Signal

12

PEG State #0

The bit is automatically set by LCRandomDist
function in case of the Gating mode

13 PEG State #1

14 PEG_State #2

15

Tickle output

The bit is automatically set by LCTickle function if
Connector argument is not specified or omitted

16 Input 0

17 Input 1

18 Input 2

19 Input 3

20 Input 4

21 Input 5

22 Input 6

23 Input 7

24 Output 0

25 Output 1

26 Output 2

27 Output 3

28 Output 4

29 Output 5

30 Output 6

31 Output 7

723Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

If it is necessary to set new bits and to preserve the bits that have been previously set, it
is recommended to begin by retrieving the current state by using the function
LCSignalGet and then to set the new bits, see LCS conditioning example.

Inputs 0-7 conditioning is not supported in SPiiPlusCMHP/BA.

4.10.9 LCSignalGet

The function returns LCS output conditioning state.

Syntax

LCSignalGet (Index)

Arguments

The function returns the value that represents the outputs configuration state depending on the
Connector parameter.

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4 axes
for each LCM in the network. First of the allocated axes should be
specified.

Bit code that defines the logic condintions for Laser Control Signal (LCS)
outputing. The meaning if the bits is desribed in LCSignalSet arguments
table.

Return value

The function returns bit code that defines the logic condintions for LCS outputing. The meaning if the
bits is desribed in LCSignalSet arguments table.

4.10.10 LCS conditioning example

The example shows how to configure additional conditions to LCS outputting function.

! Configure laser output conditioning
! Bits 4(InRange0), 7(InRange1) are added to LCS conditioning
! Means that LCS is outputted only if both InRange0 and InRange1 signals
are “1”
LCSignalSet (Index, LCSignalGet (Index) | 0x0090)

! Add Tickle output to the LCS
! Add Tickle output (Bit 15) to LCS conditioning
! Means that tickle mode is superimposed on signal generated by PFG

724Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

module (modes 1, 2 or 3)
LCSignalSet (Index, LCSignalGet (Index) | 0x8000)

4.10.11 Physical outputs configuration

The LCM provides the following flexibility in digital outputs configuration: the logical outputs of the
internal modules, like P/D pulse, PEG pulse, InRange can be redirected to available pins of J1, J2 and
J3 connectors. The configuration is done by LCOutputSet function, described below. The outputs
configuration can be retrieved using LCOutputGet function.

4.10.11.1 LCOutputSet

The LCOutputSet function configures LCM physical outputs.

Syntax

LCOutputSet (Index, Connector, Code)

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4 axes
for each LCM in the network. First of the allocated axes should be specified.

Connector

Specifies LCM connector:

01 – J1

02 – J2

03 – J3

725Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments Comments

Code

Connector
value

Return
value

#_PULSE
output

#_DIR output

01 or 02 or 03 0x00 None None

01

0x01

*See note
below.

Counter 0 A
signal

Counter 0 B
signal

01

0x02

*See note
below.

Pulse 0 Direction 0

01 0x03 In range 0 “1”

01 or 02 or 03 0x04 PEG pulse PEG active

01 or 02 or 03 0x05 PEG state 0 PEG active

01 or 02 or 03 0x09 Tickle “1”

02

0x01

*See note
below.

Counter 1 A
signal

Counter 1 B
signal

02

0x02

*See note
below.

Pulse 1 Direction 1

02 0x03 In range 1 “1”

03

0x01

*See note
below.

Counter 2 A
signal

Counter 2 B
signal

03

0x02

*See note
below.

Pulse 2 Direction 2

03 0x03 In range 2 “1”

726Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

*Only supported by LCM modules with the AqB and P/D output option.

4.10.11.2 LCOutputGet

The LCOutputGet function returns LCM outputs configuration.

Syntax

LCOutputGet (Index, Connector)

Arguments

The function returns the value that represents the outputs configuration state depending on the
Connector parameter.

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4 axes
for each LCM in the network. First of the allocated axes should be
specified.

Connector

Specifies LCM connector:

01 – J1

02 – J2

03 – J3

Return value

Connector value Return value #_PULSE output #_DIR output

01 or 02 or 03 0x00 None None

01 0x01 Counter 0 A signal Counter 0 B signal

01 0x02 Pulse 0 Direction 0

01 0x03 In range 0 “1”

01 or 02 or 03 0x04 PEG pulse PEG active

01 or 02 or 03 0x05 PEG state 0 PEG active

01 or 02 or 03 0x09 Tickle “1”

02 0x01 Counter 1 A signal Counter 1 B signal

02 0x02 Pulse 1 Direction 1

727Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Connector value Return value #_PULSE output #_DIR output

02 0x03 In range 1 “1”

03 0x01 Counter 2 A signal Counter 2 B signal

03 0x02 Pulse 2 Direction 2

03 0x03 In range 2 “1”

4.10.12 LCDelaySet

The pulse generation delay can also be configured be the user using LCDelaySet function. The
specified delay will override the default value that is set by default. The currently configured delay
can be read using LCDelayGet function.

Syntax

LCDelaySet (Index, Delay)

Arguments

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4 axes
for each LCM in the network. First of the allocated axes should be
specified.

Delay Delay in microseconds: 0-CTIME*1000(μsec)

4.10.13 LCDelayGet

The function returns the actual currently configured delay in microseconds.

Syntax

LCDelayGet (Index)

Arguments

Arguments Comments

Index
Defines which Laser Control unit is referred. The system allocates 4 axes
for each LCM in the network. First of the allocated axes should be
specified.

Return Value

The function returns the actual currently configured delay in microseconds.

4.10.14 AxListAsMask

In the functions LcModulation, LcFixedDist, LcFixedInt, LcRandomDist, LcZone an argument
requires a mask to define the axes. The mask specification is defined with AxListAsMask.

728Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax
AxListAsMask (axis_list)

Arguements

Arguments Comments

axis_list List of the axes, separated by comma: 0, 2, 4

Return value

The function returns the integer value that represents the axis list as a mask.

Example

int AxisMask
AxisMask = AxListAsMask(0,2,4) ! AxisMask gets value 0x15 (0b00010101)
scription in the manual.

4.11 Dynamic Error Compensation

The Dynamic Error Compensation functions are:

Function Description

ERRORMAP1D
Configures and activates 1D error correction for the mechanical error
compensation for the specified zone,

ERRORMAP2D
Configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ command for the specified zone

ERRORMAPN1D
Configures and activates 1D error correction for the mechanical error
compensation for the specified zone

ERRORMAPN2D
Configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ command for the specified zone,

ERRORMAPA1D

Configures and activates 1D error correction for the mechanical error
compensation for the specified zone, so that the compensated
reference position will be calculated by multiplying the scaling factor
by the desired position so that the actual value will be closer to the
desired value.

ERRORMAPA2D

Configures and activates 2D error correction for the mechanical error
compensation of the specified axis for the specified zone, so that the
compensated reference position will be calculated by taking into
account the angle for the orthogonality correction so that the actual
value will be closer to the desired value.

729Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Function Description

ERRORMAPOFF
Deactivates error mapping correction for the mechanical error
compensation for the specified zone.

ERRORMAPON
Activates error correction for the mechanical error compensation for
the specified zone.

#ERRORMAPREP
Generates a report of all activated zones of error mapping for all
axes in the system.

ERRORUNMAP
Deactivates error correction for the mechanical error compensation
for the specified zone.

4.11.1 ERRORMAP1D

Description

The ERRORMAP1D function configures and activates 1D error correction for the mechanical error
compensation for the specified zone, so that the compensated reference position will be calculated
by subtracting the linearly (by default) interpolated error from the desired position so that the actual
value will be closer to the desired value.

The calculation assumes fixed Intervals between points inside the zone.

Syntax

ERRORMAP1D[switches] axis, zone, base, step, correction_map, [referenced_
axis_or_analog_input]

Arguments

axis
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

base
A real number representing the axis command that corresponds to the
first point in correction table for mechanical error compensation.

step
A real number representing the fixed interval distance between the two
adjacent axis commands.

correction_map

The name of a real one-dimensional array that specifies correction table
for mechanical error compensation.

The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

730Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

referenced_
axis_or_analog_
input

[Optional] The index of the axis, or the index of the analog input that the
mechanical error compensation will be calculated based on its feedback.

Switches

/p Prevent applying dynamic error compensation on INDEX, MARK, and PEG values

/a
Specifies that the mechanical error compensation will be calculated based on the
feedback from the axis specified by the optional parameter.

/i
Specifies that the mechanical error compensation will be calculated based on the
feedback from the analog input indicated by the optional parameter.

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Comments

If erroneous parameters are passed to the function, the corresponding runtime error will be
generated. The function is intended to be used with arrays only, meaning that an error is generated
if a scalar is passed as a parameter.

4.11.2 ERRORMAPN1D

Description

The ERRORMAPN1D function configures and activates 1D error correction for the mechanical error
compensation for the specified zone, so that the compensated reference position will be calculated
by subtracting the linearly (by default) interpolated error from the desired position so that the actual
value will be closer to the desired value.

The calculation is based on an arbitrary network of points inside the zone.

Syntax

ERRORMAPN1D[switches] axis, zone, axis_command, correction_map,
[referenced_axis_or_analog_input]

731Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

axis
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis_command

The name of a real one-dimensional array that specifies axis command
values used for correction table of mechanical error compensation.

The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_map
The name of a real one-dimensional array that specifies correction table
for mechanical error compensation. The array type should be GLOBAL
REAL STATIC (defined in D-Buffer).

referenced_
axis_or_analog_
input

[Optional] The index of the axis or the index of the analog input to be
used for the calculation of the mechanical error compensation.

Switches

/p Prevent applying dynamic error compensation on INDEX, MARK, and PEG values

/a
Specifies that the mechanical error compensation will be calculated based on the
feedback from the axis specified by the optional parameter.

/i
Specifies that the mechanical error compensation will be calculated based on the
feedback from the analog input indicated by the optional parameter.

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Comments

In case of erroneous parameters, the relevant runtime error will be generated. The function is
intended for use with arrays, meaning that an error is generated if a scalar is given as a parameter.

4.11.3 ERRORMAPA1D

Description

The ERRORMAPA1D function configures and activates 1D error correction for the mechanical error
compensation for the specified zone, so that the compensated reference position will be calculated

732Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

by multiplying the scaling factor by the desired position so that the actual value will be closer to the
desired value.

Syntax

ERRORMAPA1D[switches] axis, zone, scaling_factor, offset

Arguments

axis
The index of the axis that the mechanical error compensation will be applied
to, valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus
1.

zone
The zone index of the mechanical error compensation, valid numbers are: 0,
1, 2, ... up to the maximum number of zones minus 1.

scaling_
factor

The scaling factor for the linear alignment that will be used for mechanical
error compensation. The allowed range for the scaling factor is (0, 2.0).

offset
The offset for the linear alignment that will be used for mechanical error
compensation. The offset is actually the mechanical error compensation for
the 0-point location.

Switches

/p Prevent applying dynamic error compensation on INDEX, MARK, and PEG values

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Comments

In case of erroneous parameters, the corresponding runtime error will be generated. The function is
intended to be used for arrays only, meaning that an error is generated if a scalar is given as a
parameter.

This command is supported in ADK versions 2.70 and higher.

4.11.4 ERRORMAP2D

Description

The ERRORMAP2D function configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ or 'axis1' command (depending on the switch used) for the specified
zone, so that the compensated reference position will be calculated by subtracting the linearly (by
default) interpolated error from the desired position so that the actual value will be closer to the
desired value.

733Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

ERRORMAP2D[switches] (axis0, axis1), zone, base0, step0, base1, step1,
correction_map, [reference_axis_or_analog_input0, referenced_axis_or_
analog_input1]

Arguments

axis0
The index of the first axis that the mechanical error compensation
will be applied to. Valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

axis1
The index of the second axis participating in 2D mechanical error
compensation. Valid numbers are: 0, 1, 2, ... up to the number of
axes in the system minus 1.

zone
The zone index of the mechanical error compensation, valid
numbers are: 0, 1, 2, ... up to the number of axes in the system
minus 1.

base0
A real number representing the ‘axis0’ command that corresponds
to the first point in correction table for mechanical error
compensation.

step0
A real number representing the fixed interval distance between the
two adjacent ‘axis0’ commands.

base1
A real number representing the ‘axis1’ command that corresponds
to the first point in correction table for mechanical error
compensation.

step1
A real number representing the fixed interval distance between the
two adjacent ‘axis1’ commands.

correction_map
The name of a real two-dimensional array that specifies correction
table for mechanical error compensation. The array type should be
a GLOBAL REAL STATIC defined in the D-Buffer.

referenced_axis_or_
analog_input0

[Optional] The index of the first axis, or the index of the first analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_axis_or_
analog_input1

[Optional] The index of the second axis, or the index of the second
analog input whose feedback will be used to calculate the
mechanical error compensation.

734Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/a
Specifies that the mechanical error compensation will be calculated based on
the feedback from the axis specified by the optional parameter.

/i
Specifies that the mechanical error compensation will be calculated based on
the feedback from the analog input indicated by the optional parameter.

/aj
Specifies that the first optional parameter will be treated as an analog input
index.

/ak
Specifies that the second optional parameter will be treated as an analog input
index.

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Comments

If incorrect parameters are passed to the function the corresponding error will be generated. The
function is intended to be used for arrays only, meaning that an error is generated if a scalar is given
as a parameter.

4.11.5 ERRORMAPN2D

Description

The ERRORMAPN2D function configures and activates 2D error correction for the mechanical error
compensation of the ‘axis0’ or 'axis1' command (depending on the switch used) for the specified
zone, so that the compensated reference position will be calculated by subtracting the linearly (by
default) interpolated error from the desired position so that the actual value will be closer to the
desired value.

Syntax

ERRORMAPN2D[switches] (axis0, axis1), zone, axis0_command, axis1_command,
correction_map,[reference_axis_or_analog_input0,
referenced_axis_or_analog_input1]

735Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 2D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis0_command
The name of a real one-dimensional array that specifies ‘axis0’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis1_command

The name of a real one-dimensional array that specifies ‘axis1’ command
values used for correction table of mechanical error compensation.

The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_map

The name of a real one-dimensional array that specifies correction table
for mechanical error compensation.

The array should be a GLOBAL REAL STATIC defined in the D-Buffer.

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis or the index of the first analog input
providing the feedback used for calculation of the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis or the index of the second analog
input providing the feedback used for calculation of the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default).

/1 The mechanical error compensation will be applied to ‘axis1’.

/a
Specifies that the mechanical error compensation will be calculated based on the
feedback from the axis specified by the optional parameter.

/i
Specifies that the mechanical error compensation will be calculated based on the
feedback from the analog input indicated by the optional parameter.

/aj Specifies that the first optional parameter will be treated as an analog input index.

/ak
Specifies that the second optional parameter will be treated as an analog input
index.

736Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

The function detects the following error conditions:

> Error 2044, index is out of range, when the defined array size is less than the defined
number of array points.

> Error 3113, the step in the table is zero or negative, when the step argument is zero or
negative.

Comments

If incorrect parameters are passed to the function the relevant error will be generated. The function
is intended to be used for arrays only, meaning that an error is generated if a scalar is given as a
parameter.

4.11.6 ERRORMAPA2D

Description

The ERRORMAPA2D function configures and activates 2D error correction for the mechanical error
compensation of the specified axis for the specified zone, so that the compensated reference
position will be calculated by taking into account the angle for the orthogonality correction so that
the actual value will be closer to the desired value.

Syntax

ERRORMAPA2D[switches] (axis0, axis1), zone, angle

Arguments

axis0
The index of the axis that the mechanical error compensation will be applied to,
valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

axis1
The index of the second axis participating in 2D mechanical error compensation,
valid numbers are: 0, 1, 2, ... up to the number of axes in the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers are: 0, 1,
2, ... up to the number of axes in the system minus 1.

angle
The angle for the orthogonality correction that will be used for mechanical error
compensation. The allowed range for the angle is [-45°, 45°].

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

Error Conditions

The function detects the following error conditions:

> Error 2044, Index is out of range, when the defined array size is less than the defined
number of array points.

737Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> Error 3113, The step in the table is zero or negative, when the step argument is zero or
negative.

Comments

In case of wrong parameters, the corresponding runtime error will be generated. The function is
intended to be used for arrays only, meaning that an error is generated if a scalar is given as a
parameter.

This command is supported in ADK versions 2.70 and higher.

4.11.7 ERRORMAP3DA

Description

The ERRORMAP3D3 function configures and activates 3D error correction for the mechanical error
compensation of ‘axis0’, ‘axis1’, and 'axis2' for the specified zone, so that the compensated
reference position will be calculated by adding the interpolated error from the desired position so
that the actual value will be closer to the desired value. Interpolation is linear by default, other
options are available.

The ERRORMAP3DA function receives the indices of three axes, the zone index, the base value of
the ‘axis0’ command, the fixed defined interval of the ‘axis0’ command, the base value of the ‘axis1’
command, a fixed defined interval for the ‘axis1’ command, the base value of the 'axis2' command,
the fixed defined interval of the 'axis2' command, and 10 2D correction tables correlated to the
specified 'axis2' coordinates for mechanical error compensation.

Syntax

ERRORMAP3DA[command options] (axis0, axis1, axis2), zone, base1, step1,
base2, step2, base3, step3, correction_map0, correction_map1, correction_
map2, correction_map3 , correction_map4, correction_map5, correction_
map6, correction_map7, correction_map8, correction_map9[, reference_axis_
or_analog_input0, referenced _axis_or_analog_input1, referenced _axis_or_
analog_input2]

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

738Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

base0
A real number representing the ‘axis0’ command that corresponds to the
first point in correction table for mechanical error compensation.

step0
A real number representing the fixed interval distance between the two
adjacent ‘axis0’ commands.

base1
A real number representing the ‘axis1’ command that corresponds to the
first point in correction table for mechanical error compensation.

step1
A real number representing the fixed interval distance between the two
adjacent ‘axis1’ commands.

base2
A real number representing the ‘axis2’ command that corresponds to the
first point in correction table for mechanical error compensation.

step2
A real number representing the fixed interval distance between the two
adjacent ‘axis2’ commands.

correction_

map0

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘0’
coordinate. The array type should be GLOBAL REAL

STATIC (defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘1’ coordinate.
The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘2’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map3

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘3’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map4

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘4’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map5

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘5’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

739Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

correction_

map6

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘6’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map7

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘7’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map8

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘8’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map9

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘9’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj Specifies that the first optional parameter to be treated as an analog input index.

/ak
Specifies that the second optional parameter to be treated as an analog input
index.

/al Specifies that the third optional parameter to be treated as an analog input index.

740Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Error Conditions

The function detects the following error conditions.

> 2044 - Index is out of range, when the defined array size is less than the defined number of
array points.

> 3113 - The step in the table is zero or negative, when the step argument is zero or negative.

> 3384 - The specified suffix combination is invalid. Please see the documentation for more
details.

> 3413 - The supplied correction maps (2-dimensional arrays) should have the same
dimensions. Please see the documentation for more details.

> 3414 - The Specified referenced axes/analog inputs are invalid. Please see the
documentation for more details.

Comments

If incorrect parameters are passed to the function the corresponding runtime error is generated. The
function is intended to be used only with arrays; thus, an error is generated if a scalar is given as a
parameter.

4.11.8 ERRORMAP3D2

Description

The ERRORMAP3D2 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the interpolated error
from the desired position so that the actual value will be closer to the desired value. Interpolation is
linear by default; other options are available.

The ERRORMAP3D2 function receives indexes of three axes, zone index, base value of the ‘axis0’
command, fixed defined interval of the ‘axis0’ command, base value of the ‘axis1’ command, fixed
defined interval of the ‘axis1’ command, base value of the ‘axis2’ command, fixed defined interval of
the ‘axis2’ command, and two 2D correction tables (in correlation to the specified ‘axis2’ coordinates)
for mechanical error compensation.

Syntax

ERRORMAP3D2[command options] (axis0, axis1, axis2), zone, base0, step0,
base1, step1, base2, step2, correction_map0, correction_map1[, reference_
axis_or_analog_input0, referenced _axis_or_analog_input1, referenced _
axis_or_analog_input2]

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

741Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

base0
A real number representing the ‘axis0’ command that corresponds to the
first point in correction table for mechanical error compensation.

step0
A real number representing the fixed interval distance between the two
adjacent ‘axis0’ commands.

base1
A real number representing the ‘axis1’ command that corresponds to the
first point in correction table for mechanical error compensation.

step1
A real number representing the fixed interval distance between the two
adjacent ‘axis1’ commands.

base2
A real number representing the ‘axis2’ command that corresponds to the
first point in correction table for mechanical error compensation.

step2
A real number representing the fixed interval distance between the two
adjacent ‘axis2’ commands.

correction_

map0

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘0’
coordinate. The array type should be GLOBAL REAL

STATIC (defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘1’ coordinate.
The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

742Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj
Specifies that the first optional parameter will be regarded as an analog input
index.

/ak
Specifies that the second optional parameter will be regarded as an analog input
index.

/al
Specifies that the third optional parameter will be regarded as an analog input
index.

/e

Specifies that the extrapolation will be used for Z values that are beyond the
original observation range. That is, we are assuming that existing trends will
continue (by using the nearest correction table to estimate the correction). This
method is subject to greater uncertainty and a higher risk of producing
meaningless results than interpolation.

Comments

> When incorrect parameters are specified, the relevant compile-time or run-time error is
generated. See ACSPL+ Runtime Errors for explanation of error 2044 and ACSPL+
Compilation Errors for explanations of errors 3113, 3384, 3413, 3414. The function is intended
for use with arrays only; an error is generated if a scalar is given as a parameter.

Examples

Example 1

This example uses two 2-dimensional arrays to create 2-dimensional correction maps that are used
for the 3D Dynamic error compensation. Each map represents a different value (height) of the Z axis.
An XYZ cuboid (rectangular prism) zone starts at coordinate -100 for X, 30 for Y, and 30 for Z. It has a
fixed interval of 10 mm for each axis. The user units are represented in mm.

D-Buffer:
global real static X_Correction1(3)(10)
global real static X_Correction2(3)(10)

Buffer:
local int X_axis
local int Y_axis
local int Z_axis
local int zone
local int X_base
local int X_step
local int Y_base
local int Y_step

743Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

local int Z_baselocal int Z_step

X_axis=0 ! First moving axis
Y_axis=1 ! Second moving axis
Z_axis=2 ! Third moving axis
zone =0 ! Index of error mapping zone in use
X_base=-100 ! X staring coordinate of error mapping zone
Y_base=30 ! Y staring coordinate of error mapping zone
X_step=10 ! X interval in error map table
Y_step=10 ! Y interval in error map table
Z_base=30 ! Z staring coordinate of error mapping zone
Z_step=10 ! Z interval in error map table

! Correction table for Error Mapping for X axis
! of the first Z height - declared in D-Buffer

X_Correction1(0)(0)=0; X_Correction1(0)(1)=0.3; X_Correction1(0)(2)=-0.4;
X_Correction1(0)(3)=-0.7; X_Correction1(0)(4)=-0.1;
X_Correction1(0)(5)=0.22; X_Correction1(0)(6)=0.55; X_Correction1(0)(7)=0.2;
X_Correction1(0)(8)=-0.3;
X_Correction1(0)(9)=0;
X_Correction1(1)(0)=0; X_Correction1(1)(1)=0.4; X_Correction1(1)(2)=-0.4;
X_Correction1(1)(3)=-0.5; X_Correction1(1)(4)=-0.2;
X_Correction1(1)(5)=0.24; X_Correction1(1)(6)=0.3; X_Correction1(1)(7)=0.32;
X_Correction1(1)(8)=-0.13;
X_Correction1(1)(9)=0;
X_Correction1(2)(0)=0; X_Correction1(2)(1)=0.1; X_Correction1(2)(2)=-0.2;
X_Correction1(2)(3)=-0.4; X_Correction1(2)(5)=0.3;
X_Correction1(2)(6)=0.4; X_Correction1(2)(7)=0.33; X_Correction1(2)(8)=-0.1;
X_Correction1(2)(9)=0
! Correction table for Error Mapping for X axis of the second Z height
! - declared in D-Buffer
X_Correction2(0)(0)=0; X_Correction2(0)(1)=0.23; X_Correction2(0)(2)=-0.12;
X_Correction2(0)(3)=-0.3; X_Correction2(0)(4)=-0.2
X_Correction2(0)(5)=0.26; X_Correction2(0)(6)=0.15; X_Correction2(0)(7)=0.02;
X_Correction2(0)(8)=-0.15;
X_Correction2(0)(9)=0
X_Correction2(1)(0)=0; X_Correction2(1)(1)=0.24; X_Correction2(1)(2)=-0.14;
X_Correction2(1)(3)=-0.34;
X_Correction2(1)(4)=-0.2
X_Correction2(1)(5)=0.14; X_Correction2(1)(6)=-0.23; X_Correction2(1)(7)=-0.32; X_
Correction2(1)(8)=-0.13; X_Correction2(1)(9)=0
X_Correction2(2)(0)=0; X_Correction2(2)(1)=-0.1; X_Correction2(2)(2)=-0.32;
X_Correction2(2)(3)=-0.4; X_Correction2(2)(4)=0.15
X_Correction2(2)(5)=0.36; X_Correction2(2)(6)=0.44; X_Correction2(2)(7)=0.23;X_Correction2
(2)(8)=-0.11;
X_Correction2(2)(9)=0
! X axis error mapping function configuration
ERRORMAP3D2/0 (X_axis, Y_axis, Z_axis), zone, X_base, X_step, Y_base, Y_step, Z_base, Z_
step, X_Correction1, X_Correction2
! Enable error mapping
ERRORMAPON X_axis, zone
STOP

Example 2

This example uses two 2-dimensional arrays to create 2-dimensional correction maps, that are used
for the 3D Dynamic error compensation. Each map represents a different analog input value. An XYZ
cuboid (rectangular prism) zone starts at coordinate -100 for X, 30 for Y, and 30% for the Z specified
analog input. It has a fixed interval of 10 mm for each axis, and 10 percent for the Z analog input. The
user units are represented in mm.

744Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

D-Buffer:
global real static X_Correction1(3)(10)
global real static X_Correction2(3)(10)
Buffer:
local int X_axis
local int Y_axis
local int Z_axis
local int zone
local int X_base
local int X_step
local int Y_base
local int Y_step

local int Z_base
local int Z_step
local int Z_referenced_analog_input

X_axis=0 ! First moving axis
Y_axis=1 ! Second moving axis
Z_axis=2 ! Third moving axis
zone =0 ! Index of error mapping zone in use
X_base=-100 ! X staring coordinate of error mapping zone
Y_base=30 ! Y staring coordinate of error mapping zone
X_step=10 ! X interval in error map table
Y_step=10 ! Y interval in error map table
Z_base=30 ! Z staring percentage of analog input
Z_step=10 ! Z interval
Z_referenced_analog_input = 1 ! AIN(1)!Correction table for Error Mapping
for X axis of the first Z value - declared in D-Buffer
X_Correction1(0)(0)=0; X_Correction1(0)(1)=0.3; X_Correction1(0)(2)=-0.4;
X_Correction1(0)(3)=-0.7; X_Correction1(0)(4)=-0.1;
X_Correction1(0)(5)=0.22; X_Correction1(0)(6)=0.55;
X_Correction1(0)(7)=0.2; X_Correction1(0)(8)=-0.3;
X_Correction1(0)(9)=0;
X_Correction1(1)(0)=0; X_Correction1(1)(1)=0.4; X_Correction1(1)(2)=-0.4;
X_Correction1(1)(3)=-0.5; X_Correction1(1)(4)=-0.2;
X_Correction1(1)(5)=0.24; X_Correction1(1)(6)=0.3; X_Correction1(1)
(7)=0.32; X_Correction1(1)(8)=-0.13;
X_Correction1(1)(9)=0;
X_Correction1(2)(0)=0; X_Correction1(2)(1)=0.1; X_Correction1(2)(2)=-0.2;
X_Correction1(2)(3)=-0.4; X_Correction1(2)(5)=0.3;
X_Correction1(2)(6)=0.4; X_Correction1(2)(7)=0.33; X_Correction1(2)(8)=-
0.1; X_Correction1(2)(9)=0
! Correction table for Error Mapping for X axis of the second Z value -
declared in D-Buffer
X_Correction2(0)(0)=0; X_Correction2(0)(1)=0.23;
X_Correction2(0)(2)=-0.12; X_Correction2(0)(3)=-0.3;
X_Correction2(0)(4)=-0.2
X_Correction2(0)(5)=0.26; X_Correction2(0)(6)=0.15;

745Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

X_Correction2(0)(7)=0.02; X_Correction2(0)(8)=-0.15;
X_Correction2(0)(9)=0
X_Correction2(1)(0)=0; X_Correction2(1)(1)=0.24;
X_Correction2(1)(2)=-0.14; X_Correction2(1)(3)=-0.34;
X_Correction2(1)(4)=-0.2
X_Correction2(1)(5)=0.14;
X_Correction2(1)(6)=-0.23; X_Correction2(1)(7)=-0.32;
X_Correction2(1)(8)=-0.13; X_Correction2(1)(9)=0
X_Correction2(2)(0)=0; X_Correction2(2)(1)=-0.1;
X_Correction2(2)(2)=-0.32; X_Correction2(2)(3)=-0.4;
X_Correction2(2)(4)=0.15
X_Correction2(2)(5)=0.36; X_Correction2(2)(6)=0.44;
X_Correction2(2)(7)=0.23; X_Correction2(2)(8)=-0.11;
X_Correction2(2)(9)=0
! X axis error mapping function configuration
ERRORMAP3D2/0al (X_axis, Y_axis, Z_axis), zone, X_base, X_step, Y_base,
Y_step, Z_base, Z_step, X_Correction1, X_Correction2, X_axis, Y_axis, Z_
referenced_analog_input
! Enable error mapping
ERRORMAPON X_axis, zone
STOP

4.11.9 ERRORMAP3D3

Description

The ERRORMAP3D3 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the interpolated error
from the desired position so that the actual value will be closer to the desired value. Interpolation is
linear by default; other options are available.

ERRORMAP3D3 function receives indexes of three axes, zone index, base value of the ‘axis0’
command, fixed defined interval of the ‘axis0’ command, base value of the ‘axis1’ command, fixed
defined interval of the ‘axis1’ command, base value of the ‘axis2’ command, fixed defined interval of
the ‘axis2’ command, and three 2D correction tables (in correlation to the specified ‘axis2’
coordinates) for mechanical error compensation.

Syntax

ERRORMAP3D3[command options] (axis0, axis1, axis2), zone, base0, step0,
base1, step1, base2, step2, correction_map0, correction_map1, correction_
map2[, reference_axis_or_analog_input0, referenced _axis_or_analog_
input1, referenced _axis_or_analog_input2]

746Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

base0
A real number representing the ‘axis0’ command that corresponds to the
first point in correction table for mechanical error compensation.

step0
A real number representing the fixed interval distance between the two
adjacent ‘axis0’ commands.

base1
A real number representing the ‘axis1’ command that corresponds to the
first point in correction table for mechanical error compensation.

step1
A real number representing the fixed interval distance between the two
adjacent ‘axis1’ commands.

base2
A real number representing the ‘axis2’ command that corresponds to the
first point in correction table for mechanical error compensation.

step2
A real number representing the fixed interval distance between the two
adjacent ‘axis2’ commands.

correction_

map0

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘0’
coordinate. The array type should be GLOBAL REAL

STATIC (defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘1’ coordinate.
The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘2’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

747Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj
Specifies that the first optional parameter will be regarded as an analog input
index.

/ak
Specifies that the second optional parameter will be regarded as an analog input
index.

/al
Specifies that the third optional parameter will be regarded as an analog input
index.

/e

Specifies that the extrapolation will be used for Z values that are beyond the
original observation range. That is, we are assuming that existing trends will
continue (by using the nearest correction table to estimate the correction). This
method is subject to greater uncertainty and a higher risk of producing
meaningless results than interpolation.

Comments

> When incorrect parameters are specified, the relevant compile-time or run-time error is
generated. See ACSPL+ Runtime Errors for explanation of error 2044 and ACSPL+
Compilation Errors for explanations of errors 3113, 3384, 3413, 3414. The function is intended
for use with arrays only; an error is generated if a scalar is given as a parameter.

Example

This example uses three 2-dimensional arrays to create 2-dimensional correction maps, that are
used for the 3D Dynamic error compensation. Each map represents a different value(height) of the Z
axis. The zone starts at coordinate -100 for X, 30 for Y, and 30 for Z. It has a fixed interval of 10 mm
for each axis. The user units are represented in mm.

748Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

D-Buffer:
global real static X_Correction1(3)(10)
global real static X_Correction2(3)(10)
global real static X_Correction3(3)(10)

Buffer:
local int X_axis
local int Y_axis
local int Z_axis
local int zone
local int X_base
local int X_step
local int Y_base
local int Y_step

local int Z_base
local int Z_step

X_axis=0 ! First moving axis
Y_axis=1 ! Second moving axis
Z_axis=2 ! Third moving axis
zone =0 ! Index of error mapping zone in use
X_base=-100 ! X staring coordinate of error mapping zone
Y_base=30 ! Y staring coordinate of error mapping zone
X_step=10 ! X interval in error map table
Y_step=10 ! Y interval in error map table
Z_base=30 ! Z staring coordinate of error mapping zone
Z_step=10 ! Z interval in error map table!Correction table for Error
Mapping for X axis of the first Z height - declared in D-Buffer
X_Correction1(0)(0)=0; X_Correction1(0)(1)=0.3; X_Correction1(0)(2)=-0.4;
X_Correction1(0)(3)=-0.7; X_Correction1(0)(4)=-0.1;
X_Correction1(0)(5)=0.22; X_Correction1(0)(6)=0.55;
X_Correction1(0)(7)=0.2; X_Correction1(0)(8)=-0.3;
X_Correction1(0)(9)=0;
X_Correction1(1)(0)=0; X_Correction1(1)(1)=0.4; X_Correction1(1)(2)=-0.4;
X_Correction1(1)(3)=-0.5; X_Correction1(1)(4)=-0.2;
X_Correction1(1)(5)=0.24; X_Correction1(1)(6)=0.3;
X_Correction1(1)(7)=0.32; X_Correction1(1)(8)=-0.13;
X_Correction1(1)(9)=0;
X_Correction1(2)(0)=0; X_Correction1(2)(1)=0.1; X_Correction1(2)(2)=-0.2;
X_Correction1(2)(3)=-0.4; X_Correction1(2)(5)=0.3;
X_Correction1(2)(6)=0.4; X_Correction1(2)(7)=0.33;
X_Correction1(2)(8)=-0.1; X_Correction1(2)(9)=0
! Correction table for Error Mapping for X axis of the second Z height -
declared in D-Buffer
X_Correction2(0)(0)=0; X_Correction2(0)(1)=0.23;
X_Correction2(0)(2)=-0.12; X_Correction2(0)(3)=-0.3;
X_Correction2(0)(4)=-0.2
X_Correction2(0)(5)=0.26; X_Correction2(0)(6)=0.15;

749Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

X_Correction2(0)(7)=0.02; X_Correction2(0)(8)=-0.15;
X_Correction2(0)(9)=0
X_Correction2(1)(0)=0; X_Correction2(1)(1)=0.24;
X_Correction2(1)(2)=-0.14; X_Correction2(1)(3)=-0.34;
X_Correction2(1)(4)=-0.2
X_Correction2(1)(5)=0.14; X_Correction2(1)(6)=-0.23;
X_Correction2(1)(7)=-0.32; X_Correction2(1)(8)=-0.13;
X_Correction2(1)(9)=0
X_Correction2(2)(0)=0; X_Correction2(2)(1)=-0.1;
X_Correction2(2)(2)=-0.32; X_Correction2(2)(3)=-0.4;
X_Correction2(2)(4)=0.15
X_Correction2(2)(5)=0.36; X_Correction2(2)(6)=0.44;
X_Correction2(2)(7)=0.23; X_Correction2(2)(8)=-0.11;
X_Correction2(2)(9)=0
! Correction table for Error Mapping for X axis of the third Z height -
declared in D-Buffer
X_Correction3(0)(0)=0; X_Correction3(0)(1)=0.23;
X_Correction3(0)(2)=-0.12; X_Correction3(0)(3)=-0.3;
X_Correction3(0)(4)=-0.2
X_Correction3(0)(5)=0.26; X_Correction3(0)(6)=0.15;
X_Correction3(0)(7)=0.02; X_Correction3(0)(8)=-0.15;
X_Correction3(0)(9)=0
X_Correction3(1)(0)=0; X_Correction3(1)(1)=0.24;
X_Correction3(1)(2)=-0.14; X_Correction3(1)(3)=-0.34;
X_Correction3(1)(4)=-0.2
X_Correction3(1)(5)=0.14; X_Correction3(1)(6)=-0.23;
X_Correction3(1)(7)=-0.32; X_Correction3(1)(8)=-0.13;
X_Correction3(1)(9)=0
X_Correction3(2)(0)=0; X_Correction3(2)(1)=-0.1;
X_Correction3(2)(2)=-0.32; X_Correction3(2)(3)=-0.4;
X_Correction3(2)(4)=0.15
X_Correction3(2)(5)=0.36; X_Correction3(2)(6)=0.44;
X_Correction3(2)(7)=0.23; X_Correction3(2)(8)=-0.11;
X_Correction3(2)(9)=0

! X axis error mapping function configuration
ERRORMAP3D3/0 (X_axis, Y_axis, Z_axis), zone, X_base, X_step, Y_base, Y_
step, Z_base, Z_step, X_Correction1, X_Correction2, X_Correction3
! Enable error mapping
ERRORMAPON X_axis, zone

4.11.10 ERRORMAPN3D2

Description

The ERRORMAPN3D2 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the linearly (by
default) interpolated error from the desired position so that the actual value will be closer to the
desired value.

750Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

ERRORMAPN3D2 function receives indexes of three axes, zone index, ‘axis0’ command table, ‘axis1’
command table, ‘axis2’ command table, and two 2D correction tables (in correlation to the specified
‘axis2’ coordinates) for mechanical error compensation.

Syntax

ERRORMAPN3D2[command options] (axis0, axis1, axis2), zone, axis0_command,
axis1_command, axis2_command, correction_map0, correction_map1[,
reference_axis_or_analog_input0, referenced _axis_or_analog_input1,
referenced _axis_or_analog_input2]

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis0_

command

The name of a real one-dimensional array that specifies ‘axis0’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis1_

command

The name of a real one-dimensional array that specifies ‘axis1’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis2_

command

The name of a real one-dimensional array that specifies ‘axis2’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map0

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to axis 2’s first
specified coordinate. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to axis 2’s second
specified coordinate. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

751Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj
Specifies that the first optional parameter will be regarded as an analog input
index.

/ak
Specifies that the second optional parameter will be regarded as an analog input
index.

/al
Specifies that the third optional parameter will be regarded as an analog input
index.

/e

Specifies that the extrapolation will be used for Z values that are beyond the
original observation range. That is, we are assuming that existing trends will
continue (by using the nearest correction table to estimate the correction). This
method is subject to greater uncertainty and a higher risk of producing
meaningless results than interpolation.

Comments

> When incorrect parameters are specified, the relevant compile-time or run-time error is
generated. See ACSPL+ Runtime Errors for explanation of error 2044 and ACSPL+
Compilation Errors for explanations of errors 3113, 3384, 3413, 3414. The function is intended
for use with arrays only; an error is generated if a scalar is given as a parameter.

752Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Example

D-Buffer:
global real static X_Correction1(3)(10)
global real static X_Correction2(3)(10)
global real static X_Axis_Coordinates(10)
global real static Y_Axis_Coordinates(3)
global real static Z_Axis_Coordinates(3)

Buffer:
local int X_axis
local int Y_axis
local int Z_axis
int Zone

X_axis = 0 ! First moving axis
Y_axis = 1 ! Second moving axis
Z_axis = 2 ! third moving axis
Zone=0 ! Index of error mapping zone in use

! Error map zone definition for X axis
X_Axis_Coordinates(0)=-100; X_Axis_Coordinates(1)=-90;
X_Axis_Coordinates(2)=-80;
X_Axis_Coordinates(3)=-70; X_Axis_Coordinates(4)=-60;
X_Axis_Coordinates(5)=-50;
X_Axis_Coordinates(6)=-40; X_Axis_Coordinates(7)=-30;
X_Axis_Coordinates(8)=-20;
X_Axis_Coordinates(9)=-10
! Error map zone definition for Y axis
Y_Axis_Coordinates(0)=30; Y_Axis_Coordinates(1)=40;
Y_Axis_Coordinates(2)=50
! Error map zone definition for Z axis
Z_Axis_Coordinates(0)=30; Z_Axis_Coordinates(1)=32;
! Correction table for Error Mapping for X axis of the first Z height -
declared in D-Buffer
X_Correction1(0)(0)=0; X_Correction1(0)(1)=0.3;
X_Correction1(0)(2)=-0.4; X_Correction1(0)(3)=-0.7;
X_Correction1(0)(4)=-0.1; X_Correction1(0)(5)=0.22;
X_Correction1(0)(6)=0.55; X_Correction1(0)(7)=0.2;
X_Correction1(0)(8)=-0.3; X_Correction1(0)(9)=0
X_Correction1(1)(0)=0; X_Correction1(1)(1)=0.4;
X_Correction1(1)(2)=-0.4; X_Correction1(1)(3)=-0.5;
X_Correction1(1)(4)=-0.2; X_Correction1(1)(5)=0.24;
X_Correction1(1)(6)=0.3; X_Correction1(1)(7)=0.32;
X_Correction1(1)(8)=-0.13; X_Correction1(1)(9)=0
X_Correction1(2)(0)=0; X_Correction1(2)(1)=0.1;
X_Correction1(2)(2)=-0.2; X_Correction1(2)(3)=-0.4;
X_Correction1(2)(4)=0.1; X_Correction1(2)(5)=0.3;
X_Correction1(2)(6)=0.4; X_Correction1(2)(7)=0.33;
X_Correction1(2)(8)=-0.1; X_Correction1(2)(9)=0
! Correction table for Error Mapping for X axis of the second Z height -

753Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

declared in D-Buffer
X_Correction2(0)(0)=0; X_Correction2(0)(1)=0.23;
X_Correction2(0)(2)=-0.12; X_Correction2(0)(3)=-0.3;
X_Correction2(0)(4)=-0.2; X_Correction2(0)(5)=0.26;
X_Correction2(0)(6)=0.15; X_Correction2(0)(7)=0.02;
X_Correction2(0)(8)=-0.15; X_Correction2(0)(9)=0
X_Correction2(1)(0)=0; X_Correction2(1)(1)=0.24;
X_Correction2(1)(2)=-0.14; X_Correction2(1)(3)=-0.34;
X_Correction2(1)(4)=-0.2; X_Correction2(1)(5)=0.14;
X_Correction2(1)(6)=-0.23; X_Correction2(1)(7)=-0.32;
X_Correction2(1)(8)=-0.13; X_Correction2(1)(9)=0
X_Correction2(2)(0)=0; X_Correction2(2)(1)=-0.1;
X_Correction2(2)(2)=-0.32; X_Correction2(2)(3)=-0.4;
X_Correction2(2)(4)=0.15; X_Correction2(2)(5)=0.36;
X_Correction2(2)(6)=0.44; X_Correction2(2)(7)=0.23;
X_Correction2(2)(8)=-0.11; X_Correction2(2)(9)=0

! X axis error mapping function configuration
ERRORMAPN3D2/0 (X_axis, Y_axis, Z_axis), Zone, X_Axis_Coordinates, Y_
Axis_Coordinates, Z_Axis_Coordinates, X_Correction1, X_Correction2

! Enable Error Mapping
ERRORMAPON X_axis, Zone
STOP

4.11.11 ERRORMAPN3D3

Description

The ERRORMAPN3D3 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the linearly (by
default) interpolated error from the desired position so that the actual value will be closer to the
desired value.

ERRORMAPN3D3 function receives indexes of three axes, zone index, ‘axis0’ command table, ‘axis1’
command table, ‘axis2’ command table, and three 2D correction tables (in correlation to the
specified ‘axis2’ coordinates) for mechanical error compensation.

Syntax

ERRORMAPN3D3[command options] (axis0, axis1, axis2), zone, axis0_command,
axis1_command, axis2_command, correction_map0, correction_map1,
correction_map2[, reference_axis_or_analog_input0, referenced _axis_or_
analog_input1, referenced _axis_or_analog_input2]

754Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis0_

command

The name of a real one-dimensional array that specifies ‘axis0’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis1_

command

The name of a real one-dimensional array that specifies ‘axis1’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis2_

command

The name of a real one-dimensional array that specifies ‘axis2’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map0

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to axis 2’s first
specified coordinate. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to axis 2’s second
specified coordinate. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to axis 2’s third
specified coordinate. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_ [Optional] The index of the second axis, or the index of the second analog

755Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

axis_or_analog_
input1

input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0
The mechanical error compensation will be applied to ‘axis0’
(default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be
calculated be on the feedback from the axis specified by the
optional parameter.

/aj
Specifies that the first optional parameter will be regarded
as an analog input index.

/ak
Specifies that the second optional parameter will be
regarded as an analog input index.

/al
Specifies that the third optional parameter will be regarded
as an analog input index.

/e

Specifies that the extrapolation will be used for Z values that
are beyond the original observation range. That is, we are
assuming that existing trends will continue (by using the
nearest correction table to estimate the correction). This
method is subject to greater uncertainty and a higher risk of
producing meaningless results than interpolation.

Comments

> When incorrect parameters are specified, the relevant compile-time or run-time error is
generated. See ACSPL+ Runtime Errors for explanation of error 2044 and ACSPL+
Compilation Errors for explanations of errors 3113, 3384, 3413, 3414. The function is intended
for use with arrays only; an error is generated if a scalar is given as a parameter.

Example

D-Buffer:
global real static X_Correction1(3)(10)
global real static X_Correction2(3)(10)
global real static X_Correction3(3)(10)
global real static X_Axis_Coordinates(10)

756Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

global real static Y_Axis_Coordinates(3)
global real static Z_Axis_Coordinates(3)

Buffer:
local int X_axis
local int Y_axis
local int Z_axis
int Zone

X_axis = 0 ! First moving axis
Y_axis = 1 ! Second moving axis
Z_axis = 2 ! third moving axis
Zone=0 ! Index of error mapping zone in use! Error map zone definition
for X axis
X_Axis_Coordinates(0)=-100; X_Axis_Coordinates(1)=-90; X_Axis_Coordinates
(2)=-80;
X_Axis_Coordinates(3)=-70; X_Axis_Coordinates(4)=-60; X_Axis_Coordinates
(5)=-50;
X_Axis_Coordinates(6)=-40; X_Axis_Coordinates(7)=-30; X_Axis_Coordinates
(8)=-20;
X_Axis_Coordinates(9)=-10
! Error map zone definition for Y axis
Y_Axis_Coordinates(0)=30; Y_Axis_Coordinates(1)=40; Y_Axis_Coordinates
(2)=50
! Error map zone definition for Z axis
Z_Axis_Coordinates(0)=30; Z_Axis_Coordinates(1)=32; Z_Axis_Coordinates
(1)=34;
! Correction table for Error Mapping for X axis of the first Z height -
declared in D-Buffer
X_Correction1(0)(0)=0; X_Correction1(0)(1)=0.3; X_Correction1(0)(2)=-0.4;
X_Correction1(0)(3)=-0.7;
X_Correction1(0)(4)=-0.1; X_Correction1(0)(5)=0.22; X_Correction1(0)
(6)=0.55; X_Correction1(0)(7)=0.2;
X_Correction1(0)(8)=-0.3; X_Correction1(0)(9)=0
X_Correction1(1)(0)=0; X_Correction1(1)(1)=0.4; X_Correction1(1)(2)=-0.4;
X_Correction1(1)(3)=-0.5;
X_Correction1(1)(4)=-0.2; X_Correction1(1)(5)=0.24; X_Correction1(1)
(6)=0.3; X_Correction1(1)(7)=0.32;
X_Correction1(1)(8)=-0.13; X_Correction1(1)(9)=0
X_Correction1(2)(0)=0; X_Correction1(2)(1)=0.1; X_Correction1(2)(2)=-0.2;
X_Correction1(2)(3)=-0.4;
X_Correction1(2)(4)=0.1; X_Correction1(2)(5)=0.3; X_Correction1(2)
(6)=0.4; X_Correction1(2)(7)=0.33;
X_Correction1(2)(8)=-0.1; X_Correction1(2)(9)=0
! Correction table for Error Mapping for X axis of the second Z height -
declared in D-Buffer
X_Correction2(0)(0)=0; X_Correction2(0)(1)=0.23; X_Correction2(0)(2)=-
0.12; X_Correction2(0)(3)=-0.3;
X_Correction2(0)(4)=-0.2; X_Correction2(0)(5)=0.26; X_Correction2(0)

757Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

(6)=0.15; X_Correction2(0)(7)=0.02;
X_Correction2(0)(8)=-0.15; X_Correction2(0)(9)=0
X_Correction2(1)(0)=0; X_Correction2(1)(1)=0.24; X_Correction2(1)(2)=-
0.14; X_Correction2(1)(3)=-0.34;
X_Correction2(1)(4)=-0.2; X_Correction2(1)(5)=0.14; X_Correction2(1)(6)=-
0.23; X_Correction2(1)(7)=-0.32;
X_Correction2(1)(8)=-0.13; X_Correction2(1)(9)=0
X_Correction2(2)(0)=0; X_Correction2(2)(1)=-0.1; X_Correction2(2)(2)=-
0.32; X_Correction2(2)(3)=-0.4;
X_Correction2(2)(4)=0.15; X_Correction2(2)(5)=0.36; X_Correction2(2)
(6)=0.44; X_Correction2(2)(7)=0.23;
X_Correction2(2)(8)=-0.11; X_Correction2(2)(9)=0
! Correction table for Error Mapping for X axis of the third Z height -
declared in D-Buffer
X_Correction3(0)(0)=0; X_Correction3(0)(1)=0.23; X_Correction3(0)(2)=-
0.12; X_Correction3(0)(3)=-0.3; X_Correction3(0)(4)=-0.2
X_Correction3(0)(5)=0.26; X_Correction3(0)(6)=0.15; X_Correction3(0)
(7)=0.02; X_Correction3(0)(8)=-0.15;
X_Correction3(0)(9)=0
X_Correction3(1)(0)=0; X_Correction3(1)(1)=0.24; X_Correction3(1)(2)=-
0.14; X_Correction3(1)(3)=-0.34;
X_Correction3(1)(4)=-0.2
X_Correction3(1)(5)=0.14; X_Correction3(1)(6)=-0.23; X_Correction3(1)
(7)=-0.32; X_Correction3(1)(8)=-0.13; X_Correction3(1)(9)=0
X_Correction3(2)(0)=0; X_Correction3(2)(1)=-0.1; X_Correction3(2)(2)=-
0.32; X_Correction3(2)(3)=-0.4; X_Correction3(2)(4)=0.15
X_Correction3(2)(5)=0.36; X_Correction3(2)(6)=0.44; X_Correction3(2)
(7)=0.23; X_Correction3(2)(8)=-0.11;
X_Correction3(2)(9)=0

! X axis error mapping function configuration
ERRORMAPN3D3/0 (X_axis, Y_axis, Z_axis), Zone, X_Axis_Coordinates, Y_
Axis_Coordinates, Z_Axis_Coordinates, X_Correction1, X_Correction2, X_
Correction3

! Enable Error Mapping
ERRORMAPON X_axis, Zone
STOP

4.11.12 ERRORMAP3D5

Description

The ERRORMAP3D5 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the interpolated error
from the desired position so that the actual value will be closer to the desired value. Interpolation is
linear by default; other options are available.

The ERRORMAP3D5 function receives indices of three axes, zone index, the base value of the ‘axis0’
command, a fixed defined interval of the ‘axis0’ command, the base value of the ‘axis1’ command, a

758Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

fixed defined interval of the ‘axis1’ command, the base value of the 'axis2' command, a fixed defined
interval of the 'axis2' command, and five 2D correction tables (in correlation to the specified ‘axis2’
coordinates) for mechanical error compensation.

Syntax

ERRORMAP3D5[command options] (axis0, axis1, axis2), zone, base1, step1,
base2, step2, base3, step3, correction_map0, correction_map1, correction_
map2, correction_map3, correction_map4[, reference_axis_or_analog_input0,
referenced _axis_or_analog_input1, referenced _axis_or_analog_input2]

Arguments

axis0
The index of the axis to which the mechanical error compensation will be
applied, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

base0
A real number representing the ‘axis0’ command that corresponds to the
first point in correction table for mechanical error compensation.

step0
A real number representing the fixed interval distance between the two
adjacent ‘axis0’ commands.

base1
A real number representing the ‘axis1’ command that corresponds to the
first point in correction table for mechanical error compensation.

step1
A real number representing the fixed interval distance between the two
adjacent ‘axis1’ commands.

base2
A real number representing the ‘axis2’ command that corresponds to the
first point in correction table for mechanical error compensation.

step2
A real number representing the fixed interval distance between the two
adjacent ‘axis2’ commands.

759Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

correction_

map0

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘0’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map1

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘1’ coordinate.
The array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘2’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map3

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘3’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

correction_

map4

The name of a real two-dimensional array that specifies correction table
for mechanical error compensation in relation to axis 2 step ‘4’
coordinate. The array type should be GLOBAL REAL STATIC (defined in D-
Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj Specifies that the first optional parameter to be treated as an analog input index.

760Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

/ak
Specifies that the second optional parameter to be treated as an analog input
index.

/al Specifies that the third optional parameter to be treated as an analog input index.

Error Conditions

The function detects the following error conditions.

> 2044 - Index is out of range, when the defined array size is less than the defined number of
array points.

> 3113 - The step in the table is zero or negative, when the step argument is zero or negative.

> 3384 - The specified suffix combination is invalid. Please see the documentation for more
details.

> 3413 - The supplied correction maps (2-dimensional arrays) should have the same
dimensions. Please see the documentation for more details.

> 3414 - The Specified referenced axes/analog inputs are invalid. Please see the
documentation for more details.

Comments

If incorrect parameters are passed to the function the corresponding runtime error is generated. The
function is intended to be used only with arrays; thus, an error is generated if a scalar is given as a
parameter.

4.11.13 ERRORMAPN3D5

Description

The ERRORMAPN3D5 function configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the interpolated error
from the desired position so that the actual value will be closer to the desired value. Interpolation is
linear by default; other options are available.

ERRORMAPN3D5 function receives indices of three axes, zone index, ‘axis0’ command table, ‘axis1’
command table, 'axis2' command table, and 5 2D correction tables correlated to the specified 'axis2'
coordinates for mechanical error compensation.

Syntax

ERRORMAPN3D5[command options] (axis0, axis1, axis2), zone, axis0_command,
axis1_command, axis2_command, correction_map0, correction_map1,
correction_map2, correction_map3, correction_map4[, reference_axis_or_
analog_input0, referenced _axis_or_analog_input1, referenced _axis_or_
analog_input2]

761Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis0_

command

The name of a real one-dimensional array that specifies ‘axis0’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis1_

command

The name of a real one-dimensional array that specifies ‘axis1’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis2_

command

The name of a real one-dimensional array that specifies ‘axis2’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map0

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the first specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the second
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the third specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map3

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the fourth
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

762Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

correction_

map4

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the fifth specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj
Specifies that the first optional parameter will be regarded as an analog input
index.

/ak
Specifies that the second optional parameter will be regarded as an analog input
index.

/al
Specifies that the third optional parameter will be regarded as an analog input
index.

Error Conditions

The function detects the following error conditions.

> 2044 - Index is out of range, when the defined array size is less than the defined number of
array points.

> 3384 - The specified suffix combination is invalid. Please see the documentation for more
details.

> 3413 - The supplied correction maps (2-dimensional arrays) should have the same
dimensions. Please see the documentation for more details.

> 3414 - The Specified referenced axes/analog inputs are invalid. Please see the
documentation for more details.

763Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Comments

If incorrect parameters are passed to the function the corresponding runtime error is generated. The
function is intended to be used only with arrays; thus, an error is generated if a scalar is given as a
parameter.

4.11.14 ERRORMAPN3DA

Description

The ERRORMAPN3DAfunction configures and activates 3D error correction for the mechanical error
compensation of the ‘axis0’ command, ‘axis1’ command, and 'axis2' command for the specified
zone, so that the compensated reference position will be calculated by adding the interpolated error
from the desired position so that the actual value will be closer to the desired value. Interpolation is
linear by default; other options are available.

ERRORMAPN3DA function receives indexes of three axes, zone index, ‘axis0’ command table, ‘axis1’
command table, ‘axis2’ command table, and 10 2D correction tables (correlated to the specified
‘axis2’ coordinates) for mechanical error compensation.

Syntax

ERRORMAPN3DA[command options] (axis0, axis1, axis2), zone, axis0_command,
axis1_command, axis2_command, correction_map0, correction_map1,
correction_map2, correction_map3, correction_map4, correction_map5,
correction_map6, correction_map7, correction_map8, correction_map9[,
reference_axis_or_analog_input0, referenced _axis_or_analog_input1,
referenced _axis_or_analog_input2]

Arguments

axis0
The index of the axis that the mechanical error compensation will be
applied to, valid numbers are: 0, 1, 2, ... up to the number of axes in the
system minus 1.

axis1
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

axis2
The index of the second axis participating in 3D mechanical error
compensation, valid numbers are: 0, 1, 2, ... up to the number of axes in
the system minus 1.

zone
The zone index of the mechanical error compensation, valid numbers
are: 0, 1, 2, ... up to the maximum number of zones minus 1.

axis0_

command

The name of a real one-dimensional array that specifies ‘axis0’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis1_

command

The name of a real one-dimensional array that specifies ‘axis1’ command
values used for correction table of mechanical error compensation. The

764Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

array type should be GLOBAL REAL STATIC (defined in D-Buffer).

axis2_

command

The name of a real one-dimensional array that specifies ‘axis2’ command
values used for correction table of mechanical error compensation. The
array type should be GLOBAL REAL STATIC (defined in D-Buffer).

correction_

map0

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the first specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map1

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the second
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

correction_

map2

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the third specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map3

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the fourth
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

correction_

map4

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the fifth specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map5

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the sixth specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map6

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the seventh
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

correction_

map7

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the eighth
specified coordinate of the Z-axis. The array type should be GLOBAL REAL
STATIC (defined in D-Buffer).

correction_

map8

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the ninth specified

765Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

correction_

map9

The name of a real two-dimensional array that specifies a correction
table for mechanical error compensation in relation to the tenth specified
coordinate of the Z-axis. The array type should be GLOBAL REAL STATIC
(defined in D-Buffer).

referenced_
axis_or_analog_
input0

[Optional] The index of the first axis, or the index of the first analog input
whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input1

[Optional] The index of the second axis, or the index of the second analog
input whose feedback will be used to calculate the mechanical error
compensation.

referenced_
axis_or_analog_
input2

[Optional] The index of the second axis, or the index of the third analog
input whose feedback will be used to calculate the mechanical error
compensation.

Switches

/0 The mechanical error compensation will be applied to ‘axis0’ (default)

/1 The mechanical error compensation will be applied to ‘axis1’

/2 The mechanical error compensation will be applied to ‘axis2’

/a
Specified that the mechanical error compensation will be calculated be on the
feedback from the axis specified by the optional parameter.

/aj
Specifies that the first optional parameter will be regarded as an analog input
index.

/ak
Specifies that the second optional parameter will be regarded as an analog input
index.

/al
Specifies that the third optional parameter will be regarded as an analog input
index.

Error Conditions

The function detects the following error conditions.

> 2044 - Index is out of range, when the defined array size is less than the defined number of
array points.

> 3384 - The specified suffix combination is invalid. Please see the documentation for more
details.

> 3413 - The supplied correction maps (2-dimensional arrays) should have the same
dimensions. Please see the documentation for more details.

766Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

> 3414 - The Specified referenced axes/analog inputs are invalid. Please see the
documentation for more details.

Comments

If incorrect parameters are passed to the function the corresponding runtime error is generated. The
function is intended to be used only with arrays; thus, an error is generated if a scalar is given as a
parameter.

4.11.15 ERRORMAPOFF

Description

ERRORMAPOFF function receives axis index and zone index. The ERRORMAPOFF function
deactivates error mapping correction for the mechanical error compensation for the specified zone.

Syntax

ERRORMAPOFF axis, zone

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the

system minus 1.

zone
The zone index, valid numbers are: 0, 1, 2, ... up to the maximum number of
zones minus 1. If ‘-1’ is specified, all zones of specified axis will be affected.

4.11.16 ERRORMAPON

ERRORMAPON function receives axis index and zone index. The ERRORMAPON function activates
error correction for the mechanical error compensation for the specified zone.

Syntax

ERRORMAPON axis, zone

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the

system minus 1.

zone
The zone index, valid numbers are: 0, 1, 2, ... up to the maximum number of
zones minus 1. If ‘-1’ is specified, all zones of specified axis will be affected.

4.11.17 #ERRORMAPREP

Description

#ERRORMAPREP function generates a report of all activated zones of error mapping for all axes in
the system.

767Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

Syntax

#ERRORMAPREP

4.11.18 ERRORUNMAP

Description

ERRORUNMAP function receives axis index and zone index. The ERRORUNMAP function deactivates
error correction for the mechanical error compensation for the specified zone.

Syntax

ERRORUNMAP axis, zone

Arguments

axis
The axis index, valid numbers are: 0, 1, 2, ... up to the number of axes in the

system minus 1.

zone
The zone index, valid numbers are: 0, 1, 2, ... up to the maximum number of
zones minus 1. If ‘-1’ is specified, all zones of specified axis will be affected.

768Version 3.12

ACSPL+ Commands & Variables Reference Guide
4. ACSPL+ Functions

5. ACSPL+ Standard Structures

5.1 LCI Standard Structure

The LCI structure is supported in versions 3.10 and higher.

5.1.1 LCI Functions

5.1.1.1 PowerPWMOut

Description

This function initializes Pulse Modulation mode .

Syntax

PowerPWMOut (Mode, Freq, Width, DutyCycle, [MinValue, MaxValue,
MinVelocity, MaxVelocity])

Arguments

Mode

Modulation mode:

0 – Fixed parameters mode

1 - Fixed Frequency

2 - Fixed Pulse Width

3 - Fixed duty cycle

Modes 0 – 3 are incompatible modes, i.e. setting any of these modes
automatically disables the previously set mode.

Freq

Pulse modulation frequency in Hz, range from 0.035Hz to 1MHz.

In mode = 1, the frequency is fixed and is not changed during the process.
In mode = 2 or 3, the function only sets the initial frequency.

Width Pulse Width in milliseconds, range for 6.67 nsec to 28.60 sec.

DutyCycle

Duty cycle in percentage, range from 0% to 100%.

When mode = 0, DutyCycle value is not applicable

When mode = 1, the function only sets the initial duty cycle.

When mode = 2, the argument has no effect, as duty cycle is

automatically calculated by the unit as function of frequency.

When mode = 3, the duty cycle is fixed and is not changed during the

process

MinValue
[Optional] Minimum value of volatile parameter (depends on mode) , if
calculated vector velocity is less than or equal to MinVel

769Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

MaxValue
[Optional] Maxium value of volatile parameter (depends on mode) , if
calculated vector velocity is greater than or equal toMaxVel

MinVel

[Optional] Minimum velocity for parameter calculation.

Below the minimum value, the parameter will be limited by MinValue or
default, if MinValue is not specified

By default, minimum velocity is zero.`

MaxVel

[Optional] Maximum velocity for parameter calculation.

Above the maximum value, the parameter will be limited by MaxValue or
default, if MaxValue is not specified.

By default, maximum velocity is defined by XVEL parameter

Example

5.1.1.2 PowerAnalogOut

Description

The function defines the range of Analog Output value depending on the actual velocity

Syntax

PowerAnalogOut (AnalogOutInd, [MinValue, MaxValue, MinVelocity,
MaxVelocity])

Arguments

AnalogOutInd Analog output index (0 or 1)

MinValue
[Optional] Minimum value of volatile parameter if calculated vector
velocity equals or below MinVel, default is 0.

MaxValue
[Optional] Maximum of volatile parameter if calculated vector velocity
equals or above MaxVel, default is 100 (%)

MinVel

[Optional] Minimum velocity for parameter calculation.

Below the minimum value, parameter will be limited by

MinValue or default, if MinValue is not specified

By default, Minimum velocity is zero.

770Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

MaxVel

[Optional] Maximum velocity for parameter calculation.

Above the maximum value, parameter will be limited by

MaxValue or default, if MaxValue is not specified.

By default, Maximum velocity is defined by XVEL parameter

!D-buffer declaration
LCI lc

!Program buffer
lc.MotionAxes = AxListAsMask(X,Y)
!Define laser power control by analog output
! Output value is 0 Volt for velocity < 10 and 10 Volt for velocity > VEL
(X)*2
! Use Analog output - 1
lc.PowerAnalogOut(1, 0, 10, 10, VEL(X)*2)

lc.LaserEnable()

5.1.1.3 PowerDigitalOut

Description

The function defines the range of Digital Output value depending on the actual velocity.

SYNTAX

PowerDigitalOut (SynchPulseWidth, [MinValue, MaxValue, MinVelocity,
MaxVelocity])

Arguments

SynchPulseWidth
The width of the synchronization pulse in msec. The pulse fires
every time when all Digital Outputs are updated and user can read
the Power value

MinValue
[Optional] Minimum value of volatile parameter (depends on mode)
, if calculated vector velocity equals or below MinVel. Default is 0

MaxValue
[Optional] Maximum of volatile parameter (depends on mode) , if
calculated vector velocity equals or above MaxVel. Default is 255

MinVel

[Optional] Minimum velocity for parameter calculation. Below the
minimum value, parameter will be limited by MinValue or by the
default value if MinValue is not specified. By default, minimum
velocity is zero.

771Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

MaxVel

[Optional] Maximum velocity for parameter calculation. Above the
maximum value, the parameter will be limited by MaxValue or by
the default value if MaxValue is not specified. By default, maximum
velocity is defined by the XVEL parameter.

5.1.1.4 FixedDistPulse

Description

The function initializes the fixed distance pulse firing mode. This mode is useful if a laser be should
be activated at specified fixed intervals between activations along an actual motion trajectory. The
AxesUsed field defines which axes are used for multi-axis trajectory generation.

Syntax

int FixedDistPulse (PulseWidth, Interval[, StartPos, EndPos, InitialPos,
MinValue, MaxValue, MinVelocity, MaxVelocity])

Return Type

Occupied channel index as integer value

Arguments

PulseWidth Pulse Width in milliseconds (40ns – 161ms)

Interval
Specifies an interval in user units between pulses along the multi-axis
motion trajectory.

StartPos
[Optional] Specifies a start position in user units along the multi-axis
motion trajectory. The pulses start generating after reaching this
position. The value is 0 by default.

EndPos
[Optional] Specifies a last position in user units along the multi-axis
motion trajectory. The pulses stop generating after reaching this position.
If the parameter is omitted , then there is no limitation.

InitialPos
[Optional] Specifies an initial position offset relative to the user origin. By
default InitialPos is zero. For a multi-axes-trajectory, the InitialPos should
be omitted or set to zero.

MinValue
[Optional] Minimum value of volatile parameter (depends on mode) , if
calculated vector velocityis greater than or equal to MinVel

MaxValue
[Optional] Maximum of volatile parameter (depends on mode) , if
calculated vector velocity less than or equal toMaxVel

MinVelocity

[Optional] Minimum velocity for parameter calculation.

Below the minimum value, parameter will be limited by MinValue or
default, if MinValue is not specified

772Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

By default, minimum velocity is zero.`

MaxVelocity

[Optional] Maximum velocity for parameter calculation.

Above the maximum value, parameter will be limited by MaxValue or
default, if MaxValue is not specified.

By default, maximum velocity is defined by XVEL parameter

Comments

The ExtraPulses and ExtraPeriod fields define the extra pulses generation. If at least one of
parameters is 0, no extra pulses are generated.

The PiercePulsesNum and PiercePulseWidth fields define the pierce pulse generation. If at least one
of parameters is 0, no pierce pulses are generated.

The MotionAxes axes mask field is used for trajectory calculation.

The PulseResolution field is used for operation pulse resolution. If the default PulseResolution is 0,
the pulse resolution should be calculated according to the XVEL parameter and Maximum LCI
Frequency.

5.1.1.5 DistanceArrPulse

Description

The function initializes either array-based pulse firing mode.

Syntax

int DistanceArrPulse (arrPos, arWidth, ArraySize)

Return Type

Occupied channel index as integer value

Arguments

arPos
Array of points. Each element in the array defines the point where a pulse

should be fired.

arWidth

Pulse Width value or Pulse Width array in milliseconds. Each width in the
array corresponds to a point in the Position array. The size of array should
be equals to size of Position array. If the parameter is a real value, pulse
width is applied for all elements in the Position array.

ArraySize The size of Points and Width arrays.

Comments

The ExtraPulses and ExtraPeriod fields define the extra pulses generation. If at least one of
parameters is 0, no extra pulses are generated.

The MotionAxes axes mask field is used for trajectory calculation.

773Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

The PulseResolution field is used for operation pulse resolution. In case of the default
PulseResolution is 0, the pulse resolution should be calculated according to the Comments

The ExtraPulses and ExtraPeriod fields define the extra pulses generating. If at least one of
parameters is 0, no extra pulses are generated.

The MotionAxes axes mask field is used for trajectory calculation.

The PulseResolution field is used for operation pulse resolution. In case of the default
PulseResolution is 0, the pulse resolution should calculate according to XVEL parameter and
Maximum LCI Frequency.

Command requires “Array and Segment Based Modes” LCI ordering option to use.

Example

5.1.1.6 CoordinateArrPulse

Description

The function initializes either array-based pulse firing mode based on multiple axis position.

Syntax

int CoordinateArrPulse (ArraySize, WidthArr[, XPosArr, YPosArr , ZPosArr,
APosArr, BPosArr, CPosArr])

Return Type

Occupied first channel index as integer value

Arguments

ArraySize The size of Points and Width arrays.

WidthArr
Pulse Width value or Pulse Width array in milliseconds. Each width in the
array corresponds to a point in the Positions arrays. If the parameter is a
real value, pulse width is applied for all items of Positions arrays.

XPosArr
(optional) Array of X axis positions. Each element of the array defines the
point where a pulse should be fired.

YPosArr
(optional) Array of Y axis positions. Each element of the array defines the
point where a pulse should be fired.

ZPosArr
(optional)Array of Z axis positions. Each element of the array defines the
point where a pulse should be fired.

APosArr
(optional)Array of A axis positions.Each element of the array defines the
point where a pulse should be fired.

BPosArr
(optional)Array of B axis positions. Each element of the array defines the
point where a pulse should be fired.

774Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

CPosArr
(optional)Array of C axis positions. Each element of the array defines the
point where a pulse should be fired.

Comments

Function occupies several channels, depending on the MotionAxes field.

If the parameter is 0, no extra pulses are generated.

The MotionAxes axes mask field is used for trajectory calculation.

The PulseResolution field is used for operation pulse resolution. In case of the default
PulseResolution is 0, the pulse resolution should calculate according to XVEL parameter and
Maximum LCI Frequency.

Command requires “Array and Segment Based Modes” LCI ordering option to use.

Example

5.1.1.7 Tickle

Description

The function initializes the Tickle mode. In this mode the laser control unit generates a signal at
constant frequency and with constant width. Usually this mode is used for those types of lasers that
require gas ionization during the time period when laser processing is off. By setting this mode the
laser will respond faster and more predictably when laser processing resumes. Once this mode is
initialized, the laser control unit constantly generates pulses without regard to any other operational
modes.

Syntax

Tickle (Freq, Width)

Return Type

None

Arguments

Freq

Tickle frequency in Hz.

Minimum frequency is 1149Hz, maximum frequency is 100,000Hz

Not all frequencies can be configured, so the function automatically rounds the
specified frequency to the nearest supported value.

Width

Pulse Width in milliseconds

Minimal width is 0.000107msec (107nsec), maximal width is 0.0273msec
(27.3µsec)

Not all width values are supported, so the function automatically rounds the
specified width to the nearest supported value.

775Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.1.8 LaserEnable

Description

The function enables laser pulse generation.

Syntax

LaserEnable ()

5.1.1.9 LaserDisable

Description

The function disables laser pulse generation.

Syntax

LaserDisable ()

5.1.1.10 DistanceArrGate

Description

The function adds the gating mode to the system. In this mode laser is to be switched on or off at a
predefined position. The position is defined by distance position.

Syntax

int DistanceArrGate (arPos, arStates,Size)

Return Type

None

Arguments

arPos
Array of points. Each element of the array defines the point where a state
signal should be changed.

arStates
Array of states. Each element of the array defines the state value in the
corresponding point from arPos array. The array size should be equal to
points array (arPos)

Size Size of the two arrays used for gating definition.

Comments

The MotionAxes axes mask field is used for trajectory calculation. The PulseResolution field is used
for operation pulse resolution. If the default PulseResolution is 0, the pulse resolution should be
calculated according to the XVEL parameter and Maximum LCI Frequency.

Command requires “Array and Segment Based Modes” LCI ordering option to use.

776Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.1.11 CoordinateArrGate

Description

The function adds the gating mode to the system. In this mode laser is to be switched on or off at a
predefined position. The position defined by axes coordinates.

Syntax

int CoordinateArrGate (PointsNum, StatesArr[, XPosArr, YPosArr, ZPosArr,
APosArr, BPosArr, CPosArr])

Return Type

First occupied channel index as integer value

Arguments

PointsNum The actual points number

StatesArr States array of integers

XPosArr
(optional)Array of X axis positions. Each element of the array defines the
point where a pulse should be fired.

YPosArr
(optional)Array of Y axis positions.Each element of the array defines the
point where a pulse should be fired.

ZPosArr
(optional)Array of Z axis positions.Each element of the array defines the
point where a pulse should be fired.

APosArr
(optional)Array of A axis positions.Each element of the array defines the
point where a pulse should be fired.

BPosArr
(optional)Array of B axis positions. Each element of the array defines the
point where a pulse should be fired.

CPosArr
(optional)Array of C axis positions.Each element of the array defines the
point where a pulse should be fired.

Comments

The trajectory calculation is built according to defined Position arrays.

The PulseResolution field is used for operation pulse resolution. If PulseResolution is 0, the pulse
resolution should be calculated according to the XVEL parameter and Maximum LCI Frequency.

This command is available when the “Array and Segment Based Modes” LCI ordering option is
purchased.

777Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.1.12 AddZone

Description

Add the laser activation zone. If the zone is defined, the laser can be activated only in the specified
zone.

Syntax

int AddZone (MinPos, MaxPos[, MotionAxes])

Return Type

Occupied channel index as integer value

Arguments

MinPos
Specifies a minimum position of the operation zone along the motion
trajectory. The laser pulses start outputting after reaching this position

MaxPos
Specifies a maximum position of the operation zone along the motion

trajectory. The laser pulses stop outputting after reaching this position.

MotionAxes
[Optional] Mask that defines the axes, which are used for generating
pulses along the multi-axis motion trajectory. If parameter is 0 or
omitted, the default axes mask is taken from MotionAxes.

Example

5.1.1.13 SetZone

Description

Change the laser activation zone for specified channel. If zone is defined, the laser can be activated
only in the specified zone

Syntax

int SetZone (Channel, MinPos, MaxPos)

Return Type

None

Arguments

Channel Channel or Operation ID where the zone was defined

MinPos
Specifies a minimal position of the operation zone along the motion
trajectory. The laser pulses start outputting after reaching this position

MaxPos
Specifies a maximal position of the operation zone along the motion
trajectory. The laser pulses stop outputting after reaching this position.

778Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Example

5.1.1.14 SetCondition

Description

Define laser activation condition in one of the 3 condition registers by a bitwise mask.

Syntax

lc.SetCondition (ConditionReg, SetBitMask [,ClearBitMask])

Return Type

None

Arguments

ConditionReg Register index (0,1,2)

SetBitMask Bitwise condition mask to set

ClearBitMask (optional) Bitwise condition mask to clear

Comments

Table 4-19. Condition Mask for Register 0

Bit # Signal

0 PWM

1 Tickle

2-17 For internal usage

18 In Range 0

19 In Range 1

20 In Range 2

21 In Range 3

22 In Range 4

23 In Range 5

24 In Range 6

25 In Range 7

779Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Table 4-20. Condition Mask for Register 1

Bit # Signal

0 PEG Pulse 0

1 PEG Pulse 1

2 PEG Pulse 2

3 PEG Pulse 3

4 PEG Pulse 4

5 PEG Pulse 5

6 PEG Active 0

7 PEG Active 1

8 PEG Active 2

9 PEG Active 3

10 PEG Active 4

11 PEG Active 5

12 PEG State of PEG 0

13 PEG State of PEG 1

14 PEG State of PEG 2

15 PEG State of PEG 3

16 PEG State of PEG 4

17 PEG State of PEG 5

Table 4-21. Condition Mask for Register 2

Bit #

0 General Purpose Input 0

1 General Purpose Input 1

2 General Purpose Input 2

780Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Bit #

3 General Purpose Input 3

4 General Purpose Input 4

5 General Purpose Input 5

6 General Purpose Input 6

7 General Purpose Input 7

8 General Purpose Output 0

9 General Purpose Output 1

10 General Purpose Output 2

11 General Purpose Output 3

12 General Purpose Output 4

13 General Purpose Output 5

14 General Purpose Output 6

15 General Purpose Output 7

Example

!Set bit 0 and clear bit 1 in register 1
SetCondition (1, 0x1 , 0x2)

5.1.1.15 GetCondition

Description

Return the current laser activation condition mask from the specified register.

Syntax

INT GetCondition (ConditionReg)

Return Type

Condition mask. See tables in SetCondition description.

Arguments

ConditionReg Register index (0,1,2)

781Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Comments

Example

5.1.1.16 SegmentGate

Description

Activate automatic gating for segment motion.

Syntax

int SegmentGate ([InitialState)

Arguments

InitialState
(optional)The gating initial state: 1 or 0 (default). The gating state is set to
requested value immediately after function call

Return Type

Channel ID allocated for this operation. Return -1 if failed.

5.1.1.17 SegmentPulse

Description

Activate automatic pulse firing for segment motion.

Syntax

int SegmentPulse (Mode, PulseWidth)

Return Type

Channel ID allocated for this operation. Return -1 if failed.

Arguments

Mode

This parameter defines the type and occurrence of the synchronization
signal:
2 – Pulse on demand. The LINE/ARC1/ARC2 special switch (/p) defines a
segment at the beginning of which the pulse occurs.

3 – Pulse is generated automatically at the beginning of every segment
(starting from the second wegment)

PulseWidth Pulse width (msec)

5.1.1.18 SetExtClockSync

Description

Enable or Disable External Laser Clock synchronization.

782Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Syntax

SetExtClockSync(Enable [,Polarity, Delay])

Enable
Enable or Disable External Laser Clock synchronization mode (1 – Enable, 0 -
Disable)

Polarity

Optional
1 or 0
1 – Synchronization on rising edge(default)
0 – Synchronization on falling edge

Delay
Optional

Delay relative to External Laser Clock edge in μsec. The default is 0.

5.1.1.19 PowerPWMBurst

Description

The function initializes pulse modulation mode with specified number of pulses

Syntax

PowerPWMBurst (Freq, Width, PulseNum, [SynchFlag])

Arguments

Freq Pulse modulation frequency in Hz, range from 0.035Hz to 1MHz.

Width Pulse Width in milliseconds. Range from 6.67nsec to 28.60sec

PulseNum The number of outgoing PWM pulses

SynchFlag
(Optional). If parameter is non-zero, the function works synchronously i.e.,
waits till the pulse sequence finished, otherwise initializes the pulse
sequence without waiting. The default is 1 (works synchronously)

Comments

The LaserEnable function should be called ahead beforehand to enable the sequence of pulses. If
the function works asynchronously, the program should check the PWMBurstReady field to ensure
that the pulse sequence is finished.

Example

lc.LaserEnable()

!Initialize the 10 pulses with frequency 1 kHz
lc.PowerPWMBurst(1000, 0.5, 10, 0)

783Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

!wait till pulse sequence finished
till lc.PowerBurstReady = 1

5.1.1.20 SetSafetyMasks

Description

Enable or disable Safety and Fault inputs.

Syntax

SetSafetyMasks(SafetyInput, FaultInput)

Arguments

SafetyInput The 1 value masks the Safety Input and the system ignores Safety errors

FaultInput The 1 value masks the Fault Input and the system ignores the Faults

5.1.1.21 Stop

Description

Cancel laser mode or state for specified channel.

Syntax

Stop (Channel)

Return Type

None

Arguments

Channel Channel or Operation ID. If omitted or negative, cancel all active operations.

5.1.1.22 SetMechPlatformAxes

Description

Define the axes configuration for the mechanical platform.

Syntax

SetMechPlatformAxes (X_Ax, Y_Ax, Z_Ax , A_Ax, B_Ax, C_Ax)

Return Type

None

784Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Arguments

X_Ax Axis index corresponds to X axis of mechanical platform

Y_Ax Axis index corresponds to Y axis of mechanical platform

Z_Ax Axis index corresponds to Z axis of mechanical platform

A_Ax Axis index corresponds to A axis of mechanical platform

B_Ax Axis index corresponds to B axis of mechanical platform

C_Ax Axis index corresponds to C axis of mechanical platform

Comments

If parameter omitted or -1, axis is not available in the current mechanical platform configuration.

5.1.1.23 SetMotionAxes

Description

Define the axes used for subsequent laser operations.

Syntax

SetMotionAxes (Axes_list)

Arguments

Axes_list Single axis or axis group, valid numbers are: 0…5

Return Value

None

Comments

The function defines the mechanical platform to use. Valid values for axis designation are as follows:

Axis Code

X 0

Y 1

Z 2

A 3

B 4

C 5

785Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Example

!Set platform axes X and Y for subsequent operations.
lcUnit.SetMotionAxes (0,1)

5.1.1.24 SetSystemDelay

Description

Change the internal pulse generation delay.

Syntax

SetSystemDelay (Channel, TimeDelay[,Relative])

Arguments

Channel Channel ID

TimeDelay A new system delay in µsec

Relative
If 1, the TimeDelay value is added to the current delay, otherwise the
TimeDelay value is used as a new value for system delay

Return Value

None

5.1.1.25 GetSystemDelay

Description

Return the current system delay in µsec for the specified channel.

Syntax

GetSystemDelay (Channel)

Arguments

Channel Channel ID. If omitted or negative cancel defined operation for all channels

Return Value

None

5.1.1.26 SetConfigOut

Description

Configure the Digital Output signal

Syntax

SetConfigOut (OutInd, Channel, Code)

786Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Arguments

OutInd Index of Configurable Output (0…7) or 10 for LPC output

Channel Channel index (0…7) whose signal routed to output

Code Enumerator defines the signal routed to the output. See table below.

Return Value

None

Comments

Code Signal Description

0 Cancel Routing

2 P/D Pulse

3 P/D Direction

4 A signal of AqB

5 B signal of AqB

6 InRange

7 PEG Pulse

8 PEG State

9 PEG Active

If output index equals 10 (LPC output), channel parameter is irrelevant and the code parameter can
accept the following values:

Code Signal Description

0 No signal via LPC

1 Output PWM via LPC

2 LPC output use as synchronization pulse signal for 8 bit digital port

3 Reserved

Example

! Output 2 is configured as the PEG State of channel 1:
lc.SetConfigOut(2, 1, 8)

787Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.1.27 AssignChannels

Description

Dedicate channel for a specific operation.

Syntax

AssignChannels (OperationsArray)

Arguments

OperationsArray
Operation enumeration array, each member contains the operation
type dedicated for specific channel

Return Value

None

Comments

Operation Enumeration

100 Fixed Distance Pulse

101 Distance Array Pulse

102 Coordinate Array pulse

103 Distance Array Gating

104 Segment-based

105 Coordinate Array Gating

0x10000
Zone (In Range). InRange code can be combined using an OR operator with
another operation code

Example

5.1.1.28 SetCustomPosCalc

Description

Define the user function intended for position calculation. The firmware calls this function every
controller cycle. The function returns the calculated value as a real variable.

Syntax

SetCustomPosCalc (Channel, FuncRef)

788Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Arguments

Channel Channel or Operation ID

FuncRef
Reference to the function, which calculates the new position value. The
function must match this pattern: real fastcall FuncName()

Return Value

None

5.1.1.29 SetCustomVelCalc

Description

Define the user function intended for custom velocity-based calculation. The firmware calls this
function every controller cycle. The function returns the calculated value as a real variable.

Syntax

SetCustomVelCalc (Operation, FuncRef)

Arguments

Operation Operation ID (Modulation, Analog Power etc.)

FuncRef
Reference to the function, which calculates the new value. The function
must match this pattern: real fastcall FuncName()

5.1.1.30 SetCustomVelVar

Description

Define the user custom position calculation variable. Every controller cycle the firmware takes the
variable as a new calculated value.

Syntax

SetCustomVelVar (Operation, VarRef)

Arguments

Operation Operation ID (Modulation, Analog Power etc.)

VarRef Reference to the global ACSPL+ variable

Return Value

None

789Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.2 LCI Structure Fields

Field Name Type Accessibility Description

MotionAxes int R/W
Default axes mask used by
LCI functions

PosResolution real R/W
Default Pulse Resolution
used by LCI functions

Internal PosResolution
(8)

real R/W

Contains the actual Pulse
Resolution used by LCI
functions, one element per
channel

PWMDutyCycle real R
Current laser duty cycle as
percent

PWMFrequency real R Current laser frequency in Hz

PWMPulseWidth real R PWM pulse width in ms

TickleFrequency real R Tickle frequency in Hz

TicklePulseWidth real R

PWMActive in T
Boolean, 1 if modulation
mode is active

TickleActive int R
Boolean, 1 if Tickle mode is
active

InRange int R Boolean 1/0

LaserEnabled int R Boolean 1/0

OperationMode(8) int R
Operation mode specified for
channel

Positions(8) int R FPOS for specific channel

UserPos real R
Current Channel Position in
user units

MultiAxWinSize real R/W
Comparison window width
for coordinate-based
operations

790Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Field Name Type Accessibility Description

ExtraPulsesQty int R/W

The number of additional
pulses generated with
ExtraPulsesPeriod after each
pulse at each firing position.
The parameter is applicable
for pulses generated by the
following functions:
FixedDistPulse,
DistanceArrPulse,
CoordinateArrPulse.

ExtraPulsesPeriod real R/W

The period in milliseconds for
ExtraPulses additional pulses
to be generated after each
pulse at each firing position.
The parameter is applicable
for pulses generated by the
following functions:
FixedDistPulse,
DistanceArrPulse,
CoordinateArrPulse

PiercePulsesNum int R/W
Number of pierce pulses at
the beginning

PiercePulsesWidth real R/W ms

GateOnDelay real R/W
Stat on delay in ms in gating
mode

GateOffDelay real R/W
State off delay in ms in
gating mode

PulseDelay real R
Laser firing pulse delay in
Distance Array Pulse modes

PowerAOutVal real R Analog Output value in %

PowerDigOutVal int R Digital Output value

5.1.2.1 MotionAxes

Description

MotionAxes is a R/W integer field and contains the default axes mask used by LCI functions.

791Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Syntax

lcUnit.MotionAxes = AxListAsMask(X,

5.1.2.2 PosResolution

Description

PosResolution is a R/W real field and contains the default Pulse Resolution used by LCI functions. If
the default Pulse Resolution is 0, the pulse resolution should be calculated according to XVEL
parameter and Maximum LCI Frequency.

5.1.2.3 InternalPosResolution

Description

InternalPosResolution is a Read-only real array with one element for each LCI channel and
containing the actual Pulse Resolution used by LCI functions.

5.1.2.4 PWMDutyCycle

Description

PWMDutyCycle is a Read-Only real field. It presents the current laser duty cycle (%)

Syntax

DISP lcUnit.PWMDutyCycle

5.1.2.5 PWMFrequency

Description

PWMFrequency is a Read-Only real field. It presents the current laser frequency (Hz)

Syntax

DISP lcUnit.PWMFrequency

5.1.2.6 PWMPulseWidth

Description

PWMPulseWidth is a Read-Only real field. It presents the current PWM pulse width (ms)

Syntax

DISP lcUnit.PWMPulseWidth

5.1.2.7 TickleFrequency

Description

TickleFrequency is a Read-Only real field. It presents the current Tickle frequency (Hz)

792Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Syntax

DISP lcUnit.TickleFrequency

5.1.2.8 TicklePulseWidth

Description

TicklePulseWidth is a Read-Only real field. It returns the current Tickle pulse width in ms.

Syntax

DISP lcUnit.TicklePulseWidth

5.1.2.9 PWMActive

Description

PWMActive is a Read-Only integer field. It returns a Boolean value: 1 if modulation mode is switched
on, otherwise 0.

5.1.2.10 TickleActive

Description

TickeActive is a Read-Only integer field. It returns a Boolean value: 1 if Tickle mode is switched on,
otherwise 0.

5.1.2.11 InRange

Description

InRange is a Read-Only integer field. It returns a Boolean value: 1 if the unit is inside of defined
range, otherwise 0.

5.1.2.12 LaserEnabled

Description

Laser Enabled is a Read-Only integer field. It returns a Boolean value: 1 if the laser is enabled,
otherwise 0.

5.1.2.13 OperationMode

Description

OperationMode is an integer array with one element for each LCI channel. It returns the operation
mode defined for a specific channel.

5.1.2.14 Positions

Description

Positions is an integer array with one element for each LCI channel. It returns the pulse counter
value for a specific channel.

793Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.2.15 UserPos

Description

UserPos is an array of real, with one element for each LCI channel. Each element returns the current
channel position in user units. UserPos is calculated as follows:

UserPos = Positions*InternalPosResolution

5.1.2.16 MultiAxWinSize

Description

MultiAxWinSize returns a real value defining the window size in coordinate based mode. The value
defines the range (Δ) inside which the pulse and gate signals should be fired. The field is applicable
for the CoordinateArrPulse and CoordinateArrGate functions. The parameter is in user units. The
default is 1 resolution count. Δ indicates the window in the following diagram.

5.1.2.17 ExtraPulsesQty

Description

ExtraPulsesQty returns the number of additional pulses generated with ExtraPulsesPeriod after the
initial pulse at each firing position. The parameter is applicable for pulses generated by the following
functions: FixedDistPulse, DistanceArrPulse, CoordinateArrPulse. The value 0 means no extra
pulses are generated (default).

5.1.2.18 ExtraPulsesPeriod

Description

The period in milliseconds for additional pulses defined in ExtraPulses to be generated after each
pulse at each firing position. The parameter is applicable for pulses generated by the following
functions: FixedDistPulse, DistanceArrPulse, CoordinateArrPulse. The value 0 means no extra
pulses are generated (default).

794Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.2.19 PiercePulsesNum

Description

The number of pierce pulses generated during a pierce pulse cycle. The parameter is applicable for
pulses generated by FixedDistPulse function. The value 0 means no pierce pulses are generated
(default).

5.1.2.20 PiercePulsesWidth

Description

The width of pierce pulses in milliseconds . The parameter is applicable for pulses generated by
FixedDistPulse function. The 0-value means, no pierce pulses are generated (default).

Figure 4-34. 2 Pulses with Pulse Width 120 µsec.

5.1.2.21 GateOnDelay

Description

Returns state on delay in milliseconds when in Gating Mode. Default is 0. See Figure 4-35

5.1.2.22 GateOffDelay

Description

Returns state off delay in milliseconds when in Gating Mode. Default is 0.

Figure 4-35. Delays in Gating Mode

795Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.2.23 PulseDelay

Description

Laser firing pulse delay in Distance Array Pulse modes. The default is 0.

5.1.2.24 PowerAOutVal

Description

PowerAOutVal is a Real Read-Only real field. It returns the current analog output value. The range is
0 to 100%. The field is updated if the Power Control via Analog Output mode is activated.

796Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.1.2.25 Faults

Description

Faults is a Read-only Integer Field. It contains a set of bits representing the current LCI error state,
according to the following table:

Bit # Description

0 Laser Fault, fault input is On

1 Laser safety, safety input is Off

2
Velocity limit fault, motion axes velocity exceeds the maximum frequency
supported by LCI

5.1.2.26 PWMBurstReady

Description

PWMBurstReady is a read-only Integer field. It is interpreted as a boolean flag: 1 means that the
system is ready to perform the next PWM burst.

5.2 Diagnostics and Preventive Maintenance (DPM)

The DPM related STRUCTs and functions answer the need to monitor system performance
degradation. The user can implement the required measurements and diagnostics with a minimal
effort.

The DPM feature allows the user to identify:

1. Performance degradation

> Increase of following error

> Increase in settling time

> Increase in velocity ripple during constant velocity

2. System degradation (changes that indicate some mechanical or electrical deterioration)

> Increase of current consumption

> Increase of temperature

3. Part failure (root cause of deterioration)

> Coupling break

> Cable break / partial break

> Motor deterioration due to over temperature

4. Maintenance based on smart measurement

> Bearing life measurement for preventive maintenance (like the warning that the car
generates about the time for periodic maintenance.)

> Moving cable cycles measurement for preventive maintenance

> Drive life shortening due to repeated short circuits

797Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

This object is supported in version 3.10 and higher.

5.2.1 DPM_Measurement

Description

DPM_Measurement is an ACSPL+ composite data type(STRUCT) with different fields of data types
and functions that are used to configure and store the results of the MeasureProcess()/
MeasurePeriodically() functions. It is part of the DPM(Diagnostics and Preventive Maintenance)
feature. To declare an instance of the DPM_Measurement STRUCT the user will use the reserved
word DPM_Measurement followed by the desired struct name.

Syntax

DPM_Measurement Struct_name

See the ACSPL+ Commands & Variables Reference Guide for details about specific commands,
functions, and variables.

5.2.1.1 DPM_Measurement Fields

Variable Type and
Name

Description

real variable_value

It holds the raw instant measured value of the variable specified by
the user. This variable is updated every MPU cycle once the
measurement is initiated. Default = 0.

Types of variables that can be monitored:

> Any ACSPL+ standard variable.

> User variables that are defined in the D-Buffer as global and
static.(Including Structs variables if the Struct is defined as
global and static)

real variable_abs_
value

It holds the absolute value of the variable_value. This variable is
updated every MPU cycle once the measurement is initiated.

real measured_
abs_value

Each MPU cycle this variable is set (or updated) to

variable_abs_value * when_to_measure

This variable holds the absolute value of the variable_value when
when_to_measure is 1, and 0 otherwise.

real sampled_value
Holds the latest sample of measured_abs_value.

See definition of a sample under sampling_type

798Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Variable Type and
Name

Description

int measurement_
status

Holds the current status of the DPM_measurement structure

0 – measurement is NOT ACTIVE

1 – measurement is PAUSED

2 – measurement is ACTIVE

int measurement_
type

Specifies the current measurement type.

0 – None

1 – Process measurement

2 – Periodical measurement

int sample_set_
size

Specifies the size of the set of adjacent samples to be used for the
calculation of the moving_average_value, std_dev_value, and the
rms_value.

Values: Ranges between 1 and 512.

int when_to_
measure

when_to_measure defines the event slots during which the variable_
abs_value is measured and assigned to measured_abs_value.

Values : 0 or 1.

For example: Motor Current during the acceleration phase of a
moving axis. For measurements related to motion, the DPM_Motion_
Status struct can be used.

Types of variables that can be used:

> Any ACSPL+ integer standard variable.

> Any user variable that is defined in the D-Buffer as integer
global and static (Including Struct variables if the Struct is
defined as global and static).

real sampling_time

sampling _time defines the sampling period in milliseconds when
using the MeasurePeriodically() function.

Minimum value: MPU cycle time.

Maximum value: 100,000,000 msec (>24h).

MeasurePeriodically() sample will be taken first on the positive edge
of when_to_measure, and then every sample_time period (as long as
when_to_measure is 1(True)).

The resolution of sampling_time is the MPU cycle time.

int sampling_type
The sampling_type is used by the MeasureProcess() function, and
defines the nature of a sample:

799Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Variable Type and
Name

Description

> When to sample

> What is a sample and how it is calculated

0 – The measured_abs_value is sampled upon the positive edge of
when_to_measure, and the sampled_value is set to this value. As an
example, it may be used to measure the settling time of moves.

1 – The measured_abs_values are summed up every MPU cycle, and
the sampled_value is set to the average value of the summation
upon the negative edge of when_to_measure.

For example, it may be used to measure current during acceleration.
sampled_value presents the average of the absolute current during
the acceleration period.
This variable is ignored when using MeasurePeriodically(). In a
periodic measurement, the sampling_time variable is used. See
sampling_time definition for more information.

real sample_
counter

Specifies the number of samples that have been collected since the
beginning of the measurement process.

See definition of a sample at sampling_type

real peak_value

Holds the highest value of a sample that has been taken since the
beginning of the measurement.

It can be set to 0 by the user by calling ClearPeak().

real moving_
average_value

Holds the average value of the samples in the set. The number of
samples in the set is specified by sample_set_size.

See definition of a sample at sampling_type

real std_dev_value
Holds the standard deviation of the samples in the set. The number of
samples in the set is specified by sample_set_size.

real rms_value
Holds the RMS (Root mean square) of the samples in the set. The
number of samples in the set is specified by the sample_set_size.

800Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.2.1.2 DPM_Measurement Functions

Function Name Arguments Description

MeasureProcess
(monitored_variable,
when_to_measure,
sample_set_size,
sampling_type)

real/Int monitored_
variable – A variable to be
monitored. (see monitored_
variable field definition for
more details)

int when_to_measure – A
variable that acts as a flag.
when the value of the
variable is different than 0,
a measurement will take
place. (see when_to_
measure field definition for
more details)

int sample_set_size –
Defines the samples set
size. (see sample_set_size
field definition for more
details)

int sampling_type –
Defines the sampling
behavior(see sampling_
type definition for more
details)

This function is used to initiate
monitoring and
measurements of variables
that are related to processes
and especially motion
processes that are generated
by atomic motion commands
(PTP, BPTP, JOG).

Example: The average current
during the acceleration phase
of a moving axis.

MeasurePeriodically
(monitored_variable,
when_to_measure,
sample_set_size,
sampling_time)

real/Int monitored_
variable – A variable to be
monitored. (see monitored_
variable definition for more
details)

int when_to_measure – A
variable that acts as a flag.
When the value of the
variable is different than 0,
a measurement will take
place. (see when_to_
measure field definition for
more details)

int sample_set_size –
Defines the samples set
size. (see sample_set_size
field definition for more
details)

This function is used to initiate
the monitoring and
measurements of the supplied
variable over time.

Example 1: measurement of
temperature that is monitored
by a sensor that is connected
to an analog input

Example 2: 2D position error
during one “long” arbitrary XY
move

801Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Function Name Arguments Description

real sampling _time –
Defines the period between
samples(see sampling _
time definition for more
details)

Stop() None

Stops the measurement if it is
active or paused. It does not
affect the measurement if it is
not active.

Pause() None
Pauses the measurement if it
is active. It does not affect the
measurement if it is not active.

Resume() None

Resume previously paused
measurement. Does not affect
the measurement if it is not
paused.

ClearAll() None

Sets variable_value, variable_
abs_value, measured_abs_
value, sampled_value,
sample_counter, peak_value,
moving_average_value, std_
dev_value, rms_value and
when_to_measure to 0.

ClearPeak() None Sets peak_value to 0.

802Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

5.2.2 DPM_Motion_Status

Description

DPM_Motion_Status is an ACSPL+ composite data type (STRUCT), with different fields of data types
and functions that are used to configure and to provide an indication on the phase of the motion for
a user-selected axis. It is part of the DPM (Diagnostics and Preventive Maintenance) feature. To
declare an instance of the DPM_Motion_Status STRUCT the user uses the reserved word DPM_
Motion_Status followed by the desired struct name.

Syntax

DPM_Motion_Status struct_name

5.2.2.1 DPM_Motion_Status Fields

Variable
Name

Description

int during_
motion

The variable is set to true (=1) once the motion profile starts and is set
automatically to false (=0) once the motion profile is completed.

int during_
accel

The variable is set to true (=1) once the motion profile reaches the
acceleration phase(can be constant acceleration or during jerk) and is set
automatically to false (=0) once the acceleration phase is completed.

803Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Variable
Name

Description

int during_
decel

The variable is set to true (=1) once the motion profile reaches the
deceleration(can be constant deceleration or during jerk) and is set
automatically to false (=0) once the deceleration phase is completed.

int during_cv
The variable is set to true (=1) once the motion profile reaches the Constant
Velocity (CV) phase and is set to false (=0) once deceleration has started.

int selected_
axis The variable specifies the selected axis for which its motion phases are

monitored.

int on_off
When 1, the motion phases are monitored. When 0, the phases are not
monitored.

5.2.2.2 DPM_Motion_Status Functions

Function Arguments Description

SelectAxis
(Axis)

Axis - Valid values
are: 0, 1, 2, ... up to
the number of axes
in the system minus
1.

Axis - Specifies the axis is monitored once
MonitorOn() is called.

*Can only be used if the on_off variable is OFF
(=0)(monitoring is not active).

MonitorOn() None

Provides the user the ability to activate
monitoring of the selected_axis.

Once the MonitorOn() has been called, the
motion phase and settling status of move
commands related to the Selected_Axis will be
indicated by the STRUCT variables.

804Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Function Arguments Description

MonitorOff() None

Provides the user the ability to deactivate
monitoring of the selected_axis.

Move commands that are issued after callling
MonitorOff() will not be monitored.

ClearAll() None
Sets during_motion, during_accel, during_
decel, and during_cv to 0

5.2.3 DPM Example - Adding current measurement during acceleration phase to an
existing application

This example demonstrates how measurements can be added to existing applications without
modifying existing code. In this example, the current during acceleration of every move of the Y-axis
is measured.

To implement the measurement for an existing application:

1. Add code to an AUTOEXEC routine that initiates the measurement.

2. Add a condition monitoring (ON) routine that raises a flag when a threshold is exceeded.

The setting and resetting of motion_status_Y.MonitorOn() /MonitorOff() provides a mechanism to
control which moves are monitored and measured.

D-Buffer:
axisdef Y=1
Global static DPM_Measurement actual_current_during_accel_Y
Global static DPM_Motion_Status motion_status_Y
Global static REAL Y_Accel_Peak_Current_Threshold, Y_Accel_Moving_
Average_Current_Threshold, CURRENT_Y_AMP
Global INT Samplesample_set_size_Y, DRIVE_PEAK_CURRENT_AMP, ADC_RANGE
Global static INT measure_continuously

Buffer 0:
AUTOEXEC:
Y_Accel_Peak_Current_Threshold = 5
Y_Accel_Moving_Average_Current_Threshold = 2.5
measure_continuously = 1
sample_set_size_Y = 20
DRIVE_PEAK_CURRENT_AMP = 10
ADC_RANGE = 32767 ! Current is sampled with a 16 bit ADC

motion_status_Y.SelectAxis(1) ! Set axis 1 as the axis that provides the
motion phases to the the motion_status_Y STRUCT once the motion_status_
Y.MonitorOn() function is called
motion_status_Y.MonitorOn() !Monitoring is activated. The STRUCT will be
updated for each move that follows, and measurement will be made
accordingly

805Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

actual_current_during_accel_Y.Stop() !Stops the measurement if it is
active
!Measurement activation
actual_current_during_accel_Y.MeasureProcess(CURRENT_Y_AMP, motion_
status_Y.during_accel, sample_set_size_Y, measure_continuously)

WHILE(1) !Run every MPU cycle
CURRENT_Y_AMP = DOUT(1) * (DRIVE_PEAK_CURRENT_AMP /ADC_RANGE)!converts
DOUT units to Amperes
END
STOP

Buffer 1:
ENABLE 1
LOOP 10
PTP 1,1000
BPTP 1,3000
PTP 1,4000
PTP 1,0
.
.
.
END
STOP
!acceleration phase peak threshold has been exceeded
ON actual_current_during_accel_Y.peak_value > Y_Accel_Peak_Current_
Threshold
DISP “Y peak current threshold is exceeded”
actual_current_during_accel_Y.ClearPeak()
RET
!acceleration phase moving average threshold has been exceeded
ON actual_current_during_accel_Y.moving_average_value > Y_Accel_Moving_
Average_Current_Threshold
DISP “Y moving average current threshold is exceeded”
RET

5.3 Motion Duration

5.3.1 MotionDuration Struct

The MotionDuration struct can be used to calculate motion duration according to motion type and
motion parameters.

The MotionDuration struct calculation functions calculate motion duration in seconds. Functions of
the struct can be executed in buffer only, and it will wait till the execution is completed.

806Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Struct Fields

Field Name Type Accessibility Range Comments

Distance real R/W user units

Velocity real R/W

from -
1.79769e+30
8 to
1.79769e+30
8

Default =
10000

Acceleration real R/W

from
2.22507e-308
to
1.79769e+30
8

Default =
100000

Deceleration real R/W

from
2.22507e-308
to
1.79769e+30
8

Default =
100000

Jerk real R/W

from
2.22507e-308
to
1.79769e+30
8

Default =
2E7

Snap real R/W

from
2.22507e-308
to
1.79769e+30
8

Deafault =
100E7

InitialVelocity real R/W Default = 0

InitialAcceleration real R/W Default = 0

FinalVelocity real R/W Default = 0

FinalAcceleration real R/W Default = 0

EncoderFactor real R/W
from 1e-15 to
1e+15

Default = 1

T_MotionOverallTime real R

807Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Field Name Type Accessibility Range Comments

T31_
JerkBuildupAccelerationBuild
up

real R

T1_
ConstantJerkAccelerationBuil
dup

real R

T32_
JerkFinishAccelerationBuildu
p

real R

T2_ConstantAcceleration real R

T33_
JerkBuildupAccelerationFinis
h

real R

T3_
ConstantJerkAccelerationFinish

real R

T33_
JerkFinishAccelerationFinish

real R

T4_ConstantVelocity real R

T35_
JerkBuildupDecelerationBuil
dup

real R

T5_
ConstantJerkDecelerationBui
ldup

real R

T36_
JerkFinishDecelerationBuildu
p

real R

T6_ConstantDeceleration real R

T37_
JerkBuildupDecelerationFinis
h

real R

T7_
ConstantJerkDecelerationFin

real R

808Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

Field Name Type Accessibility Range Comments

ish

T38_
JerkFinishDecelerationFinish

real R

Struct Functions

ReadFrom(int AxisNum)
Read Velocity, Acceleration, Deceleration, Jerk, Snap and
EncoderFactor from specified axis and write them to
appropriate fields in struct.

CalculatePTPDuration()

Calculates PTP (3rd order motion profile) motion duration and
duration of each motion phase using struct parameters

Relevant output members:

T_MotionOverallTime,

T1_ConstantJerkAccelerationBuildup,

T2_ConstantAcceleration,

T3_ConstantJerkAccelerationFinish,

T4_ConstantVelocity,

T5_ConstantJerkDecelerationBuildup,

T6_ConstantDeceleration,

T7_ConstantJerkDecelerationFinish

CalculateBPTPDuration()

Calculates BPTP motion duration using struct parameters

Relevant output member:

T_MotionOverallTime

CalculateSPTPDuration()

Calculates SPTP (4th order motion profile) motion duration and
duration of each motion phase using struct parameters

Output members:

T_MotionOverallTime,

T31_JerkBuildupAccelerationBuildup,

T1_ConstantJerkAccelerationBuildup,

T32_JerkFinishAccelerationBuildup,

T2_ConstantAcceleration,

T33_JerkBuildupAccelerationFinish,

T3_ConstantJerkAccelerationFinish,

T33_JerkFinishAccelerationFinish,

809Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

T4_ConstantVelocity,

T35_JerkBuildupDecelerationBuildup,

T5_ConstantJerkDecelerationBuildup,

T36_JerkFinishDecelerationBuildup,

T6_ConstantDeceleration,

T37_JerkBuildupDecelerationFinish,

T7_ConstantJerkDecelerationFinish,

T38_JerkFinishDecelerationFinish

Comments

> Two options exist for initialization of the editable fields of the MotionDuration struct:

a. Initialize each writeable field manually, one by one.

b. Use the ReadFrom function to read the Velocity, Acceleration, Deceleration, Jerk, Snap
and EncoderFactor fields from a specified axis. The Distance field will still need to be
initialized manually.

Struct members: InitialVelocity, InitialAcceleration, FinalVelocity and FinalAcceleration will
not be affected by calling the ReadFrom function.

> Zero value in fields Velocity, Acceleration, Deceleration, Jerk, Snap and EncoderFactor will
implicitly be replaced by the default value.

> There may be calculated results that are not relevant for all types of motion; they will be
initialized to their default value.

810Version 3.12

ACSPL+ Commands & Variables Reference Guide
5. ACSPL+ Standard Structures

6. Terminal Commands
Terminal commands are those commands that are specific to the SPiiPlus MMI Application Studio
Communication Terminal utility and are not part of the ACSPL+, nor can they be incorporated into
ASCPL+ programming. As soon as the command is received through one of the communication
channels, it is executed.

This chapter covers all of the available Terminal commands.

6.1 Entering Terminal Commands

Terminal commands are entered in the Communication Terminal (the general structure of which is
shown in Figure 5-1).

Figure 5-1. Communication Terminal Window

The Communication Terminal window is described in the SPiiPlus MMI Application Studio User Guide.

Terminal commands are case sensitive.

Terminal commands are divided into:

> Query Commands

> Program Management Commands

> System Commands

6.2 Query Commands

Query commands are designated by the question mark (?) and are entered through the
Communication Terminal.

811Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Command &
Syntax

Description Example

?[ACSPL+
variable]

Returns the current value of a
standard variable .

?TCPIP – Returns the TCP/IP for the
Ethernet port N1.

?[ACSPL+
variable
ACSPL+
variable]...

Returns the current value of
listed standard variables.

?TCPIP, TCPPORT – Returns the
TCP/IP for the Ethernet port N1 and
the TCP port number.

?[buffer
number]: [local
user-defined
variable]

Returns the current values of a
local user variable or array
defined in a program buffer.

?1:MY_VAR – Returns the values of a
local user-defined variable named
MY_VAR.

?[array_
variable
(index)]

Returns the current value of a
specific element in the given
array. The brackets enclosing
the index are optional.

?FPOS(0) – Returns the feedback
position of 0 axis.

?FPOS0: Returns the feedback
position of 0 axis.

?[global user
array_variable
[(index)]]

Returns the current values of a
global user variable or array.

Or the value of an element in
the array if index is included.

?ARRAY1 – Returns the values of a
global user-defined array variable
named ARRAY1.

?ARRAY1(3) – Returns the value of
the fourth element of a global user-
defined array variable named
ARRAY1.

?[matrix_
variable (row_
index) (col_
index)]

Returns the current value(s) of
an element in a two
dimensional matrix.

The indices may be entered as a
range, e.g., (0,4) is the first
through fifth, inclusively.

?MATRIX – Returns all of the values
(in tabular format) of the two-
dimensional array named MATRIX.

?MATRIX(1)(0) – Returns the value of
the second element in the first
column of MATRIX.

?MATRIX(0) – Returns all the values
of the first row of MATRIX.

?MATRIX(0,2)(0,1) – Returns a range
of values, those of the first through
third rows in the first and second
columns of MATRIX.

?[buffer
number]

Returns the current status and
information about a program
buffer

?0 – Returns the current status and
information about program buffer 0.

812Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Command &
Syntax

Description Example

?#
Returns the current status of all
program buffers.

?$[axis
number]

Returns the current status of
the motor for the specified axis.

?$16 – Returns the current status of
the axis 16 motor.

?$
Returns the current status of all
motors.

?VR Returns the firmware version

?SN
Returns the controller serial
number and hardware version -
indicated by a letter.

??[error_code]

Returns the error code number.
If the error code is included in
the query, returns error
description.

??3260: Returns “Motor cannot start
because the motor is disabled”

??[variable_
name]

Returns a brief description of
the variable.

??CERRA - Returns “Critical Position
Error In Accelerating”

6.2.1 Default Query Formats

All the queries described above produce a variable report in a default format depending on the
queried variable. In some cases the default format produces unsatisfactory results. For very large or
small real values the output may appear misleading because very large or small values may require
more positions than allocated by the default.

The default format for all real variables is similar to the C “%10G” format, where each real value is
represented by 10 digits. The controller automatically chooses the position of decimal point and the
number of digits right to the decimal point. If required, the controller uses an exponential format, like
3.14E-13.

The default format for all user integer variables and for all standard integer variables, except State
flags, and I/O variables, is similar to the C “%10i” format that specifies 10 digits for each integer
number.

State and Flag variables are reported in special format. Each State and Flag variable is a collection of
bits. Each bit within the variable has its own function. The variable is reported in a format that
displays the state of each bit with a short explanation.

The standard I/O arrays IN and OUT are reported in binary format.

6.2.2 Predefined Query Output Formats

The controller provides several predefined formats that can be used instead of the default format
for querying variables:

813Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Format Description

?D/

Decimal format.

This format is identical to the default format for integer variables. When
applied to a state variable, the format displays the decimal presentation of the
variable.

C-equivalent: %10i.

?X/

Hexadecimal format.

When applied to an integer variable, this format displays the hexadecimal
presentation of the variable.

C-equivalent: %08X

?B/

Binary format.

This format is identical to the default format for the IN and OUT variables.
When applied to an integer variable, the format displays the binary
presentation of the variable.

?E/

Extended format.

This format is useful for very large or small real values, when the default
format produces ambiguous results because the default does not provide
enough positions to display very large or very small numbers. When applied to
a real variable, the format displays each value in 20 positions.

C-equivalent: %20G

Examples

Display the motor state in decimal format:

?D/ MST
3 15 15 3 0 0 0 0
X/Y_MST
0 0 0 0 0 0 0 0

Display the state of motor x in binary format

?B/ MST
00000000,00000000,00000000,00000011

Display the status of variable UserReal in extended format

?E/UserReal
1.00000000000001

814Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

6.2.3 User-Defined Query Output Format

If the default format or any other predefined format is not suitable for the user needs, the user may
specify a format using C notation. The specification is placed just before the variable name in curled
brackets. The specification applies only to the value of the name that is specified in the command. If
an array is queried, the specification applies to each element of the array.

C notation provides an unlimited number of possible formats.

Examples

Format Description

?{%12.3f}FPOS
The motor feedback values for all axes are displayed in 12 digits, fixed
decimal point, 3 digits after the point. The same format applies to all 8
values.

?{%8.0f}X_FPOS 8 digits, no decimal point, no fraction digits.

?{XFPOS =
%8.0f}X_FPOS

The response will look like XFPOS = 1234.

?{%08X} X_MST 8 digits, hexadecimal format with leading zeros

6.3 Program Management Commands

Program Management commands are used for:

> Controlling program execution

> Viewing and editing program content

The Program Management commands are designated by the pound (#) character.

6.3.1 Program Management Command Arguments

Program Management commands can take two types of arguments:

Buffer Designation

Buffer designation can be specified in two forms:

> An integer number, between 0 and 16, that addresses a specific buffer (16 addresses the D-
buffer)

> The pound character, #, that addresses all program buffers in one command

Only the following commands can address all buffers:

> L – List

> C – Compile

> S, SR – Stop, Stop and Reset

> P – Pause

> F, FI – Find

> BR – Reset Breakpoints

815Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

All other commands operate with one buffer only, and must specify the buffer number.

Line Designation

A line designation can appear in one of three forms, as shown in the following table:

Table 5-1. Line Designation

Line Qualifier Type Description

Single number Specifies only one line.

Two numbers separated by
comma

Specifies a range of lines. If the second number is larger than a
total number of lines in the program, the list range spans the
last program line.

Label preceded by a slash
(/) character

Specifies the line by a designated label (the text following the
slash).

Label preceded by a slash
(/) character, then a comma
and number

Specifies a range of lines starting from the line with a
designated label.

Examples

The following are examples of using the L command.

List line 4 in buffer 3.

#3L4

4: till ^MST(0).#MOVE

List lines from 1 to 3 inclusively in buffer 5.

#5L1,3

1: movePTP:
2: VEL(0) = 20000
3: ptp 0, 4000

List the line that contains the label MovePTP in buffer 5.

#5L/MovePTP

1: movePTP:

List 3 lines, starting from the label movePTP in buffer 5.

#5L/MovePTP, 3

1: movePTP:
2: VEL(0) = 20000
3: ptp 0, 4000

816Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

6.3.2 Program Buffer Commands

6.3.2.1 Open/Close Buffer (#)

Description

The # (Open/Close Buffer) command is used to open and close a buffer for the purpose of entering
code.

Syntax

#buffer_number[I][line_number]

Arguments

buffer_
number

buffer_number qualifier in the command specifies the buffer, a number
between 0 and 16.

I Optional, if included, opens the buffer for insertion of code.

line_
number

Optional, if included, the command opens the buffer specified by buffer_
number and sets the insert line before the line specified by line_number. line_
number can be specified in any of the three forms listed in.

Comments

The # command opens the buffer and sets the insert line as follows:

> If the buffer is empty, the insert line is 1.

> If the buffer already contains a program, the insert line is set after the last line of the
program.

Only one buffer can be opened at a time.

To close the buffer, # is entered without the buffer number (since only one buffer is open, the
controller knows which buffer to close.

Examples

The following are examples of opening and closing buffers.

#0 Open buffer 0
0:00001> Buffer 0 is empty
#3 Open buffer 3
3:00006> This indicates that buffer 3 contains 5 lines. The insert

line is set to 6.
#3 Open buffer 3 for insertion
3:00006> The command does not specifies a line qualifier. It is

identical to the command #3.
#3I2 Open buffer 3 and set insertion point prior to line 2.
3:00002> Insert line is set before line 2
Close the buffer
: The prompt indicates that all buffers are closed

817Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

When a program buffer is open, ACSPL+ commands are stored in the buffer (and are not executed
immediately). The controller checks the syntax of inserted ACSPL+ lines and immediately reports any
errors detected.

The following is an example of an editing session:

#0 Open buffer 0
0:00001> Buffer 0 is empty
>VEL(0) = 20000 Enter the program lines sequentially. After each

line, the insert line number is increased by 1.
0:00002>
ptp X, 4000
0:00003>
till ^MST(0).#MOVE
0:00004>

stop
0:00005>
#0L List the program
1: VEL(0) = 20000
2: ptp 0, 4000
3: till ^MST
(0).#MOVE
4: stop
0:0005> The buffer remains open
#0I1 Change the insert line number to 1
0:0001> Insert line is set before the first line
MovePTP: Insert label
0:0002>
#0L List the program
1: MovePTP:
2: VEL(0) = 20000
3: ptp 0, 4000
4: till ^MST(0).#MOVE
5: stop
0:0002> The buffer remains open
Close the buffer

6.3.2.2 D

Description

The D (Delete) command deletes the specified lines in the buffer.

Syntax

#buffer_numberDline_number[,line_number]

818Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Arguments

buffer_
number

buffer_number qualifier in the command specifies the buffer, a number
between 0 and 16.

line_
number

line_number in the D command is obligatory. line_number can be:

> A single number, specifying one specific line, or

> Two numbers separated by comma that specify a range of lines. If
the second number is larger than a total number of lines in the
program, the delete range includes the last program line.

Comments

If a buffer is open, the D command that addresses the buffer shifts the insert line to before the first
undeleted line.

Example

#0L Open buffer 0
0:00001> Buffer 0 is empty
#3 Open buffer 3
3:00006> Buffer 3 contains 5 lines. The insert line is set to 6.
#3I
3:00006> The command does not specifies a line qualifier. It is

identical to the command #3
#3I2
3:00002> Insert line is set before line 2
#0D3 Delete line 3 in buffer 0
Close the buffer
: The prompt indicates that all buffers are closed

6.3.2.3 F/IF

Description

The F/FI (Find/Find Case-sensitive) commands are used to search for a specific text in a specified
buffer or in all buffers.

Syntax

#buffer_number{F|FI}/search_string [,line_number]

Arguments

buffer_
number

buffer_number qualifier in the command specifies the buffer, a number
between 0 and 16.

search_
string

The text being sought.

line_
number

Optional, if included, line_number defines the start line for the search.
Otherwise, the search starts from the first line.

819Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Comments

search_string must be specified as a label, that is, it must be preceded by a slash (/), or as a label and
number separated by comma. search_string can be any text, such as, a variable name, ACSPL+
command, constant, label or keyword.

The search terminates when the first entry of the specified text is found, or the buffer end is
reached. The command reports the line that contains the text, or an error message if the text was
not found.

To find the next entry, the user must execute the command again, specifying the new start line
number of the reported line plus one.

If the # character is specified instead of the buffer number, the search command addresses all
buffers. In this case the command finds the first entry in each buffer.

Examples

The following are examples of using the F command.

#0F/X Find “X” in buffer 0
0002 Response: found entry in line 2
#0F/X,3 Find the next entry, starting from line 3
0003 Response: found entry in line 3
#0F/X,5 Find the next entry, starting from line 5
?1078 Response: No more entries
##F/stop Find stop in all buffers
Buffer #0: no matches
Buffer #1: 4: stop Entry is found in line 4 of Buffer 1
Buffer #2: no matches
Buffer #3: 4: stop Entry is found in line 4 of Buffer 3
Buffer #4: 1: stop Entry is found in line 1 of Buffer 4
Buffer #5: no matches
Buffer #6: no matches
Buffer #7: no matches Entry is found in line 238 of Buffer 8
Buffer #8: 238: stop
Buffer #9: no matches
Buffer #10: no matches

6.3.2.4 L

Description

The L (List) command is used for displaying a program listing.

Syntax

#buffer_numberL[line_number]

820Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16; or you can
use the pound (#) to designate all buffers.

line_
number

Optional, if included, line_number defines a specific line to be listed.
Otherwise, the search starts from the first line. line_number can be specified
in any of the three forms listed in Line Designation.

Comments

The listing contains all program lines preceded by line numbers. Each line appears exactly as it was
inserted. No automatic formatting is provided.

To address all buffers the # character is used instead of the buffer number, for example, the
command ##L provides a listing of all programs in all buffers. If line_number is included and a buffer
does not contain the specified line number, only the buffer number is listed.

If the buffer is empty, the list includes the buffer designation followed by the first line (0) which is
blank.

It is recommended that you place a remark with a short program description in the first
line of each program. This enables using the command ##L1 to get quick information
about all loaded programs.

Examples

The following are examples of the L command.

Example 1:

Provide a program listing for buffer #3:

#3L

1: MovePTP:
2: VEL(0) = 20000
3: ptp X, 4000
4: till ^MST(0).#MOVE
5: stop

Example 2:

Provide a program listing for the first line in all buffers:

##L1 List the contents of line 1 in all buffers.
Buffer 0 Response
0:
Buffer 1
1: ! Homing of all axes
Buffer 2
1: ! Registration motion
Buffer 3

821Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

1: MovePTP:
Buffer 4
1: ! PLC program
Buffer 5 Buffer 5 is empty
0:
Buffer 6 Buffer 6 is empty
0:
Buffer 7 Buffer 7 is empty
0:
Buffer 8 Buffer 8 is empty
0:
Buffer 9 Buffer 9 is empty
0:

6.3.3 RESET

Description

The RESET command is used to reset the controller to factory default state.

Syntax

#RESET

Comments

The RESET command can be issued even if the application is in the Protected mode in which case
the password, if included, is not needed.

6.3.4 Listing Program Variables

There are three types of variables:

> ACSPL+ Variables – variables contained in the ACSPL+ language set

> SP Variables – variables incorporated in the controller

> User-Defined Variables – variables that have been declared by the user

For each type of variable there is a Communication Terminal command for listing them.

6.3.4.1 VGR

Description

The VGR command lists the categories within which the ACSPL+ variables are grouped. The
categories of the ASCPL+ variables are:

> Axis_State

> Monitoring

> Motion

> Safety_Control

> Inputs_Outputs

> Program_Execution_Control

> System_Configuration

822Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> Axis_Configuration

> Communication

> Commutation

> Data_Collection

> Servo_Loop

> Miscellaneous

> Obsolete

Syntax

#VGR [group_name]

Arguments

group_name One of the ACSPL+ variable categories.

Comments

If group_name is omitted, the command lists only the categories. If group_name is included, the
command lists the ACSPL+ sub-categories within the category.

The category must be entered in exactly the same format as given in the list above.

6.3.4.2 VSD

Description

The VSD command lists all ACSPL+ variables with a short description.

Syntax

#VSD [group_name]

Arguments

group_name One of the ACSPL+ variable categories (see VGR).

Comments

When group_name is included in the VSD command, the ACSPL+ variables within the specified
category and a brief description of each variable is listed.

6.3.4.3 VS/VSG

Description

The VS/VSG commands are used to list the variables that are incorporated in the ACSPL+ language
set.

Syntax

#VS

823Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

#VSG [group_name]

Arguments

group_name One of the ACSPL+ variable categories (see VGR).

Comments

When group_name is included in the VSG command, the names of the ACSPL+ variables within the
specified category are listed.

Example

The following is an example of the VS command.

#VS List ACSPL+ variable names
Response

ACC
AFLAGS
AIN
AOUT
APOS
AST
BAUD
BOFFTIME
BONTIME
MASK
FPOS
FVEL
FVFIL
GACC
GETIME
GJERK
GMOT
GMQU
GMTYPE

For brevity, only a portion of the response is shown here.

6.3.4.4 VSF/VSGF

Description

Both the VSF and VSGF commands, in addition to the global variable names, display the variable
type, the number of elements (for arrays only), address of the variable in the controller memory and
the step between array elements (for arrays only).

Syntax

#VSF

824Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

#VSGF [group_name]

Arguments

group_name One of the ACSPL+ variable categories (see VGR).

Comments

When group_name is included in the VSGF command, the names of the ACSPL+ standard variables
within the specified category and their details are listed.

6.3.4.5 VG/VGF

Description

The VG command lists all global variable names in the system.

The VGF command, in addition to the global variable names, lists the variable type, the number of
elements (for arrays only), address of the variable in the controller memory and the step between
array elements (for arrays only).

Syntax

#[buffer_no]VG

#[buffer_no]VGF [variable_name]

Arguments

buffer_no A number ranging from 0 to 16, representing a specific buffer.

variable_name A specific ACSPL+ variable.

Comments

If buffer_no is included, VG and VGF list all the global variables in the specified buffer.

If variable_name specifying an ACSPL+ variable is included, VGF lists the details just for the specified
variable

6.3.4.6 VL/VLF

Description

The VL command lists all local variable names in the system.

The VLF command, in addition to the local variable names, lists the variable type, the number of
elements (for arrays only), address of the variable in the controller memory and the step between
array elements (for arrays only).

Syntax

#[buffer_no]VL

#[buffer_no]VLF [variable_name]

825Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Arguments

buffer_no A number ranging from 0 to 16, representing a specific buffer.

variable_name A specific ACSPL+ variable.

Comments

If buffer_no is included, VL and VLF list all the local variables in the specified buffer.

If variable_name specifying an ACSPL+ variable is included, VGF lists the details just for the specified
variable.

6.3.4.7 V/VF

Description

The V/VF (List User-Defined Variable Names only/List User-Defined Variables with Description)
commands are used to list the user-defined variables that are found in compiled programs.

Syntax

#[buffer_number]V

#[buffer_number]VF

Arguments

buffer_no A number ranging from 0 to 16, representing a specific buffer.

Comments

If buffer_no is not specified, the list includes the user-defined variables in all compiled buffers. The V
command only displays the names of the user-defined variables. The VF, on the other hand, in
addition to the variable names, it displays the variable type, the number of elements (for arrays
only), address of the variable in the controller memory and the step between array elements (for
arrays only).

The list can be saved to a file by clicking Save in the Communication Terminal window.

Examples

The following are examples of the V and VF commands.

#9V Provide a list of user variables
in buffer 9

Response
ITIME Global
TS_AMP1 Local
TS_AMP0 Global
#9VF Provide a list of user variables

in buffer 9 with additional information

Response
ITIME Global real@00DA0C50

826Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

TS_AMP1 Local int@00DA1A30
TS_AMP0 Global int@00DA0C80

6.3.4.8 VSP

Description

The VSP (List Servo Processor Variables) command provides a list of the SP variables that are
defined in the program in the specified SP.

Syntax

#VSPservo_number

Arguments

servo_number servo_number is number of the Servo Processor.

Comments

Each variable name in the list is accompanied by an SP address of the variable.

The list can be saved to a file by clicking Save in the Terminal window.

Example:

#VSP0 List the variables in SP 0
Response

_RMS_SUM @088
A_RMS_SUM @089
X_NOTCH_OUT_PR_H @08A
X_NOTCH_OUT_PR2_H @08B
X_NOTCH_IN_PR @08C
X_NOTCH_IN_PR2 @08D
X_NOTCH_FRC @08E
X_NOTCH_FRC_L @08F
A_NOTCH_OUT_PR_H @091
A_NOTCH_IN_PR @092

6.3.4.9 VST/VSGT

Description

Both the VST and VSGT commands display a list of ACSPL+ variables to which PROTECT can be
applied.

Syntax

#VST

#VSGT [group_name]

Arguments

group_name One of the ACSPL+ variable categories (see VGR).

827Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Comments

When group_name is included with the VSGT command, the ACSPL+ variables within the specified
category are listed.

6.3.4.10 VSTF/VSGTF/VSDT

Description

The VSTF, VSGTF, and VSDT commands all list the variable names, the variable type, the number of
elements (for arrays only), address of the variable in the controller memory and the step between
array elements (for arrays only) of those ACSPL+ variables to which protection can be applied.

Syntax

#VSTF

#VSGTF [group_name]

#VSDT [group_name]

Arguments

group_name One of the ACSPL+ variable categories (see VGR).

Comments

When group_name is included with the VSGTF or VSDT command, the ACSPL+ variables within the
specified category are listed.

6.3.4.11 VGV

Description

The VGV command is used to remove global variables that have been set via Communication
Terminal or STATIC variables defined in the D-Buffer..

Syntax

#VGV [global_var]

Arguments

global_var Name of a global variable

Comments

If global_var is included, VGV removes only this variable; otherwise it removes all of them.

6.3.4.12 VGS/VGSF

Description

The VGS command is used to list all STATIC variables currently defined.

The VGSF command, in addition to STATIC variable names, also lists the type, number of elements
(arrays only) and address of the variable in the controller memory.

828Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Syntax

#VGS [Static_Var]
#VGSF [Static_Var]

Arguments

Static_Var
Optional parameter, check if Static_Var is a STATIC variable that is currently
defined.
Leave empty to list all variables.

6.3.5 Program Handling Commands

These commands are used for compiling, executing, pausing and halting the program.

The commands in this set are:

> C - Compile Program

> X - Execute Program

> S/SR - Stop/Stop & Reset Program

> P - Pause Program

The following diagram shows the program buffer states and the Communication Terminal
commands that affect the buffer states:

#SR

#SR

#SR

#S

#P

#S

#X

#X
#X

#C

Run

Suspended

Compiled Not
compiled

Figure 5-2. Interaction of Program Buffer States

The program buffer enters the Not Compiled state:

> After any change in the program text.

> Following execution of the #S (Stop) or #R (Reset) command.

The program buffer enters the Compiled state:

> Following execution of the #C (Compile) command the program buffer is transferred from
the Not Compiled to the Compiled state.

829Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> The #S (Stop) command transfers the program buffer from the Run or Suspended state to
Compiled state.

> Following program termination with an ACSPL+ STOP/STOPALL command (or RET if an
autoroutine was executed).

> When the program fails due to an error.

The program buffer enters the Run state:

> When the #X (Execute) command is issued.

> When another program executes a STOP/STOPALL command, or autoroutine condition is
satisfied.

6.3.5.1 C

Description

The C (Compile) command compiles a program in the buffer or all programs in all buffers, depending
on the buffer qualifier.

The C command must not include a line qualifier and is prohibited when the buffer is in the Run or
Suspended states.

Syntax

#buffer_numberC

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16; or you can
use the pound (#) to designate all buffers.

Comments

The C command is not obligatory in order to execute a program. When the X (Execute) command is
issued, the controller automatically compiles the program if it was not previously compiled.
However, a separate compilation step is required in the following cases:

> To check the program correctness without executing it.

> The program is not intended for direct starting, but contains autoroutines. The autoroutines
are ready for execution only after compilation.

> The program is intended for starting from another program by the START command. The
program started by the START command must be compiled before the START command can
be executed.

If the program is successfully compiled, the controller prints a short report of how many lines were
compiled. If an error was encountered, the controller reports the error code and the line number in
which the error was found.

Examples

The following are examples of the C command.

#0C Compile the program in buffer 0
5 lines compiled Response, the program was compiled successfully
#9C Compile the program in buffer 9

830Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

?2026 in line 16 Response, Error 2026 was found in line 16
??2026 Explain error 2026.
Undefined variable name Response
##C Compile the programs in all buffers

Response
Buffer 0: 5 lines compiled The program was compiled successfully
Buffer 1: 18 lines compiled The program was compiled successfully
Buffer 2: empty The buffer is empty
Buffer 3: 5 lines compiled The program was compiled successfully
Buffer 4: empty The buffer is empty
Buffer 5: empty The buffer is empty
Buffer 6: empty The buffer is empty
Buffer 7: empty The buffer is empty
Buffer 8: empty The buffer is empty
Buffer 9: ?2026 in line 16 Error 2026 was found in line 16

6.3.5.2 X

Description

The X (Execute) command starts a program in a specific buffer, and can be executed in any program
state except the Run state.

Syntax

#buffer_numberX[line_number]

Arguments

buffer_
number

buffer_number qualifier in the command specifies the
buffer, a number between 0 and 16.

line_number
Optional, line_number can be a line number or a label.
Execution starts from the specified line. If line_number is
omitted, the program starts from the first line.

Comments

buffer_number must specify one buffer only.

If the state of the program is Not Compiled, the controller first compiles the program and then starts
it. If an error is encountered during compilation, the program does not start.

If the state of the program is Suspended, the X command resumes the program execution. In this
case the command must not contain line_number because upon execution the program resumes
from the point where the it was suspended.

Example

#1X Execute the program in buffer 1
?1 Query status of buffer 1
Buffer 1: 18 lines, running at line 7 Response

831Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

6.3.5.3 S/SR

Description

The S/SR Commands are used for terminating program execution:

> S - Stop
The S command terminates program execution in a buffer or the execution of all programs
in all buffers.

> SR - Stop and Reset
The SR (Stop and Reset) command terminates program execution in a buffer or the
execution of all programs in all buffers, and resets the buffer or all buffers to the Not
Compiled state. The command provides the de-compile function, which is useful if the
program contains autoroutines that are ready to start when the buffer is in the Compiled
state.

Syntax

#buffer_number{S|SR}

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16; or you can
use the pound (#) to designate all buffers.

Comments

If buffer_number is omitted, this will stop, or stop and reset all programs in all buffers, or you can
use the # character as the buffer_number, for example, ##S, which will do the same.

Program termination commands must not include line_numbers.

The S command can be issued in any program state.

The issuance of the SR command effectively prevents the activation of autoroutines.

Example

#1S Terminate the program in buffer 1
?1 Query status of buffer 1
Buffer 1: 18 lines, terminated in line 7 Response
#1SR Reset the program in buffer 1
?1 Query status of buffer 1
Buffer 1: 18 lines, not compiled Response
##SR Reset all programs in all buffers

6.3.5.4 P

Description

The P (Pause) command suspends program execution in a buffer.

832Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Syntax

#buffer_numberP

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16; or you can
use the pound character, #, to designate all buffers.

Comments

Generally buffer_number refers to one buffer only. The # character may be used instead of a buffer
number, for example, ##P, in which case the execution of all programs in all buffers is suspended.

Pause commands must not include line_numbers.

Pause commands are allowed in any program state, but in all states other than Run the command
has no effect.

If the program is in the Suspended state, the X command resumes execution. The S/SR command
transfers the buffer to the Compiled state. The S/SR command transfers the buffer to the Not
Compiled state.

Example

#1P Suspend the program in buffer 1
?1 Query status of buffer 1
Buffer 1: 18 lines, suspended in line 7 Response
#1SR Reset the program in buffer 1
?1 Query status of buffer 1
Buffer 1: 18 lines, not compiled Response
##P Suspend all programs in all buffers

6.3.6 Debug Commands

The following debug commands are supported:

> XS - Execute one program line

> XD - Execute program in debug mode

> BS - Set breakpoint at specified line

> BR - Reset breakpoint

6.3.6.1 XS

Description

The XS (Execute one step) command executes one program line.

Syntax

#buffer_numberXSline_number

833Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16.

line_number
line_number gives the line to be executed, it can be a line number or a
label.

Comments

The buffer_number qualifier in the command must specify one buffer only.

After executing the specified line_number, the buffer automatically enters the Suspended state.

6.3.6.2 XD

Description

The XD (Execute in Debug mode) command executes the program up to the next breakpoint (see
BS).

Syntax

#buffer_numberXD

Arguments

buffer_number buffer_number specifies the buffer, a number between 0 and 16.

Comments

The buffer_number qualifier in the command must specify one buffer only.

The command is similar to the X command. The difference is that the X command ignores
breakpoints in the program. If the program is started by the XD command, it will stop when it
reaches a breakpoint. At the breakpoint the program transfers to the Suspended state and can be
started again by the X, XS, or XD commands.

6.3.6.3 BS

Description

The BS (Set Breakpoint) command sets a breakpoint at the specified line.

Syntax

#buffer_numberBSline_number

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16.

line_
number

line_number specifies the line at which to set the breakpoint, it can be a line
number or a label.

Comments

The buffer_number qualifier in the command must specify one buffer only.

834Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Any number of breakpoints can be set in a program. For breakpoints to be active, the program must
be started with the XD command.

In a program listing, the lines with breakpoints are indicated by an asterisk.

6.3.6.4 BR

Description

The BR (Reset Breakpoint) command resets the breakpoint at the specified line or all breakpoints.

Syntax

#buffer_numberBR[line_number]

Arguments

buffer_
number

buffer_number specifies the buffer, a number between 0 and 16; or you can
use the pound (#) to designate all buffers.

line_
number

Optional, if included, the command resets one breakpoint at this line. line_
number can be a line number or a label.

Comments

The buffer_number qualifier in the command must specify one buffer only.

If line_number is omitted, the command resets all breakpoints in the buffer.

If the buffer qualifier is specified as #, for example, ##BR, and line_number is omitted, the command
resets all breakpoints in all buffers.

Example

#0L List buffer 0
1: MovePTP: Resonse
2: VEL(0) = 20000
3: ptp X, 4000
4: till ^MST(0).#MOVE
5: stop
#0BS3 Set breakpoint at line 3
#0L List buffer 0 (note the

asterisk indicating the
breakpoint)

1: MovePTP: Response
2: VEL(0) = 20000
3: *ptp X, 4000
4: till ^MST(0).#MOVE
5: stop
#0XD Execute the program in

debug mode in buffer 0
?0 Query buffer 0 state

835Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Buffer 0: 5 lines, suspended in line 3 Response
#0XS Execute line 3 of buffer 0
?0 Query buffer 0 state
Buffer 0: 5 lines, suspended in line 4 Response
#0XD Execute the rest of the

program in buffer 0
?0 Query buffer 0 state
Buffer 0: 5 lines, terminated in line 5 Response

6.4 System Commands

System commands provide you with information contained in the system.

6.4.1 SI

Description

The SI (System Information) command returns System Information about the SPiiPlus controller
including serial number, firmware version, configuration, name and SP programs.

Syntax

#SI

Arguments

None

Example

#SI
Network System Name: 140
Controller Firmware Version: 1.95.00.00
Controller Serial Number: NTM00000A
Controller Part Number: SP+NTM-08000001NNN
Hardware:

MPU board: Nexcom EBC220 500MHz
MPU board ID: 5
MPU number: DOM4F00010462
EtherCAT Master: N/A
Master Shift: Enabled
Ethernet Adapter: RealTek RTL8139

ID: 3
IP Address: 10.0.0.140
MAC Address: 00 10 F3 0D B2 23

EtherCAT Adapter: RealTek RTL8139
ID: 3
MAC Address: 00 50 C2 88 91 4A

Axes:
Dummy: none
DC Brush: 0,1,2,3,4,5,6,7
DC Brushless: 0,1,2,3,4,5,6,7
P/D Stepper: 8,9,10,11,12,13,14,15
Linear drives: none

836Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

PWM drives: 4,5,6,7
Digital Current Loop: 4,5,6,7
Integrated drives: 4,5,6,7

Axis (4): 4.0A continuous/5.0A peak
Axis (5): 4.0A continuous/5.0A peak
Axis (6): 4.0A continuous/5.0A peak
Axis (7): 4.0A continuous/5.0A peak

Remote HSSI drives: 0,1,2,3,4,5,6,7
Dual loop: 0,1,2,3,4,5,6,7
Position Event Generation (PEG):

PEG pulse: 0,1,2,4,5,6
PEG states: 0,1,2,4,5,6

Options:
Total Number of Axes: 0
SIN-COS Encoders: 0
Input Shaping: No
SPiiPlus PLC: No
Axes with Customized Servo Algorithms: 0
Customized Servo Algorithms Mask: 0x0000
Non-ACS Servo Axes: 0
Non-ACS Stepper Axes: 0
Non-ACS I/O Nodes: 0

Network Unit 0:
ID: 0
DIP: 0
Part Number: NT-LT-8
Vendor ID: 0x00000540
Product ID: 0x01020000
Revision: 1
Serial Number: 16
HW ID: 0x00000064
FPGA version: 0x0000001A
Options:

SIN-COS Encoders: 0
Motor Type Limitations: None

Axes Assignment: 0,1,2,3,4,5,6,7
Inputs/Outputs Assignment:

Digital inputs (IN): 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7
Digital outputs (OUT): 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7
Analog inputs (AIN): 0,1,2,3
Analog outputs (AOUT): 0,1,2,3
HSSI channels: 4
Ext. inputs (EXTIN): 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
Ext. outputs (EXTOUT): 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Integrated Component “SPiiPlus DC-LT-8”:
Type: Controller (11)
Address: 0x007
Subsystems: 2
Production date: 04/04/11
HW revision: A

837Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

S/N: 3N000016
Integrated Component “PSM3U-48V-0.7kW”:

Type: Power supply (7)
Address: 0x005
Subsystems: 1
Voltage: 48V - 48V
Power: 700W
Production date: 08/12/10
HW revision: 6
S/N: 66

Integrated Component “DDM3U-4-60V-4/5A”:
Type: PWM drive (5)
Address: 0x002
Subsystems: 4
Axes: 4,5,6,7

Drive 0: Axis 4
Drive 2: Axis 5
Drive 1: Axis 6
Drive 3: Axis 7

Voltage: 60V - 60V
Nominal current: 4.000000A
Peak current: 5.000000A
RMS protection Time: 3476.000000
Production date: 27/10/10
HW revision: 10
S/N: 27

Network Unit 1:
ID: 2
DIP: 63
Part Number: PDMnt-4-08-08-00-00
Vendor ID: 0x00000540
Product ID: 0x02040000
Revision: 0
Serial Number: 0
Options:

SIN-COS Encoders: 0
Motor Type Limitations: None

Axes Assignment: 8,9,10,11
Inputs/Outputs Assignment:

Digital inputs (IN): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7
Digital outputs (OUT): 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7
Analog inputs (AIN): none
Analog outputs (AOUT): none

Integrated Component “PDM-4-8-8”:
Type: Single-Slot Unit (14)
Address: 0x207
Subsystems: 1
Axes: 8,9,10,11

Drive 0: Axis 8
Drive 1: Axis 9

838Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Drive 2: Axis 10
Drive 3: Axis 11

Production date: 01/01/10
HW revision: 0
S/N: 0

Network Unit 2:
ID: 3
DIP: 7
Vendor ID: 0x00000540
Product ID: 0x02040000
Revision: 0
Serial Number: 0
Options:

SIN-COS Encoders: 0
Motor Type Limitations: None

Axes Assignment: 12,13,14,15
Inputs/Outputs Assignment:

Digital inputs (IN): 2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7
Digital outputs (OUT): 2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7
Analog inputs (AIN): none
Analog outputs (AOUT): none

Integrated Component “PDM-4-8-8”:
Type: Single-Slot Unit (14)
Address: 0x307
Subsystems: 1
Axes: 12,13,14,15

Drive 0: Axis 12
Drive 1: Axis 13
Drive 2: Axis 14
Drive 3: Axis 15

Production date: 01/01/10
HW revision: 0
S/N: 0

SP0 Program Info:
Monitor version:1
Creation Date: Sun Apr 03 08:26:19 2011
Saving Tool: SPiiPlus NT Servo Application File Generator v.6.83.07.00
SPiiPlus NT Servo Processor Program.

 Date= June 14th 2010
Version= 1.0
Firmware= 1.0
ACS Motion Control Ltd.,
Control and Applications Development,
Copyright (c) 2010. All Rights Reserved.

SP1 Program Info:
Monitor version:1
Creation Date: Sun Apr 03 08:26:19 2011
Saving Tool: SPiiPlus NT Servo Application File Generator v.6.83.07.00
SPiiPlus NT Servo Processor Program.

839Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

 Date= June 14th 2010
Version= 1.0
Firmware= 1.0
ACS Motion Control Ltd.,
Control and Applications Development,
Copyright (c) 2010. All Rights Reserved.

SP2 Program Info:
Monitor version:ffffffff
Default Servo Processor Info.

SP3 Program Info:
Monitor version:ffffffff
Default Servo Processor Info.

6.4.2 SIR

Description

The SIR (System Information Report) command provides information about the controller.

Syntax

#SIR/Section|ALL/Key|ALL/

Arguments

There are, as a minimum, six Sections:

> Hardware
This section contains information about the controller’s hardware. It has the following keys:

> Model
The Model ID for the controller card (hardware prefix). It is a three digit number that can
be:
001 SPiiPlus DDM-4
020 SPiiPlus CM
030 SPiiPlus SA
040 SPiiPlus 3U-4
041 SPiiPlus 3U-8
042 SPiiPlus 3U-DDM
043 SPiiPlus M
044 SPiiPlus M(A)
050 SPiiPlus-LF
060 SPiiPlus NT

> FM
The Firmware version number.

> Platform
The controller card type ID, (first two numbers of hardware prefix).

> SN
The controller serial number.

> PN
The controller part number.

840Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> MPU
A number identifying the controller MPU, which can be:
0) Unknown
1) RTD 686GX-233MHz
2) Sensoray 301-133MHz
3) Netcom CM589/CM585-300MHz
4) Kontron MOPS6-266MHz
5) Nexcom EBC220-500MHz

> MPUN
The MPU serial number.

> PAL
The controller PAL version.

> Controller_Version
Card version for the controller.

> SP
Number of Servo-Processor units in the controller.

> Master_Shift
Enabled - master shift is disabled
Disabled - master shift is enabled

> Options
This section contains information about the controller’s options. It has the following keys:

> Total NumberOf Axes
Maximum number of allowed axes.

> Sin Cos Encoders
Maximum number of allowed SIN-COS encoders.

> Input Shaping
Indicates if Input Shaping is allowed or not:
Yes - Input Shaping is allowed
No - Input Shaping is not allowed

> Sin Cos Encoders
Maximum number of allowed SIN-COS encoders.

> Axes With Customized Servo Algorithms
Maximum number of allowed axes to be used with customized servo algorithms.

> Customized Servo Algorithms Mask
A 4 hexadecimal digits (starts with 0x) that serves as a mask of allowed customized
servo algorithms.

> Non ACS Servo Axes
Maximum number of allowed Non-ACS Servo axes that can be used.

> Non ACS Stepper Axes
Maximum number of allowed Non-ACS Stepper axes that can be used.

> Non ACS IO Nodes
Maximum number of allowed Non-ACS I/O Nodes that can be used.

841Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> Network
This section contains information about the controller’s Ethernet channels. It contains the
following keys:

> NIC1
Code for the type of the first network adapter (the same codes are used for the second
NIC if one exists, see NIC2 below) which can be:
000> Not present
001> NE2000 compatible Ethernet card
002> Intel 82559 PCI Ethernet card
003> RealTek RTL8139 PCI Ethernet card

> NIC1_IP
Number for the first NIC IP address.

> NIC1_MAC
12 hexadecimal digits providing the MAC address for the first NIC

This number is fictitious in the Simulator.

> NIC2
Code for the type of the second network adapter if it exists. Values are the same as
those for NIC1, otherwise it is zero.

> NIC2_IP
Number for the second NIC IP address, if the second network adapter exists, otherwise
it is zero.

> NIC2_MAC
12 hexadecimal digits providing the MAC address for the second NIC if it exists,
otherwise it is zero. As for NIC1_MAC, this information is fictitious in Simulator.

> Axes_support
This section contains information about the features that each axis has. It has the following
keys:

> Dummy
A list of dummy axes numbers, separated by commas.

> DC_Brush
All axes that support DC brush motors.

> DC_ Brushless
All axes that support DC Brushless motors.

> PD_Stepper
All axes that support P/D Stepper motors.

> LDM3U
All axes that are controlled by an internal LDM3U drive.

> Digital_Current_Loop
All axes that support a drive with digital current loop.

842Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> PWM
All axes controlled by an internal PWM drive.

> Integrated
All axes controlled by an Integrated drive (PWM or LDM).

> HSSI_Drive
All axes that support an HSSI drive.

> Dual_Loop
All axes that support Dual Loop control.

> PEG_Pulse
All axes that support the PEG Pulse feature.

> PEG_State
All axes that support the PEG State feature.

> UNIT#
There is a UNIT section for each unit in the system, they are numbered from 0 up to the
number of units minus 1, for example, UNIT0 is the first unit in the system. Each UNIT section
contains information about the unit. The keys are as follows:

> ID
The ID of the unit.

> DIP
The DIP switch of the unit.

> Network Axes
The axes indices, separated by commas, of all axes allocated to the unit.

> Digital Inputs
All digital input variable indices, separated by commas, that are allocated to the unit.

> Digital Outputs
All digital output variable indices, separated by commas, that are allocated to the unit.

> Analog Inputs
All analog input variable indices, separated by commas, that are allocated to the unit.

> AnalogOutputs
All analog output variable indices, separated by commas, that are allocated to the unit.

> HSSIVariables
All HSSI variable indices (input/output pairs), separated by commas, that are allocated
to the unit.

> HSSI Channels
All HSSI channel indices, separated by commas, for the HSSI variables that are allocated
for the unit.

Element N in this list corresponds to element N in the HSSIRegisters list.

843Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

> HSSI Registers
List of HSSI registers for the HSSI variables, separated by commas, that are allocated for
the unit.

> AXIS#
There is an AXIS section for each axis in the system, they are numbered from 0 up to the
total number of axes in the system minus 1, for example, AXIS0 is the first axis in the
system. Each AXIS section contains information about the axis. The keys are as follows:

> Current Nominal
The nominal current, in amperes, of the axis.

> Current Peak
The peak current, in amperes, of the axis.

> XRM Smax
Maximum nominal current, in % of peak, of the axis.

> XRMST max
Maximum time constant for RMS protection.

> Drive Interface.
Interface numbers for the drive are:

1. PWM

2. External +10

3. LDM3U

4. ED2

5. Network

6. Digital LDM3U

> Max Command Current
Maximum command for the drive.

> Serial Number
Serial number for the axis drive. If the drive has no serial number, nothing is displayed.

Example 1

#SIR/Options/LearningBoost/
[Options]
LearningBoost = Yes

Example 2

#SIR/Hardware/FW/
[Hardware]
FW = 3.11.64.00

844Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Example 3

#SIR/ALL/ALL/
[Hardware]
Model = 60
FW = 1.95.03.00
SN = 3N000021A
PN = SP+NT
MPU = 5
MPUN = DOMA400088768
SP = 3
Master_Shift = Disabled
[Network]
NIC1 = 3
NIC1_IP = -2097151990
NIC1_MAC = 0010F31A09E3
NIC2 = 0
NIC2_IP = 0
NIC2_MAC = 000000000000
[Options]
TotalNumberOfAxes = 32
SinCosEncoders = 32
InputShaping = Yes
AxesWithCustomizedServoAlgorithms = 0
CustomizedServoAlgorithmsMask = 0x0000
NonACSServoAxes = 32
NonACSStepperAxes = 32
NonACSIONodes = 32
[Axes_support]
Dummy = 0
DC_Brush = 18446744069414584575
DC_Brushless = 18446744069414584575
PD_Stepper = 18446744069414584320
LDM3U = 0
Digital_Current_Loop = 0
PWM = 0
Integrated = 0
HSSI_Drive = 18446744069414584575
Dual_Loop = 18446744069414584575
PEG_Pulse = 18446744069414584439
PEG_State = 18446744069414584439
[UNIT0]
ID = 0
DIP = 0
NetworkAxes = 0,1,2,3,4,5,6,7
DigitalInputs = 0
DigitalOutputs = 0
AnalogInputs = 0,1,2,3
AnalogOutputs = 0,1,2,3

845Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

HSSIVariables = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
HSSIChannels = 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3
HSSIRegisters = 0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3
[UNIT1]
ID = 2
DIP = 0
NetworkAxes = none
DigitalInputs = none
DigitalOutputs = none
AnalogInputs = none
AnalogOutputs = none
HSSIVariables = none
HSSIChannels = none
HSSIRegisters = none
[AXIS0]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS1]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS2]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS3]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242

846Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

SerialNumber =
[AXIS4]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS5]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS6]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS7]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS8]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS9]
CurrentNominal = 0.000000
CurrentPeak = 0.000000

847Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS10]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS11]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS12]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS13]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS14]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2

848Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

MaxCommandCurrent = 5242
SerialNumber =
[AXIS15]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS16]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS17]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS18]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS19]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS20]
CurrentNominal = 0.000000

849Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS21]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS22]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS23]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS24]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS25]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0

850Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS26]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS27]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS28]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS29]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS30]
CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
[AXIS31]

851Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

CurrentNominal = 0.000000
CurrentPeak = 0.000000
XRMSmax = 50.000000
XRMSTmax = 3230.000000
Voltage = 0
DriveInterface = 2
MaxCommandCurrent = 5242
SerialNumber =
:

6.4.3 MEMORY

Description

Retrieves RAM availability.

Syntax

#MEMORY

Arguments

None.

Return Value

Available RAM.

Example

Up to Version 3.11

#MEMORY
There is 15 percent(s) of memory in use.
There are 114.83 total MBytes of physical memory.
There are 96.91 free MBytes of physical memory.

From Version 3.12

#MEMORY
Memory Allocation for buffers:
for all buffers code: 14832 kB
for all buffers source: 6416 kB
for all buffers local variables: 8704 kB
for global variables: 1024 kB

6.4.4 IR

Description

The IR (Integrity Report) command activates integrity validation and provides a report of current
integrity state. The report displays a list of files. Each list entry displays a file name, expected file size
and checksum of the file and actual file size and checksum.

852Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

It takes some time to compile the Integrity Report, in order to avoid a Timeout error:

1. Right-click the controller in the Workspace Tree and select Properties.

2. Increase the Connection Timeout to 10,000 ms.

3. Click Connect.

Syntax

#IR

Arguments

None

Comments

If any integrity problem is detected, the command raises fault bit S_FAULT.#INTGR.

Example

#IR
Size Checksum
Registered Actual Registered Actual

c:\
SB1218PC.frm 001E2870 001E2870 03672ED6 03672ED6
SB1218PC.bin 0000812A 0000812A DDC2E529 DDC2E529

c:\sb4\dsp\
dsp.### 0004FF18 0004FF18 61F6BA11 61F6BA11
dsp.##1 0003E11B 0003E11B 783AE65B 783AE65B
adj0.$$$ 0000122B 0000122B 69003B3B 69003B3B
adj1.$$$ 00001A99 00001A99 055D4E11 055D4E11
adj2.$$$ 000019DA 000019DA BC928A33 BC928A33
adj3.$$$ 00001A9B 00001A9B 4403628F 4403628F
adj4.$$$ 0000197E 0000197E DE12BDD7 DE12BDD7
adj5.$$$ 00001229 00001229 A974E209 A974E209
adj6.$$$ 00001229 00001229 A977E20C A977E20C
adj7.$$$ 0000122B 0000122B 61EE382F 61EE382F

c:\sb4\startup\
par.$$$ 000001C9 000001C9 D8A0220A D8A0220A
par0.$$$ 00000A16 00000A16 B2783961 B2783961
par1.$$$ 00000A13 00000A13 5E2EAD92 5E2EAD92
par2.$$$ 00000A14 00000A14 5A972E6D 5A972E6D
par3.$$$ 00000A13 00000A13 B25EDAD0 B25EDAD0
par4.$$$ 00000A13 00000A13 CD6E01E2 CD6E01E2
par5.$$$ 00000A13 00000A13 F6873205 F6873205
par6.$$$ 00000A15 00000A15 39E27520 39E27520
par7.$$$ 00000A15 00000A15 77CA503D 77CA503D
par8.$$$ 00000A13 00000A13 43A67043 43A67043
par9.$$$ 00000A13 00000A13 67BC915E 67BC915E
par10.$$$ 00000A89 00000A89 454F04F9 454F04F9
par11.$$$ 00000A89 00000A89 5A67281F 5A67281F

853Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

par12.$$$ 00000A89 00000A89 6F7F4B45 6F7F4B45
par13.$$$ 00000A89 00000A89 84976E6B 84976E6B
par14.$$$ 00000A89 00000A89 99AF9191 99AF9191
par15.$$$ 00000A89 00000A89 AEC7B4B7 AEC7B4B7
par16.$$$ 00000A89 00000A89 C3DFD7DD C3DFD7DD
par17.$$$ 00000A89 00000A89 D8F7FB03 D8F7FB03
par18.$$$ 00000A89 00000A89 EE101E29 EE101E29
par19.$$$ 00000A89 00000A89 0328414F 0328414F
par20.$$$ 00000A89 00000A89 6B641D1C 6B641D1C
par21.$$$ 00000A89 00000A89 807C4042 807C4042
par22.$$$ 00000A89 00000A89 95946368 95946368
par23.$$$ 00000A89 00000A89 AAAC868E AAAC868E
par24.$$$ 00000DF1 00000DF1 26E26061 26E26061
par25.$$$ 00000DF1 00000DF1 4B01777C 4B01777C
par26.$$$ 00000DF1 00000DF1 6F208E97 6F208E97
par27.$$$ 00000DF1 00000DF1 933FA5B2 933FA5B2
par28.$$$ 00000DF1 00000DF1 B75EBCCD B75EBCCD
par29.$$$ 00000DF1 00000DF1 DB7DD3E8 DB7DD3E8
par30.$$$ 00000DF1 00000DF1 B18A230C B18A230C
par31.$$$ 00000DF1 00000DF1 D5A93A27 D5A93A27

c:\sb4\user\
I 000001A0 000001A0 414453BB 414453BB
V 00000330 00000330 414453BC 414453BC
X_FILE 00000070 00000070 82665362 82665362
PMAP 00000340 00000340 F29BADD0 F29BADD0
ONE 00000FC0 00000FC0 4144573F 4144573F
TWO 00002F00 00002F00 414453A7 414453A7
X_ERR 00000040 00000040 42A2135C 42A2135C

System Integrity is OK

6.4.5 U

Description

The U (Usage) command is used for monitoring MPU usage. It returns the maximum, average, and
minimum values as a percent.

Syntax

#U

Arguments

None

Comments

The controller continuously measures the time taken by real-time tasks. When the U command is
received, the controller analyzes the measured times during the last 50 controller cycles and
calculates minimal, maximal and average time. The results are reported in percents.

854Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

6.4.6 TD

Description

The TD command returns the names of all user-defined variables and arrays that are in the
controller flash memory.

Syntax

#TD

Arguments

None

6.4.7 SC

Description

The SC (Safety Control) command reports the current safety system configuration.

The controller response includes the following:

> active safety groups

> the configuration of each fault for each motor

Syntax

#SC

Arguments

None

Example

#SC
Bit Name Fault Description 0 1 2 4 5 6 8 9 10 11 12 13 14 15
0 #RL Hardware Right Limit K K K K K K K K K K K K K K
1 #LL Hardware Left Limit K K K K K K K K K K K K K K
2 #NT Network Error D D D - D D D D D D D D D D
4 #HOT Motor Overheat - - - - - - - - - - - - - -
5 #SRL Software Right Limit K K K K K K K K K K K K K K
6 #SLL Software Left Limit K K K K K K K K K K K K K K
7 #ENCNC Encoder Not Connected D D D D D D D D D D D D D D
8 #ENC2NC Encoder 2 Not Connected - - - - - - - - - - - - - -
9 #DRIVE Drive Fault D D D D D D D D D D D D D D
10 #ENC Encoder Error D D D D D D D D D D D D D D
11 #ENC2 Encoder 2 Error - - - - - - - - - - - - - -
12 #PE Position Error
13 #CPE Critical Position Error D D D D D D D D D D D D D D
14 #VL Velocity Limit K K K K K K K K K K K K K K
15 #AL Acceleration Limit - - - - - - - - - - - - - -
16 #CL Overcurrent D D D D D D D D D D D D D D
17 #SP Servo Processor Alarm D D D D D D D D D D D D D D
20 #HSSINC HSSI Not Connected - - - - - - - - - - - - - -
25 #PROG Program Error K K K K K K K K K K K K K K
26 #MEM Memory Overflow K K K K K K K K K K K K K K
27 #TIME MPU Overuse -
28 #ES Hardware Emergency Stop D D D - D D D D D D D D D D
29 #INT Servo Interrupt D D D D D D D D D D D D D D
30 #INTGR File Integrity
31 #FAILURE Component Failure D D D D D D D D D D D D D D

Legend:
- Fault Detection Disabled
Blank No Default Response
K Kill Motion Response
D Disable Axis Response
KD Kill Motion Followed by Disable Axis Response
+ Generalized Fault
Bit Name Fault Description 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

855Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

0 #RL Hardware Right Limit K K K K K K K K K K K K K K K K
1 #LL Hardware Left Limit K K K K K K K K K K K K K K K K
2 #NT Network Error D D D D D D D D D D D D D D D D
4 #HOT Motor Overheat - - - - - - - - - - - - - - - -
5 #SRL Software Right Limit K K K K K K K K K K K K K K K K
6 #SLL Software Left Limit K K K K K K K K K K K K K K K K
7 #ENCNC Encoder Not Connected D D D D D D D D D D D D D D D D
8 #ENC2NC Encoder 2 Not Connected - - - - - - - - - - - - - - - -
9 #DRIVE Drive Fault D D D D D D D D D D D D D D D D
10 #ENC Encoder Error D D D D D D D D D D D D D D D D
11 #ENC2 Encoder 2 Error - - - - - - - - - - - - - - - -
12 #PE Position Error
13 #CPE Critical Position Error D D D D D D D D D D D D D D D D
14 #VL Velocity Limit K K K K K K K K K K K K K K K K
15 #AL Acceleration Limit - - - - - - - - - - - - - - - -
16 #CL Overcurrent D D D D D D D D D D D D D D D D
17 #SP Servo Processor Alarm D D D D D D D D D D D D D D D D
20 #HSSINC HSSI Not Connected - - - - - - - - - - - - - - - -
25 #PROG Program Error K K K K K K K K K K K K K K K K
26 #MEM Memory Overflow K K K K K K K K K K K K K K K K
27 #TIME MPU Overuse
28 #ES Hardware Emergency Stop D D D D D D D D D D D D D D D D
29 #INT Servo Interrupt D D D D D D D D D D D D D D D D
30 #INTGR File Integrity
31 #FAILURE Component Failure D D D D D D D D D D D D D D D D

Legend:
- Fault Detection Disabled
Blank No Default Response
K Kill Motion Response
D Disable Axis Response
KD Kill Motion Followed by Disable Axis Response
+ Generalized Fault
Bit Name Fault Description 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
0 #RL Hardware Right Limit K K K K K K K K K K K K K K K K
1 #LL Hardware Left Limit K K K K K K K K K K K K K K K K
2 #NT Network Error D D D D D D D D D D D D D D D D
4 #HOT Motor Overheat - - - - - - - - - - - - - - - -
5 #SRL Software Right Limit K K K K K K K K K K K K K K K K
6 #SLL Software Left Limit K K K K K K K K K K K K K K K K
7 #ENCNC Encoder Not Connected D D D D D D D D D D D D D D D D
8 #ENC2NC Encoder 2 Not Connected - - - - - - - - - - - - - - - -
9 #DRIVE Drive Fault D D D D D D D D D D D D D D D D
10 #ENC Encoder Error D D D D D D D D D D D D D D D D
11 #ENC2 Encoder 2 Error - - - - - - - - - - - - - - - -
12 #PE Position Error
13 #CPE Critical Position Error D D D D D D D D D D D D D D D D
14 #VL Velocity Limit K K K K K K K K K K K K K K K K
15 #AL Acceleration Limit - - - - - - - - - - - - - - - -
16 #CL Overcurrent D D D D D D D D D D D D D D D D
17 #SP Servo Processor Alarm D D D D D D D D D D D D D D D D
20 #HSSINC HSSI Not Connected - - - - - - - - - - - - - - - -
25 #PROG Program Error K K K K K K K K K K K K K K K K
26 #MEM Memory Overflow K K K K K K K K K K K K K K K K
27 #TIME MPU Overuse
28 #ES Hardware Emergency Stop D D D D D D D D D D D D D D D D
29 #INT Servo Interrupt D D D D D D D D D D D D D D D D
30 #INTGR File Integrity
31 #FAILURE Component Failure D D D D D D D D D D D D D D D D

Legend:
- Fault Detection Disabled
Blank No Default Response
K Kill Motion Response
D Disable Axis Response
KD Kill Motion Followed by Disable Axis Response
+ Generalized Fault
Bit Name Fault Description 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
0 #RL Hardware Right Limit K K K K K K K K K K K K K K K K
1 #LL Hardware Left Limit K K K K K K K K K K K K K K K K
2 #NT Network Error D D D D D D D D D D D D D D D D
4 #HOT Motor Overheat - - - - - - - - - - - - - - - -
5 #SRL Software Right Limit K K K K K K K K K K K K K K K K
6 #SLL Software Left Limit K K K K K K K K K K K K K K K K
7 #ENCNC Encoder Not Connected D D D D D D D D D D D D D D D D
8 #ENC2NC Encoder 2 Not Connected - - - - - - - - - - - - - - - -
9 #DRIVE Drive Fault D D D D D D D D D D D D D D D D
10 #ENC Encoder Error D D D D D D D D D D D D D D D D
11 #ENC2 Encoder 2 Error - - - - - - - - - - - - - - - -
12 #PE Position Error

856Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

13 #CPE Critical Position Error D D D D D D D D D D D D D D D D
14 #VL Velocity Limit K K K K K K K K K K K K K K K K
15 #AL Acceleration Limit - - - - - - - - - - - - - - - -
16 #CL Overcurrent D D D D D D D D D D D D D D D D
17 #SP Servo Processor Alarm D D D D D D D D D D D D D D D D
20 #HSSINC HSSI Not Connected - - - - - - - - - - - - - - - -
25 #PROG Program Error K K K K K K K K K K K K K K K K
26 #MEM Memory Overflow K K K K K K K K K K K K K K K K
27 #TIME MPU Overuse
28 #ES Hardware Emergency Stop D D D D D D D D D D D D D D D D
29 #INT Servo Interrupt D D D D D D D D D D D D D D D D
30 #INTGR File Integrity
31 #FAILURE Component Failure D D D D D D D D D D D D D D D D

Legend:
- Fault Detection Disabled
Blank No Default Response
K Kill Motion Response
D Disable Axis Response
KD Kill Motion Followed by Disable Axis Response
+ Generalized Fault

6.4.8 ETHERCAT

Description

The ETHERCAT command is used for obtaining complete information about the connected EtherCAT
slaves.

The information it displays is:

> Slave number

> Vendor ID

> Product ID

> Revision

> Serial number

> EtherCAT physical address

> DC support

> Mailbox support

> PdoIndex

Afterwards the list of network variables is listed. Each variable is described with:

> Name (as in XML)

> Offset inside the telegram (magic number that is used for mapping)

> IN or OUT description

> Data size

Syntax

#ETHERCAT

Arguments

None

857Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Example 1

#ETHERCAT
EtherCAT bus scan found 4 nodes:
Node 0:
========
Name: Device 1 (SPiiPlus NT-LT-8-New)
Vendor ID: 0x00000540 Product ID: 0x01020000
PHYS ADDR: 0x03E9 Alias: 0x0000
PD IN: Offset 26.0 Size 118
PD OUT: Offset 26.0 Size 136
STATE: OP
Node 1:
========
Name: Device 2 (SPiiPlus NT-LT-8-New)
Vendor ID: 0x00000540 Product ID: 0x01020000
PHYS ADDR: 0x03EA Alias: 0x0000
PD IN: Offset 162.0 Size 118
PD OUT: Offset 162.0 Size 136
STATE: OP
Node 2:
========
Name: Device 3 (SPiiPlus PDMnt-4-08-08-00-00-0)
Vendor ID: 0x00000540 Product ID: 0x02040000
PHYS ADDR: 0x03EB Alias: 0x0000
PD IN: Offset 298.0 Size 5
PD OUT: Offset 298.0 Size 56
STATE: OP
Node 3:
========
Name: Device 4 (SPiiPlus PDMnt-4-08-08-00-00-0)
Vendor ID: 0x00000540 Product ID: 0x02040000
PHYS ADDR: 0x03EC Alias: 0x0000
PD IN: Offset 354.0 Size 5
PD OUT: Offset 354.0 Size 56
STATE: OP

Network variables:
==================
Offset Size Dir Name

26 32 In Command response1
30 32 In Command response2
34 32 In Command response3
38 32 In Command response4
42 32 In Command response5
46 32 In Command response6
50 32 In Command response7
54 32 In Command response8
58 32 In Feedback Position1
62 32 In Reference Position1
66 32 In Drive status1

858Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

70 32 In GP data 1
74 32 In Feedback Position2
78 32 In Reference Position2
82 32 In Drive status2
86 32 In GP data 2
90 32 In Feedback Position3
94 32 In Reference Position3
98 32 In Drive status3

102 32 In GP data 3
106 32 In Feedback Position4
110 32 In Reference Position4
114 32 In Drive status4
118 32 In GP data 4
122 16 In Digital inputs
124 16 In FPGA status
126 16 In HSSI 1
128 16 In HSSI 2
130 16 In HSSI 3
132 16 In HSSI 4
134 16 In HSSI 5
136 16 In HSSI 6
138 16 In HSSI 7
140 16 In HSSI 8
142 16 In Sync Counter
162 32 In Command response1
166 32 In Command response2
170 32 In Command response3
174 32 In Command response4
178 32 In Command response5
182 32 In Command response6
186 32 In Command response7
190 32 In Command response8
194 32 In Feedback Position1
198 32 In Reference Position1
202 32 In Drive status1
206 32 In GP data 1
210 32 In Feedback Position2
214 32 In Reference Position2
218 32 In Drive status2
222 32 In GP data 2
226 32 In Feedback Position3
230 32 In Reference Position3
234 32 In Drive status3
238 32 In GP data 3
242 32 In Feedback Position4
246 32 In Reference Position4
250 32 In Drive status4
254 32 In GP data 4
258 16 In Digital inputs
260 16 In FPGA status

859Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

262 16 In HSSI 1
264 16 In HSSI 2
266 16 In HSSI 3
268 16 In HSSI 4
270 16 In HSSI 5
272 16 In HSSI 6
274 16 In HSSI 7
276 16 In HSSI 8
278 16 In Sync Counter
298 8 In LIMITS
299 8 In DIGITAL_INPUTS
300 8 In FAULTS
301 8 In NODE_NUM
302 8 In WD_COUNTER
354 8 In LIMITS
355 8 In DIGITAL_INPUTS
356 8 In FAULTS
357 8 In NODE_NUM
358 8 In WD_COUNTER
422 32 In DC1
426 32 In DC2
430 32 In DC3
434 32 In DC4
438 32 In DC5
442 32 In DC6
446 32 In DC7
450 32 In DC8
454 32 In DC9
458 32 In DC10
462 32 In DC11
466 32 In DC12
470 32 In DC13
474 32 In DC14
478 32 In DC15
482 32 In DC16
486 32 In DC17
490 32 In DC18
494 32 In DC19
498 32 In DC20
502 32 In DC21
506 32 In DC22
510 32 In DC23
514 32 In DC24
518 32 In DC25
522 32 In DC26
526 32 In DC27
530 32 In DC28
534 32 In DC29
538 32 In DC30
542 32 In DC31

860Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

546 32 In DC32
550 32 In DC33
554 32 In DC34
558 32 In DC35
562 32 In DC36
566 32 In DC37
570 32 In DC38
574 32 In DC39
578 32 In DC40
594 32 In DC1
598 32 In DC2
602 32 In DC3
606 32 In DC4
610 32 In DC5
614 32 In DC6
618 32 In DC7
622 32 In DC8
626 32 In DC9
630 32 In DC10
634 32 In DC11
638 32 In DC12
642 32 In DC13
646 32 In DC14
650 32 In DC15
654 32 In DC16
658 32 In DC17
662 32 In DC18
666 32 In DC19
670 32 In DC20
674 32 In DC21
678 32 In DC22
682 32 In DC23
686 32 In DC24
690 32 In DC25
694 32 In DC26
698 32 In DC27
702 32 In DC28
706 32 In DC29
710 32 In DC30
714 32 In DC31
718 32 In DC32
722 32 In DC33
726 32 In DC34
730 32 In DC35
734 32 In DC36
738 32 In DC37
742 32 In DC38
746 32 In DC39
750 32 In DC40
26 16 Out Command1

861Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

28 16 Out Command2
30 16 Out Command3
32 16 Out Command4
34 16 Out Command5
36 16 Out Command6
38 16 Out Command7
40 16 Out Command8
42 32 Out Command Arg1
46 32 Out Command Arg2
50 32 Out Command Arg3
54 32 Out Command Arg4
58 32 Out Command Arg5
62 32 Out Command Arg6
66 32 Out Command Arg7
70 32 Out Command Arg8
74 32 Out Direct Command1
78 32 Out Reference Acceleration1
82 32 Out Reference Velocity1
86 32 Out Reference Position1
90 32 Out Controller status1
94 32 Out Direct Command2
98 32 Out Reference Acceleration2

102 32 Out Reference Velocity2
106 32 Out Reference Position2
110 32 Out Controller status2
114 32 Out Direct Command3
118 32 Out Reference Acceleration3
122 32 Out Reference Velocity3
126 32 Out Reference Position3
130 32 Out Controller status3
134 32 Out Direct Command4
138 32 Out Reference Acceleration4
142 32 Out Reference Velocity4
146 32 Out Reference Position4
150 32 Out Controller status4
154 16 Out analog output1
156 16 Out analog output2
158 16 Out digital output
160 16 Out Sync Counter
162 16 Out Command1
164 16 Out Command2
166 16 Out Command3
168 16 Out Command4
170 16 Out Command5
172 16 Out Command6
174 16 Out Command7
176 16 Out Command8
178 32 Out Command Arg1
182 32 Out Command Arg2
186 32 Out Command Arg3

862Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

190 32 Out Command Arg4
194 32 Out Command Arg5
198 32 Out Command Arg6
202 32 Out Command Arg7
206 32 Out Command Arg8
210 32 Out Direct Command1
214 32 Out Reference Acceleration1
218 32 Out Reference Velocity1
222 32 Out Reference Position1
226 32 Out Controller status1
230 32 Out Direct Command2
234 32 Out Reference Acceleration2
238 32 Out Reference Velocity2
242 32 Out Reference Position2
246 32 Out Controller status2
250 32 Out Direct Command3
254 32 Out Reference Acceleration3
258 32 Out Reference Velocity3
262 32 Out Reference Position3
266 32 Out Controller status3
270 32 Out Direct Command4
274 32 Out Reference Acceleration4
278 32 Out Reference Velocity4
282 32 Out Reference Position4
286 32 Out Controller status4
290 16 Out analog output1
292 16 Out analog output2
294 16 Out digital output
296 16 Out Sync Counter
298 16 Out PULSE_WIDTH
300 16 Out INTERVAL1_1
302 16 Out INTERVAL1_2
304 16 Out INTERVAL1_3
306 16 Out INTERVAL2_1
308 16 Out INTERVAL2_2
310 16 Out INTERVAL2_3
312 16 Out INTERVAL3_1
314 16 Out INTERVAL3_2
316 16 Out INTERVAL3_3
318 16 Out INTERVAL4_1
320 16 Out INTERVAL4_2
322 16 Out INTERVAL4_3
324 16 Out PULSE_QTY1_1
326 16 Out PULSE_QTY1_2
328 16 Out PULSE_QTY1_3
330 16 Out PULSE_QTY2_1
332 16 Out PULSE_QTY2_2
334 16 Out PULSE_QTY2_3
336 16 Out PULSE_QTY3_1
338 16 Out PULSE_QTY3_2

863Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

340 16 Out PULSE_QTY3_3
342 16 Out PULSE_QTY4_1
344 16 Out PULSE_QTY4_2
346 16 Out PULSE_QTY4_3
348 8 Out ENABLE
349 8 Out DIGITAL_OUTPUT
350 8 Out WD_COUNTER
351 16 Out SEVEN_SEG
353 8 Out SPARE
354 16 Out PULSE_WIDTH
356 16 Out INTERVAL1_1
358 16 Out INTERVAL1_2
360 16 Out INTERVAL1_3
362 16 Out INTERVAL2_1
364 16 Out INTERVAL2_2
366 16 Out INTERVAL2_3
368 16 Out INTERVAL3_1
370 16 Out INTERVAL3_2
372 16 Out INTERVAL3_3
374 16 Out INTERVAL4_1
376 16 Out INTERVAL4_2
378 16 Out INTERVAL4_3
380 16 Out PULSE_QTY1_1
382 16 Out PULSE_QTY1_2
384 16 Out PULSE_QTY1_3
386 16 Out PULSE_QTY2_1
388 16 Out PULSE_QTY2_2
390 16 Out PULSE_QTY2_3
392 16 Out PULSE_QTY3_1
394 16 Out PULSE_QTY3_2
396 16 Out PULSE_QTY3_3
398 16 Out PULSE_QTY4_1
400 16 Out PULSE_QTY4_2
402 16 Out PULSE_QTY4_3
404 8 Out ENABLE
405 8 Out DIGITAL_OUTPUT
406 8 Out WD_COUNTER
407 16 Out SEVEN_SEG
409 8 Out SPARE
422 32 Out REV_DC1
426 32 Out REV_DC2
430 32 Out REV_DC4
434 32 Out REV_DC4
438 32 Out REV_DC5
442 32 Out REV_DC6
446 32 Out REV_DC7
450 32 Out REV_DC8
454 32 Out REV_DC9
458 32 Out REV_DC10
462 32 Out REV_DC11

864Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

466 32 Out REV_DC12
470 32 Out REV_DC13
474 32 Out REV_DC14
478 32 Out REV_DC15
482 32 Out REV_DC16
486 32 Out REV_DC17
490 32 Out REV_DC18
494 32 Out REV_DC19
498 32 Out REV_DC20
502 32 Out REV_DC21
506 32 Out REV_DC22
510 32 Out REV_DC23
514 32 Out REV_DC24
518 32 Out REV_DC25
522 32 Out REV_DC26
526 32 Out REV_DC27
530 32 Out REV_DC28
534 32 Out REV_DC29
538 32 Out REV_DC30
542 32 Out REV_DC31
546 32 Out REV_DC32
550 32 Out REV_DC33
554 32 Out REV_DC34
558 32 Out REV_DC35
562 32 Out REV_DC36
566 32 Out REV_DC37
570 32 Out REV_DC38
574 32 Out REV_DC39
578 32 Out REV_DC40
594 32 Out REV_DC1
598 32 Out REV_DC2
602 32 Out REV_DC4
606 32 Out REV_DC4
610 32 Out REV_DC5
614 32 Out REV_DC6
618 32 Out REV_DC7
622 32 Out REV_DC8
626 32 Out REV_DC9
630 32 Out REV_DC10
634 32 Out REV_DC11
638 32 Out REV_DC12
642 32 Out REV_DC13
646 32 Out REV_DC14
650 32 Out REV_DC15
654 32 Out REV_DC16
658 32 Out REV_DC17
662 32 Out REV_DC18
666 32 Out REV_DC19
670 32 Out REV_DC20
674 32 Out REV_DC21

865Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

678 32 Out REV_DC22
682 32 Out REV_DC23
686 32 Out REV_DC24
690 32 Out REV_DC25
694 32 Out REV_DC26
698 32 Out REV_DC27
702 32 Out REV_DC28
706 32 Out REV_DC29
710 32 Out REV_DC30
714 32 Out REV_DC31
718 32 Out REV_DC32
722 32 Out REV_DC33
726 32 Out REV_DC34
730 32 Out REV_DC35
734 32 Out REV_DC36
738 32 Out REV_DC37
742 32 Out REV_DC38
746 32 Out REV_DC39
750 32 Out REV_DC40

Example 2 from a SPiiPlusES

Network variables:
==================
Offset Size Dir PdoIndex Name
72 32 In 0x1600 Command response1
76 32 In 0x1600 Command response2
80 32 In 0x1600 Command response3
84 32 In 0x1600 Command response4
88 32 In 0x1600 Feedback Position1
92 32 In 0x1600 Reference Position1
96 32 In 0x1600 Drive status1
100 32 In 0x1600 GP data 1A
104 32 In 0x1600 Feedback Position2
108 32 In 0x1600 Reference Position2
112 32 In 0x1600 Drive status2
116 32 In 0x1600 GP data 2A
120 16 In 0x1600 Drive Output1
122 16 In 0x1600 Drive Output2
124 16 In 0x1600 Digital inputs
126 16 In 0x1600 FPGA status

6.4.9 ECMAPREP

Description

The ECMAPREP command displays a report of all variables mapped using the ECIN, ECOUT, ECEXTIN,
and ECEXTOUT functions. Bit notation is available for all variables..

866Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Syntax

#ECMAPREP

Example 1

#ECMAPREP
Input 1:
========
Variable I2, at 0x40620334 (integer)
Array Length 0
Data Length 1
EC Offset 22
Limits 0

Input 2:
========
Variable I0, at 0x40620354 (integer)
Array Length 0
Data Length 1
EC Offset 16
Limits 0

Output 1:
========
Variable I1, at 0x40620344 (integer)
Array Length 0
Data Length 2
EC Offset 16
Limits 0
Read Only = true

Example 2

#ECMAPREP
SPiPlusES inputs/outputs 1:
========
Variable I0, at 0x42A8CFA4 (integer)
PDO Index 0x1A01
Object Dictionary Index 0x6064
Object Dictionary SubIndex 0x00
Data Length 4
Read Only = true

6.4.10 CC

Description

The CC command returns data on the existing communication channels.

867Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Syntax

#CC

Example

#CC
Channel Type Mode
1 Serial Command Rate:115200 0N 1
2 Serial Command Rate:115200 0N 1
6 TCP/IP (701) Peer:None
7 TCP/IP (701) Peer:10.0.0.52
8 TCP/IP (701) Peer:10.0.0.65
9 TCP/IP (701) Peer:10.0.0.58

10 UDP (700) Peer:N/A
36 TCP/IP (701) Peer:None
37 TCP/IP (701) Peer:None
38 TCP/IP (701) Peer:None
39 TCP/IP (701) Peer:None
12 PCI bus Command
16 TCP/IP MODBUS Slave Connection:network Peer:None

6.4.11 PLC

Description

This command is valid only if SPiiPlus PLC is running in the system.

The PLC command provides some very important information about the SpiiPlus PLC co-existence
inside the SpiiPlus firmware.

The information it displays is:

> PLC cycle (in ms):
PLC cycle means what is the frequency that PLC program is executed is. If Maximum is equal
to CTIME, the PLC cycle is always identical to Motion Controller realtime tick. The data that is
shown is:

> Avg:

> Min:

> Max:

> PLC Usage consumption (when active):
How much of the controller usage does the PLC execution take when it is running arranged
by:

> Avg:

> Min:

> Max:

868Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Where the values shown are percentages.

> PLC program: (Program status)
The status can be:

> Running

> Stopped

> Not valid

Syntax

#PLC

6.4.12 LOG

Description

The controller supplies a log of important events to the user.

> The log can keep the last 500 events in memory.

> There is a command to set the time stamp for the log (setting current time).

> There is a command to display the log entries (similar to the Communication Terminal #SI
command), the user can use a host program to save these.

Initially the log includes:

> Motor errors

> Change in an axis FAULT variable

> System Errors.

> Program errors (ACSPL+ buffer termination error).

> Reported I2C drive errors.

> Reported I2C component errors.

> EtherCAT errors

The LOG report has the following format

Error Type Format

Motor Errors TIME axis error, MERR(AXIS) = ERROR,

Change in an axis FAULT variable
TIME FAULTS(AXIS): PREVIOUS_VALUE --> CURRENT_
VALUE

System Errors TIME system error, S_ERR = ERROR

Program errors (ACSPL+ buffer
termination error)

TIME program error, PERR(BUFFER) = ERROR, PERL
(BUFFER) = LINE

Reported I2C drive errors
TIME driver alarm extended error, address:ADDRESS,
axis:AXIS, error:ERROR

869Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Error Type Format

Reported I2C component errors
TIME component fault extended error,
address:ADDRESS, error:ERROR

EtherCAT errors TIME network error, ECERR = ERROR

Syntax

#LOG

Example

[2011/03/28] [11:15:17.140] FAULTS(57): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(58): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(59): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(60): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(61): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(62): 0x0 --> 0x20000
[2011/03/28] [11:15:17.140] FAULTS(63): 0x0 --> 0x20000
[2011/03/28] [11:15:17.403] system error, S_ERR = 5151
[2011/03/28] [11:15:25.502] FAULTS(0): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.526] FAULTS(1): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(2): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(3): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(4): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(5): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(6): 0x20000 --> 0x20080
[2011/03/28] [11:15:26.527] FAULTS(7): 0x20000 --> 0x20080
[2011/03/28] [11:15:34.352] FAULTS(0): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(1): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(2): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(3): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(4): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(5): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(6): 0x20080 --> 0x80
[2011/03/28] [11:15:34.352] FAULTS(7): 0x20080 --> 0x80
[2011/03/28] [11:17:09.270] program error, PERR(33) = 3232, PERL(33) = 0
[2011/03/28] [11:17:48.000] program error, PERR(33) = 3232, PERL(33) = 0
[2011/03/28] [11:17:57.958] axis error, MERR(3) = 5017

6.4.13 LOG HOST_TICKS

Description

LOG HOST_TICKS adds a time offset to the controller’s system time when reporting events, so that
the time of reported events will match the host millisecond counter.

The controller adds the difference between HOST_TICKS (in milliseconds) and controller’s time to
event time when reporting events. The controller considers its own power-up time as: 1970/1/1
00:00:00.

870Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

If the HOST_TICKS supplied is the correct number of milliseconds since that date, the controller
displays the correct date and time for the GMT time-zone. A time before 1970/1/1 00:00:00
(controller power-up) is displayed as negative milliseconds before this date.

Syntax

#LOG HOST_TICKS

Example

const unsigned __int64 SEC_IN_MIN = 60;
const unsigned __int64 MSEC_IN_SEC = 1000;
char SETLOGTIME[100] = "#LOG ";
int SETLOGTIMELENGTH = (int)strlen(SETLOGTIME);
struct __timeb64 timebuffer;
double CurrentTime;
// Set time zone from TZ environment variable. If TZ is not set,
// the operating system is queried to obtain the default value
// for the variable.
_tzset();
// GET CURRENT LOCAL TIME
_ftime64_s(&timebuffer);
CurrentTime = (((double)timebuffer.time)

- (((double)timebuffer.timezone) * SEC_IN_MIN)) * MSEC_IN_SEC
+ timebuffer.millitm;

SETLOGTIMELENGTH = sprintf_s(SETLOGTIME, 100, "#LOG %f\r", CurrentTime);
if (!acsc_Command((Handle, // communication handle

SETLOGTIME, // pointer to the buffer that contains
// executed controller’s command
SETLOGTIMELENGTH, // size of this buffer
NULL// waiting call

))
{

printf("transaction error: %d\n", acsc_GetLastError());
}

6.4.14 LOGP

Description

Presents G-code run-time errors detected during running the program in simulation mode (using
START/s command).

Syntax

#LOGP buffer_number

Arguments

buffer_
number

The number of buffer that was ran in simulation mode using START/s
command.

871Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

Comments

> If the program contains calls to sub-routines residing in the D-Buffer, then all run-time
errors occurred inside sub-routine will be addressed by the sub-routine calling line number.

> Buffer recompilation or rerun clears the list of run-time erors detected during the last
running process.

Motion generator related run-time errors are not detected, since the simulation takes
place only on G-code level.

872Version 3.12

ACSPL+ Commands & Variables Reference Guide
6. Terminal Commands

7. SPiiPlus Error Codes
This chapter contains explanations of the Error Codes that may appear.

The chapter contains only those Error Codes returned by the controller and does not include errors
associated with the C Library. Errors that are detected by the C Library are never returned by the
controller. A host application that calls a C Library function can receive these codes if a function call
failed. For explanations of the C Library errors see the SPiiPlus C Library Reference Guide.

The ACSPL+ Error Codes range 1000 to 7099 and are assigned as follows:

ACSPL+ Syntax Errors – numbers 1000 to 1999

ACSPL+ Compilation Errors – numbers 2000 to 2999

ACSPL+ Runtime Errors – numbers 3000 to 3999

Errors – numbers 5000 to 5150

System Errors - numbers 5151 to 5999

EtherCAT Errors - numbers 6000 to 6999

EtherCAT Slave Errors - numbers 7001-7099

G-Code Error Codes - numbers 2000 to 4000, not related to ACSPL+ error codes

Error code values of 7100 through 8999 are reserved for future use and are currently
not used.
Error code values of 9000 and above are reserved for user-defined error codes.

7.1 ACSPL+ Syntax Errors

These appear in response to syntax errors that the controller detects when a program is entered
into the buffer and are reported immediately in the prompt that is displayed in response to the
command.

The error code values range between 1000 and 1999.

Table 6-1. ACSPL+ Syntax Errors

Error
Code

Error Message Remarks

1001 The program is suspended
The program is being run in
the Step mode, and has been
suspended at the current step.

1002
The program was terminated by
user

The program has reached a
user-set breakpoint.

873Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1020 Illegal subcommand
A subroutine command that is
not recognized has been
entered.

1021
SP command requires axis
specification

The required axis designation
is missing.

1022 Illegal command
A program command that is
not recognized has been
entered.

1023
Read-only variable cannot be
assigned

The command specifies
assignment to a read-only
variable.

1024 Set variable cannot be reported

1025
Time interval between two
characters in command is more
than 2 seconds

The compiler recognizes that a
follow-on command has not
arrived within 2 seconds. The
error is relevant when an
application is using a call to a
SPiiPlus C Library routine, and
usually indicates a
communication problem.

1026
Serial Number, Part Number, or
Software Options were already
specified

An attempt was made to
respecify the controller’s serial
number, part number, or
software options.

1027
Variable requires axis
specification

An ACSPL+ variable missing
the required axis specification
was used.

1028
Scalar variable cannot accept
axis specification

A scalar variable was used
with an axis specification.

1029
Extra characters after the
command

A command has been entered
with extraneous characters or
parameters that are not
recognized.

874Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1030 Too many parameters
The entry contains too many
parameters.

1031
Illegal array in the array
command

The array in the command
either does not exist, or its size
does not match the
requirements of the
command.

1032 Illegal data in array
The array contains data in a
format that does not match
requirements.

1033 Illegal edit command
The edit command that has
been entered cannot be
executed.

1034 Illegal index value

The command includes
numerical index specification,
but the specified index is not a
number.

1035 Index is out of range

The error is caused by one the
following:

> The specified index
value is more than
the number of
elements in the array

> The specified index
value is negative

> The specified index
values are
incompatible (first
value in the range
greater than last).

1036 Internal error
An internal error has been
detected..

875Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1037 Illegal variable name

The command requires
specification of an ACSPL+
variable name, but the
specified name is not that of
an ACSPL+ variable.

1038
Wrong checksum in the
command

The command contains
checksum, and the checksum
value is wrong. The error is
relevant when an application
includes SPiiPlus C Library
routines, and indicates
communication problems.

1039
Only one motion per axis can be
planned in advance

An attempt was made to
setup more than one motion
for a specified axis.

1040 Unable to open file
The command specifies an
internal file in the flash
memory that does not exist.

1041 Assigned value is out of range

The command attempts to
assign an ACSPL+ variable
with a value that is out of the
range allowed for this variable.

1042
Operation failed because of
exception

1043
Program cannot start because
the buffer was not compiled

The command attempts to
start an un-compiled ACSPL+
program. To compile a
program, in the SPiiPlus MMI
Application Studio:

> In the Program
Manager, right-click
the buffer and select
Compile Buffer, or

> Use the #nC
command in the
Communication
Terminal, where n is
the buffer number.

876Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1044
Command cannot be executed
while the program is running

The command attempts to
affect a running ACSPL+
program. Stop the program
before executing the
command. To stop a program,
in the SPiiPlus MMI Application
Studio:

> In the Program
Manager, right-click
the buffer and select
Stop Buffer, or

> Use the #nS
command in the
Communication
Terminal, where n is
the buffer number.

1045
Numerical error in standard
function

The command includes an
ACSPL+ function that caused a
numerical error. Check if the
arguments of the function fall
into the allowed range.

1046 Write file error

The command has caused
writing to the flash memory
that failed. Possible reason is a
flash memory overflow
because of too many stored
user files.

1047 Read file error

The command has caused
reading from the flash
memory that failed. A
reoccurring error points to a
serious problem in the
controller hardware or
firmware.

1048
More axes than were defined in
the motion

The POINTcommand specifies
more axes than were specified
in the motion that the
command refers to.

877Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1049 Axis already belongs to a group

An attempt was made to
assign an axis to a group
when it has already been
assigned to another group.

1050
Conflict with user-defined axis
group

The command is incompatible
with a user-defined axis group
that was defined before. The
axes specified in the
command must either all
belong to one user-defined
axis group, or not to intersect
with any user-defined axis
group.

1051 Line number is out of range
The command specifies a line
number that does not exist in
the specified program buffer.

1052 Buffer number is out of range

The command specifies illegal
buffer number. The controller
contains 16 program buffers
numbered from 0 to 15, plus
the D buffer.

1053 Wrong type

The command addresses an
ACSPL+ variable and the type
of the variable is different
from the type specified in the
command. The error is
relevant when an application
includes a SPiiPlus C Library
routine. The error indicates
problems in communication.

1054
This type of motion is valid for
single axis only

An attempt was made to send
a single-axis motion to more
than one axis.

1055
Command requires line number
specification

The command is missing a
required line number
specification.

878Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1056
Parameter defining Master has
illegal value

The parameter specifying the
master has an illegal value
(see MASTER).

1057
Previous superimposed motion
is in progress

1058
Slave is not synchronized to
master

The slave controller has not
been synchronized with the
master controller.

1059
Command PTP/V must specify
velocity value

The PTP/v command was
issued without a value for
velocity.

1060 Illegal memory command
The memory management
command is improperly
formatted.

1061 ')' wasn't found
The command contains a non-
paired left bracket.

1062 Command is too long
Command exceeds maximum
permitted length

1063
Variable is not defined in the
buffer

The command addresses a
variable that is not declared in
the specified buffer, or the
specified buffer is not
compiled.

1064 Undefined global variable

The command addresses a
global variable that is not
declared in any buffer, or the
buffer that contains the
declaration is not compiled.

Variable name must be in
upper case.

1065
The command cannot be
executed while the current
motion is in progress

The command is in conflict
with one or more of the
currently executed motions.
To kill a motion use
KILL/KILLALL or KILLALL.

879Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1066
Attempt to compile or start
empty buffer

1067 GO command failed
The controller has no motions
waiting for the GO command.

1068
Referenced axis does not
execute a motion (motion was
terminated?)

The command refers to a
motion, but the specified axis
is not involved in any motion.

1069
This command can only be used
with MPTP, PATH or PVSPLINE
motion

Commands POINT and
MPOINT are compatible only
with the MPTP...ENDS,
PATH...ENDS, or
PVSPLINE...ENDS motions.

1070
Attempt to add segment after
ENDS command

The command attempts to add
a segment or a point to the
motion that was closed before
with an ENDS of the
MPTP...ENDS, PATH...ENDS, or
PVSPLINE...ENDS commands.

1071 File name was expected
The command must specify a
name of internal file in the
flash memory.

1072 Wrong array size

The command specifies an
array, but the motion to which
the command refers, or other
command arguments require
an array of another size.

1073 Text for search is not specified
The command must specify a
text for search operation.

1074
Only standard or SP variable is
allowed in the command

The command requires an
ASCPL+ or SP variable name to
be specified.

1075
Name is not a standard or user
variable

The specified variable name is
not an ACSPL+ or user-defined
variable name.

880Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1076 Undefined label

The command requires a label
specification. The program that
contains the label specified in
the command must be
compiled in a buffer.

1077 Protection violation

The command attempts to
assign a protected variable
when the controller is in
Protected mode. The controller
must be put in the Not
Protected mode before
protected variables can be
assigned. To do this, use the
SPiiPlus MMI Application
Studio Protection Wizard in
Development Tools.

1078
Variable can be changed only
while the motor is disabled

The command attempts to
assign a value to a variable
that can be changed only if the
motor is disabled. A
DISABLE/DISABLEALL
command must be put in
before the value can be
assigned to the variable.

1079
Motion cannot start because
one or more motors are
disabled

Motor(s) are in motion and
have to be disabled before the
motion can be initiated. A
DISABLE/DISABLEALL
command must be put in prior
to initiating motion.

1080
Default Connection flag is set for
the motor

1081 Incompatible suffixes
The command includes
command options that cannot
be used together.

1082
Commands BEGIN, END, KILL, GO
require axis specification

A GO or KILL/KILLALL
command has been entered
without an axis specification.

881Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1083 Array requires axis specification
An array requiring an axis
specification has been entered
without an axis specification.

1084 Illegal array command
Either the array does not exist,
or it is not in a compiled buffer.

1085
Extra number after the
command

The command specifies a
superfluous numerical
argument.

1086 Variable name must be specified
The command requires a
variable name specification.

1087
Command cannot be executed
while the axis is moving

The command specifies one or
more axes that are involved in
a motion. The command can
be executed only after the
motion finishes.

1088
Variable can be queried only in
compiled buffer

The command attempts to
query a variable in a buffer
that was not compiled.

1089
Label can be referenced only in
compiled buffer

The command attempts to
reference a label in a buffer
that was not compiled.

1090
This type of motion is not
allowed for grouped axis

The slave or track command
specifies an axis that was
included in a user-defined
group.

Only a single axis can be
specified in the slave or track
command.

1091 Less arguments than required

The motion command
specifies fewer coordinate
values than required by the
axis specification.

882Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1092 More arguments than required

The motion command
specifies more coordinate
values than required by the
axis specification.

1093
Bit selector value is greater than
31 or less than 0

The expression specified in the
bit selector yields a value
greater than 31 or less than 0.

1094 Empty line range is specified
The range of lines specified
refers to empty lines.

1095
No master-slave motion is in
progress

The command addresses
master-slave motion that has
not yet started.

1096 '}' was not found
The command includes a non-
paired left curly bracket.

1097
Previous data collection is in
progress

The command attempts to
start a data collection while
the previous data collection
for the same axis is still in
progress.

1098
Stalled motion requires limits
specification

The motion command, which
includes a command option of
stalled motion, requires
specification of the motion
limits.

1099
Extra numbers after the
command

The motion command includes
superfluous numerical
arguments.

1100
Received command has no
message ID

The command does not
contain the ID of the message
to which it refers.

1101
The program is suspended, the
start line number is not allowed

The command attempts to
start a program from a
specified line when the
program is in suspended state.

883Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

A program in suspended state
can be only resumed from the
next line. The line specification
is not allowed.

The only way to start a
suspended program from
arbitrary line is to stop the
program, and to start it again
from the desired line.

1102 Zero divide
The an illegal divide by zero is
attempted by the command.

1103 Invalid reference
The command contains an
invalid reference.

1104
No ACSPL program is waiting for
input

The command is attempting to
send input, but no program is
open for receipt.

1105 Format error
The command is incorrectly
formatted.

1106 SP function failed

The function that accesses SP
memory cannot be executed.

Check the address specified in
the function call. The address
must fall into the range of 0 to
511.

1107
Current empty space in the
dynamic buffer is not enough for
the command

The D-Buffer is full and no
further items can be entered.

1108 Invalid real number

The command includes
specification of a real number
that cannot be interpreted as
a valid real.

884Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1109
The command is not allowed in
SAFE mode

Safe communication mode is a
host communication format
based on block-by-block
transfer of data with delivery
confirmation.

1110
At least one variable must be
specified for data collection

Data collection was attempted
without specifying at least one
variable.

1111 Too long reply requested
The time of the reply request
parameter is too long.

1112 No matches were found
The search command did not
find any match.

1113
The step in the table is zero or
negative

The command reference to a
table element is either zero or
negative.

1114
The program finished without a
STOP command

The program that runs in a
buffer executed the last
command and this was not a
STOP/STOPALL command.

1115
Stack underflow (RET without
CALL)

The program that runs in a
buffer caused stack underflow.

This occurs if the program
executes the RET command
that without the paired CALL
command.

1116
Stack overflow (too many
nested CALLs)

The program that runs in a
buffer caused stack overflow.

This occurs if the program
executes too many nested
CALL commands. Check that
the program does not specify
infinite recursion (subroutine
calls itself infinitely).

1117
Attempt to enter autoroutine
directly

The program that runs in a
buffer comes to the ON
command (see ON...RET).

885Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

ON must never be executed in
the normal program flow.

1118 Illegal axis number

The command specifies an
axis by number or expression,
and the resulting value is not a
legal axis number.

Valid axis numbers range
between 0 and the number of
axes in the system minus one.

1119 Integer overflow The integer value is too large.

1120
The motion must involve the
first two axes from the group

The segmented motion must
always involve two axes. If a
user-defined group contains
more than two axes, the
segmented motion must
involve the first two axes in
the group.

1121 Unknown #-constant
The command specifies an
unknown symbolic constant.

1122 Bit selection is not applicable
Bit selector cannot be applied
to real value.

1123 Illegal bit selector
Value of bit selector must fall
in the range of 0 to 31.

1124 Attempt to enable motor failed

The enable command failed.

Additional information can be
obtained from the
corresponding element of the
MERR variable (motor disable
code).

1125 Error in SP program

The command caused
unsuccessful loading of an SP
program. The file with the SP
program contains an error.

886Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1126 Illegal SP number
The command specifies an
illegal SP number. Valid SP
numbers are 0, 1, 2, and 3.

1127 Editing of this buffer is disabled

The command attempts to
open the buffer for editing or
to change the program in a
Protected buffer.

Editing a buffer is disabled if
the controller is in the
Protected mode and bit 1 of
the corresponding element of
PFLAGS is set to 1.

1128
Configuration changed.
Commands SAVE and HWRES
must be executed.

The program has changed the
configuration. The
configuration has to be saved
to the controller flash and the
controller restarted.

Select the controller in the
Workspace Tree and click the
Save to Flash button. Then
right-click the controller and
select Reboot.

1129
In binary command the name
specification must end with /

The command syntax requires
a name to be followed by the /
(slash) character.

1130
Segment sequence for the
previous motion was not
terminated with ENDS command

Commands MPTP...ENDS,
MSEG...ENDS, PATH...ENDS,
PVSPLINE...ENDS are followed
by a sequence of points or
segments. The sequence must
terminate with ENDS.

1131
SP program is incompatible with
one or more products

SP program interface is
unrecognized.

1132
The file is not a legal user data
file

The file designator is not valid.

887Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1133
Discrepancy in types of the
saved and restored arrays

Error detected in array types
when comparing the saved
and restored versions.

1134
Discrepancy in sizes of the
saved and restored arrays

Error detected in array size
when comparing the saved
and restored versions.

1135
Operation failed because of
communication overload

Error occurs when there is
either a fault in the
communication, or too much
communication is being
conducted.

1136
Wrong relation between first
point, last point and interval

Usually caused by the first
point being greater than the
last point.

1137 Illegal analog output number
The command contains an
illegal analog output number.

1138
Incompatible SP and analog
output

Conflict between analog
output value in the command
and that contained in the SP.

1139 Illegal input

The controller tries to interpret
the inserted string as a
response to the executed
input command, but the string
does not follow the required
format.

1140 The function is not supported
An attempt was made to use a
function that is not supported
in SPiiPlus.

1141 Timeout

Communication timeout has
occurred. This can be corrected
by right-clicking the controller
in the Workspace Tree,
selecting Properties, and
increasing the Connection
Timeout value.

888Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1142 Arguments are inconsistent
Conflict with the command
arguments and their values.

1143 Memory overflow
Usually caused by infinite
loops.

1144
Simulator does not support this
command

The command cannot be
executed by Simulator.

1145
The specified DPR address is less
than 128 or exceeds the DPR
size

SPiiPlus does not contain a
dual-port RAM; therefore this
is not relevant.

1146
Collision with other variable in
DPR

SPiiPlus does not contain a
dual-port RAM; therefore this
is not relevant.

1147
Incomplete command (intrusion
of other process?)

The command is not correctly
formulated.

1148
Requested more SINCOS
encoder multipliers than
installed

The user tried to select more
Sin-Cos multipliers than
allowed.

1149 Illegal SP address
Valid SP numbers are 0, 1, 2,
and 3.

1150
Only even numbers are allowed
as DPR address

SPiiPlus does not contain a
dual-port RAM. If the program
has been imported from an
older non-NT version and this
error appears, delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

1151
This is a DEMO version of
Simulator. 5 minutes of work
remains.

The demo version of the
Simulator has a limited session
length. The Simulator is going
to stop after 5 minutes.

889Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1152
The DEMO version of Simulator
has terminated

The demo version of the
Simulator has a limited session
length. The session time has
elapsed.

1153 Illegal query command
The controller cannot
recognize the query
command.

1154
The command can be only used
with MSEG motion

The command was incorrectly
used - it can only be used with
MSEG...ENDS.

1155
Motion cannot start because the
previous motion failed. Use
FCLEAR command.

To start the motion enter the
FCLEAR command.

1156
Profile key must be specified as
/SECTION/KEY/

1157
Illegal configuration string. Use
only characters K,D,+,-.

Illegal characters were used in
the configuration string.

1158
Cannot find matching value. The
formula has no root or the root
is not single.

1159
Axis number is specified more
than once

The axis designation
parameter is repeated in the
command.

1160
The axis cannot be used in a
group (see AFLAGS)

The specified axis has been
flagged as not to be grouped
using AFLAGS.

1161 Illegal communication channel
An invalid communication
channel has been specified.

1162 Illegal tag value
The command Tag parameter
does not match the intended
command.

890Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1163 Illegal configuration parameters
Invalid system configuration
parameters have been
entered.

1164 Illegal password
The password that has been
entered does not match the
required password.

1165
Attempt to execute optional
function which is not installed

1166
Flash file operation failed
(overlapped file operations?)

1167 Wrong start position is specified

1168 File not opened

1169
D-Buffer cannot be changed
while any other buffer is
compiled

An attempt was made to
make changes to the D-Buffer
while other buffers were
being compiled.

1171
The number of axes in
coordinated motion is restricted
to 4

1172 Illegal category name

1173 EtherCAT offset is out of range

1174
Can't find EtherCAT network
variable

1175 EtherCAT Master is not ready

1176 Data size should be specified

1177
This slave has no mailbox
support

1178 Invalid CoE SDO parameter

1179
EtherCAT slave is in invalid state
for this operation

891Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1180 General EtherCAT error

1181 EtherCAT Timeout error

1182
Can't split non-existing axes
group

An axes group that was not
previously defined was
specified for splitting.

1183
Attempt to split group with
active motion on

Cannot split an axis group
while in motion.

1184
Mapped variable must be
defined in D-Buffer

1185
Number of connected EtherCAT
devices is not covered by SW
options

1186 Can't initialize SP injection

1187
There is an active injection on
this SP

1188
Can't enable motor, DIP switch
settings are incorrect.

1189
The command can only be used
with XSEG motion

1190
PLC option on this device is not
enabled

1191 PLC is already running

1192 General PLC error

1193 Wrong array size or type

1194 Not allowed Encoder Type

1195
Requested more absolute
encoder multipliers than
installed

1196
Requested absolute encoder is
not supported

892Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1197
The slave is incompatible with
current controller configuration

1198 Invalid encoder type
See ACSPL+ variable E_TYPE
(axis) in the Command and
Variable Reference Guide

1199
Invalid absolute encoder
parameter type

See ACSPL+ variable E_TYPE
(axis) in the Command and
Variable Reference Guide

1200
JIT and Dynamic modes are not
allowed for D-Buffer

1201
End-of-Sequence is illegal for
this motion

1202
JIT and Dynamic modes are not
allowed at the same time

1203
DEBUG mode is not allowed for
JIT and Dynamic buffers

1204
JIT and Dynamic modes require
the buffer to be empty

1205 Illegal zone number

1206
Cannot change a constant
variable

1207
One or more arguments are out
of range

1208
Function ended without return
statement

1209
Entered a function not by calling,
STOP statement might be
missing

1210 Incompatible matrix size

1211 Too many segments See MSEG...ENDS.

893Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1212 ARC arguments are inconsistent
See MSEG...ENDS, ARC1 and
ARC2.

1213
Stopper is prohibited for master-
slave motion

See STOPPER.

1214
Adjacent stoppers are prohibited

See STOPPER.

1215
In cyclic path the first and the
last points must coincide

1216
Velocity is specified, but the
motion command had no V
command option

Velocity argument can be
specified in POINT, LINE, ARC1
or ARC2 only if the
corresponding motion
command specifies /v.

1217 Segment of zero length

1218 ARC radius is too small

1219
Specified motion delay is out of
range

1220
Command is incompatible with
connect

1221
20 KHz motion generation
incompatible with CTIME or
number of axes

See SPiiPlus ADK Suite Release
Notes section "Controller Cycle
Time (CTIME) Support" for
Controller CTIME Limitations

1222
20 KHz motion limitation
reached

1223
Time specified is not possible
under current motion safety
limitations

1224 Offset doesn't exist

1225 Microblaze monitor is not ready

1226 Address couldn't be found

894Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1227
Maximum number of Registers
was already added

1228
Firmware is not properly
installed

1229
SLABITS does not match Single
Turn and Multi Turn number of
bits

1230
Non Linear Control Feature is
not supported

1231 Illegal key
An invalid Key argument has
been entered in either the
GETCONF or SETCONF function.

1232 Illegal index
An invalid Index argument has
been entered in either the
GETCONF or SETCONF function.

1233 Illegal value

The Value argument of the
SETCONF command specifies a
value that is not compatible
with the Key argument.

1234 Value in SETCONF must be 0 or 1 See SETCONF.

1235 SETCONF function is disabled

1236
SETCONF cannot be executed
while the motor is enabled

1238
The operation can be executed
only when the HSSI channel is in
command mode

1239

HSSI channel cannot switch to
command mode because it
affects one or more remote
drivers. Reset corresponding
MFLAGS.#HSSI bits before.

See MFLAGS.

895Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1240
Operation is temporarily
disabled

1241 Operation failed

1242 The feature is not supported

1243
Max number of 20 KHz moving
axes reached

1244
Illegal number of coordinates
specified

1245

The specified channel is already
being used. Please use the
MBCLOSE function to close the
connection

1251
Operation is temporarily
disabled

1252
Motor cannot be enabled while
a motion is in termination
process

1253
Unable to work with Dummy
motor

The command cannot be
executed for a dummy motor.

Check flag MFLAGS.#DUMMY
(see MFLAGS).

1254
The operation requires the
motor to be enabled

The ENABLE/ENABLE ALL
command has to be run.

1255
The operation requires the
motor to be disabled

The DISABLE/DISABLEALL
command has to be run.

1256
The operation is valid only for
brushless motor without Hall
sensor

896Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1257
The operation failed because
the brushless motor is not
commutated

Refer to the chapter on the
Adjuster Wizard in the SPiiPlus
MMI Application Studio User
Guide for details on
commutation.

1258
The operation failed because
the motor is in open-loop mode

1259
Motion cannot start because the
motor is defined as dummy

1260
Motion cannot start because the
motor is disabled

The ENABLE/ENABLE ALL
command has to be run.

1261
Motion cannot start because the
brushless motor is not
commutated

Refer to the chapter on the
Adjuster Wizard in the SPiiPlus
MMI Application Studio User
Guide for details on
commutation.

1262
Motion cannot start because the
motor is in open-loop mode

1263
Motion cannot start because the
previous motion failed. Use
FCLEAR command.

To start the motion enter the
FCLEAR command.

1265
SP program does not support
this operation

1266 Invalid PEG pulse width
Pulse width set in or is
incorrect.

1267
Maximal number of time-based
PEG pulses is 65,535

Not relevant to PEG
operations.

1268
Invalid period of time-based PEG
pulses

Not relevant to PEG
operations.

1269
PEG pulse width must be less
than time-based pulse period

Not relevant to operations.

897Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1270
PEG is not supported for the
specified axis

See .

1271
Step does not agree with
start/end points

1272

Incremental PEG step must
correspond to encoder counts
within the (-2^31, 2^31-1) range,
zero is excluded

The PEG step in encoder
counts must be in the range of
-231 to 231-1.

1273
The specified axis does not exist
in this controller model

Refers to controllers that
support 4 axes only, and the
specified axis is above this.

1274
The specified axis is defined as
dummy only

1275
Only stepper motor is supported
for the specified axis

1276
The brushless motor is not
supported for the specified axis

1277
Dual loop control is not
supported for the specified axis

1278
Remote HSSI driver is not
supported for the specified axis

1279
PEG states are not supported for
the specified axis

1280
The stepper motor is not
supported for the specified axis

1281
No Hall support for 2-Phase
motors

1282 Value out of range

1283
Number of points for Random
PEG exceeds the limit

898Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1284
Axis is not connected to PEG
engine

1285
NanoMotion Piezoceramic
Motor is not supported for the
specified axis

1286
Fast Sin-Cos Encoder is not
supported for the specified axis

1287
Laser Modes are not supported
for the specified axis

1288
Time-based PEG is not
supported for the specified axis

1289
This function is not supported
for the specified axis

1290
SPINJECT/SPRT and Fast GPRT
cannot be used in parallel

1291
P/D interface is required for this
function

1292
Secondary Feedback is not
supported

1293
SLABITS does not match Single
Turn and Multi Turn number of
bits

1294

Motion cannot start because the
Gantry Complementary
brushless motor is not
commutated

1300
Non Linear Control License is
required

1301
Another EtherCAT port is already
closed

1302
Not possible to save network
topology configuration when

899Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

more than one line break exists

1303
ERROR SDO: Object does not
exist in the object dictionary.

1304
The value is too high (check E_
PAR_D value)

1305
The network variable is already
mapped to ACSPL+ variable

1306 Invalid axis list

1307
FoE Protocol is not supproted by
Slave

1308
The Disk is full or the file is too
big

1309
Function supported only by
CiA402 Drive

1310
CiA402 Drive is not in OP State.
PDO is not enabled.

1311 Cannot convert REAL type to INT

1312
More than one hold command is
not allowed

1313
Continue command is already in
process

1314
Requested Homing Method is
not supported

1316
Homing in Gantry mode requires
additional parameters

1317 FoE Error: Access denied

1318 Matrix is not invertible

1319
PI AME interface is not initialized

900Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1320 PI AME interface is busy

1325
Main FPGA file downloading is in
progress

1326
Operation aborted, PEG is in
process

1327 FPGA versions do not match

1328
FPGA version is the same. FPGA
Upgrade aborted.

1329

Invalid value, digital input index
should range between 0-99 and
bit index should range between
0-31

1330

Invalid value, digital output
index should range between 0-
99 and bit index should range
between 0-31

1331
This output is already mapped
as a mechanical brake to a
different axis

1332
Hardware limit swapping
(MFLAGSX.#HLIMSWAP) and limit
routing are mutually exclusive

1333
File name MAX length is 100
chars

1335 Illegal SPATH specification

1336 Nurbs motion was not initiated

1337
Illegal NURBS/SPATH parameter
value

1338
Profile has ended or last knots
already added

1339 Invalid number of axes

901Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1340
Dummy point must also specify
a Knot value

1341
Illegal dummy point, two points
are allowed before coordinates
and two after

1342

The measurement you are
trying to activate is already
active. (see DPM_Measurement
Stop() function for more details)

1343

An invalid sample type has been
specified. Type can either be 0 or
1. (see DPM_Measurement
sample type for more details)

1344

The sampling time specified is
invalid, the minimum value is
the controller cycle time(?CTIME)
and the maximum value is:
100000000msec

1345
The sample-set size specified is
invalid. Minimum size: 1.
Maximum size: 512.

1346

The specified "when_to_
measure" flag is invalid. (see
DPM_Measurement
documentation for more details)

1347

The measurement you are
trying to activate is paused. (see
DPM_Measurement Stop
()/Resume() functions for more
details)

1348

Cannot change the selected axis
while monitoring is ON. (see
DPM_Motion_Status SelectAxis
()/MonitorOff() functions for
more details)

902Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1349

The specified "monitored_
variable" is invalid. (see DPM_
Measurement documentation
for more details)

1350 Illegal attempt to copy STRING

1360 LCI unit initialization failed

1361 Unable to start the LCI operation

1362 Trajectory axes are not defined

1363 LCI Safety input is off

1364 LCI laser fault input is on

1365
LCI supported velocity limit
exceeded

1366 LCI unit not found

1367
LCI. Unable to allocate channel
for specified operation

1368 LCI function timeout

1375
The specified IP address is
invalid. Please see MBOPEN
documentation for more details.

1376

The specified server ID is invalid
(valid values are between [1 -
247]). Please see MBOPEN
documentation for more details.

1377

The specified word-order is
invalid. (valid values are 0 for
big-endian and 1 for little-
endian) Please see MBOPEN
documentation for more details.

903Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1378

Unable to open more than 3
Modbus connections at any
given time. Please see MBOPEN
documentation for more details.

1379
The specified communication
handle is invalid.

1380
A connection with the specified
IP was not found.

1381 The specified address is invalid.

1382

The specified request frequency
is invalid. The minimum value is
5 milliseconds. Please see the
documentation for more details.

1383

The specified variable length
and the specified number of
elements do not match. Please
see the documentation for more
details.

1384
The specified suffix combination
is invalid. Please see the
documentation for more details.

1385
Read-Only variables cannot be
written.

1386
The specified request ID is
invalid.

1387

The specified variable(or part of
it) is already being written to by
another Modbus request. Use
#MBMAPREP for more details.

1388

The specified server address is
already being written to by
another Modbus request. Use
#MBMAPREP for more details.

1389 The specified number of

904Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

elements is greater than the
specified variable length. Please
see the documentation for more
details.

1390

The maximum number of
integer values that can be
"mapped" in a single request is
16. Please see the
documentation for more details.

1391

The maximum number of short
values that can be "mapped" in a
single request is 32. Please see
the documentation for more
details.

1392

The maximum number of single-
precision floating-point values
that can be "mapped" in a single
request is 16. Please see the
documentation for more details.

1393

The maximum number of
double-precision floating-point
values that can be "mapped" in a
single request is 8. Please see
the documentation for more
details.

1394

The maximum number of coil
values that can be "mapped" in a
single request is 32. Please see
the documentation for more
details.

1395

The maximum number of
discrete input values that can be
"mapped" in a single request is
32. Please see the
documentation for more details.

1396
Failed to establish a connection
with the specified server device.

905Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1397

The maximum number of
mapping requests per server is
32. Please see the
documentation for more details.

1398

A connection with the specified
IP is already open and with
different configuration
parameters. To change the
connection parameters, close
and open a new connection.

1399

The specified Modbus channel
operates in sequential mode.
This mode does not support
user-defined request frequency.
Each request is sent after a
response for the previous one
has arrived, but no less than 10
milliseconds from the last time it
has been sent. Please see the
documentation for more details.

1410

The minimum value can not be
greater than the maximum
value. Please see the
documentation for more details.

1411

G-code: Run-time errors were
detected during the program
execution in simulation mode.
Use the #LOGP <buffer number>
command to present the
detected errors.

1412
This motion type is not
supported

1413

The supplied correction maps (2-
dimensional arrays) should have
the same dimensions. Please
see the documentation for more
details.

906Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

1414

The Specified referenced
axes/analog inputs are invalid.
Please see the documentation
for more details.

1415 Internal Error

1416 Stage model dll is not loaded

1417
Stage model dll's name does not
match the stage model
implemented by the dll

1418
This functionality has not
implemented yet

1419

TCP and machine axes conflict.
Consider to change either TCP
axes by changing AXISDEF
parameter or machine axes

907Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

7.2 ACSPL+ Compilation Errors

The error codes in ACSPL+ compilation errors range between 2000 and 2999.

ACSPL+ compilation errors are reported either immediately when the erroneous line is inserted, or
subsequently, when the controller attempts to compile an ACSPL+ program. If a program in a buffer
undergoes compilation and an error is detected, the error code is stored in the corresponding
element of the PERL array and the erroneous line number is stored in the corresponding element of
the PERL array.

908Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Table 6-2. ACSPL+ Compilation Errors

Error
Code

Error Message Remarks

2002 Unrecognized command

The program line
contains a
sequence that is
not recognized as a
legal command.

If the line starts
from a standard
variable name,
check the following:

> All letters
are
uppercase

> Spelling is
correct

If the line starts
from a user variable
name, check the
following:

> The
variable is
defined
before use

> The letter
case
matches
the
definition

> Spelling is
correct

2003 Unexpected delimiter, incomplete command
A command
contained in the
line is incomplete.

2006 Unexpected END

The END command
is specified without
a paired IF, LOOP or
WHILE command.

909Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2007 Two adjacent operators

Two binary
operator are
specified in the
expression without
an operand
between.

2008 Left bracket was expected

Left bracket was
not found in a
position where it is
expected.

Possible reasons
for this error are
array name without
index or function
call without
arguments.

2009 Right bracket was expected

The expression or
sub-expression has
an unpaired left
bracket.

910Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2010 Comma was expected

Comma character
was not found in a
position where it is
expected.

Possible reasons
for this error are:

> Missing
comma
between
the
arguments
of the
command
or function

> The
command
or function
call has
less
arguments
than
required.

2011 Equals sign was expected
Equal sign in
assignment is
missing.

2012 Direct command was expected

2013 DO or LOOP without END

2015 Integer positive constant is expected

The declaration of
array contains a
size definition other
than positive
integer constant.

911Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2016 Only label or line number is allowed as start point

The start command
can contain the
start line definition.
The start line
definition can
appear only as a
label or a positive
line number.

2018
Scalar variable cannot be indexed or used with axis
specification

The command
contains a scalar
variable followed
by index
specification or
prefixed by axis
specification.

2019 Write-only variable cannot be read

2020 Read-only variable cannot be assigned

The command
attempts to assign
a read-only
variable.

2021 Label was expected
GOTO or CALL must
specify a label
name.

2022 Array name was expected

The command or
function requires
an array name as
one of its
arguments. The
array name must
not be indexed.

2023 Variable name was expected

The declaration
specifies an illegal
variable name.

A variable name
must begin with a
letter or underscore
and can include
letters, digits and
underscores.

912Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

A variable name
must not include
any of the
following:

> Keywords
(IF, WAIT,
SIN, etc.) or
standard
variable
names
(FPOS,
MST, etc.)

> Standard
label
(
AUTOEXEC
).

2024 Undefined label

GOTO or
CALLspecify a label
name that was not
defined in the
program.

2025 Duplicated label
The program
contains two
identical labels.

2026 Undefined variable name

The command
contains a variable
name that was not
declared in the
program.

2027 Duplicated variable name

The program
declares two
variables with
identical names.

913Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2030
Number user array elements can not exceed the
XARRSIZE parameter

The value of the
XARRSIZE
parameter is limited
to a maximum of
30,000 elements.

The limitation
applies also to two-
dimensional arrays.
The total number of
elements in a two-
dimensional array is
equal to the
product of its sizes
by each dimension.
The total number of
elements must not
exceed 30,000.

2031
Global of different type/dimension was defined in other
buffer

The program
declares a global
variable with the
name that was
already declared in
other buffer with
different type or
dimension.

2033 Mandatory argument is omitted

The command or
function call
contains fewer
arguments than
required.

2034 More arguments than required

The command or
function call
contains more
arguments than
required.

2035 Wrong argument type

The command or
function call
contains an
argument of
incorrect type.

914Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2036
Function that does not return a value cannot be used in
expression

The expression
cannot include a
function that has
no return value.

2037 Axis specification was expected

This error refers to
a logical check.

The command must
specify an axis.

Axis specification
can appear: as an
integer
designation, like 0,
1, 32, or as an
expression that
evaluates to an
integer within the
range of 0 and the
number of axes in
the system minus 1.

2038 Axis specification was expected

This error refers to
a physical check.

The command must
specify an axis that
physically exists.

Axis specification
can appear: as an
integer
designation, like 0,
1, 32, or as an
expression that
evaluates to an
integer within the
range of 0 and the
number of axes in
the system minus 1.

2042 Array index must be a non-negative integer constant

2043 Internal error

915Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2044 Index is out of range

The constant index
value is greater
than the array size
minus one, or is
negative.

2045 Illegal axis value

The axis value
specified by a
numerical constant
is greater than the
number of axes in
system minus one,
or is negative.

2048 Argument must be specified as + or - sign

The command
requires a direction
specification that
must be presented
by character + or -.

2049 Illegal suffix for this command

The command
specifies a
command option,
which is illegal for
this command.

2050 Name of standard variable was expected

The command
requires an
argument that
specifies one of the
ACSPL+ variables.

2051
Only APOS, RPOS, FPOS and F2POS are allowed in SET
command

The SET command
must specify
assignment to one
element of one of
the following
variables: APOS,
RPOS, FPOS, F2POS.

The variables must
be in upper case.

916Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2052 Variable name was expected

The command
requires an
argument that
specifies a scalar
variable or an
element of array.

A general
expression or a
constant is not
allowed for this
argument.

2053 Constant argument was expected

The command
requires an
argument that
specifies a
numerical constant.

2054 Illegal buffer number

The command must
specify a constant
buffer number. The
constant must fall
in the range of from
0 to 15.

2055 Assigned value is out of range

The command
attempts to assign
a variable with a
value that falls out
of the range
allowed for the
variable.

2056 Zero divide
The command
attempts to divide
by zero.

2057
Only VEL,ACC,DEC,JERK,KDEC are allowed in IMM
command

IMM must specify
assignment to one
element of one of
the following
variables: VEL, ACC,
DEC, JERK, KDEC.

917Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2058 Bit selection cannot be applied to real variable
The bit selector is
specified for a real
variable.

2059 ELSE without IF

ELSE is specified
without
corresponding IF
(see IF, ELSEIF,
ELSE...END).

2060 ELSEIF without IF

ELSEIF is specified
without
corresponding IF
(see IF, ELSEIF,
ELSE...END).

2061 LOOP without END
LOOP has no
corresponding END
(see LOOP...END).

2062 DO without END

2063 IF without END

IF has no
corresponding END
(see IF, ELSEIF,
ELSE...END).

2064 Memory overflow

The application
requires too much
memory.

Reduce the number
and size of the local
and global variables
used in the
application, or use a
more powerful
model of the
controller.

918Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2065 Axis constant or axis expression in brackets expected

The command must
include an axis
specification in
parentheses, for
example: FMASK
(4).16, where 4 is
the axis
specification.

2066 Too many axis specifiers

The axis
specification
includes too many
axis specifiers.

2067 An axis is specified more than once

The axis
specification
includes two
identical axis
specifiers.

919Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2068 Sign constant or sign expression in brackets expected

The command must
include a sign
specification. Each
sign in the
specification
defines a direction
of one involved
axis.

Sign specification
can appear:

> As a
sequence
of sign
characters,
like +, +-+,
-+-+

> As a list of
expression
s enclosed
in brackets
where (0, 1,
0) is
equivalent
to +-+.

2069 Too many sign specifiers

The sign
specification
includes too many
sign specifiers.

2070 Unknown #-constant

The command
includes an
unknown symbolic
constant.

2071 Local variable is not allowed in this command

The command does
not allow the use of
local variables. Only
ACSPL+ variables
and user global
variables that have
been declared can
be used.

920Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2072 WHILE without END
WHILE has no
corresponding END
(see WHILE...END).

2073
WAIT,TILL,GOTO,CALL,RET,LOOP,WHILE,ON,INPUT,AXISDEF,
ENCREAD are not allowed in immediate command

The specified
commands cannot
be entered through
the SPiiPlus MMI
Application Studio
Communication
Terminal.

2074 Only RPOS variable is allowed after CONNECT

CONNECT must
specify assignment
to one element of
one of the RPOS
variables.

2075 Only MPOS variable is allowed after MASTER

MASTER must
specify assignment
to one element of
one of the MPOS
variables.

2076 Constant bit selector is greater than 31 or less than 0

The command
includes a constant
bit selector. The
value of bit selector
must fall into the
range from 0 to 31.

2077 Array name requires indexing

The array name
must be followed
by an index
specification.

For a two-
dimensional array,
two index specifiers
are required.

921Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2078
Current empty space in the dynamic buffer is not enough
for the command

The dynamic buffer
contains too many
commands queued
for execution.

The application
must wait for the
controller to
execute and
remove one or
more commands
from the buffer.

2079
GOTO,CALL,RET,LOOP,WHILE,IF,ON are not allowed in a
dynamic or JIT buffer

Commands GOTO,
CALL, LOOP...END,
WAIT, IF, ELSEIF,
ELSE...END, ON...RET
cannot be used in
the dynamic buffer.

2080
Local variable declaration is not allowed in immediate
command

Local variables
cannot be used in a
SPiiPlus MMI
Application Studio
Communication
Terminal command.

2081
Variable declaration is not allowed in a dynamic or JIT
buffer

Variable declaration
cannot be executed
in a dynamic buffer.

2082 Illegal string argument
The command
requires file name
specification.

2083 Integer overflow

The result of
constant integer
expression is more
than 2147483647 or
less than -
2147483648.

922Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

Consider using real
constants instead
of integer. To
change constant
type to real, add
decimal point to the
end of the
constant.

2084
Integer constants are allowed in the range from -
2147483648 to +2147483647

Consider using real
constants instead
of integer. To
change constant
type to real, add
decimal point to the
end of the
constant.

2085 Protection violation

The controller is in
the Protected
mode and the
command violates
one of the
protection rules.

2086
Protection attribute cannot be changed for this
parameter

2087 Only constant 0 or 1 is allowed at the right side

The command
allows only 0 or 1 to
the right of the
equals sign.

2088 No dual-port RAM in this controller

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

923Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2089 Bit selection is not available for DPR variable

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2090 Only global variables can be defined in DPR

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2091 DPR address must be specified

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

924Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2092
Only even numbers from 128 to 504 are allowed as DPR
address

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2093 Collision with other variable in DPR

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2094 DPR variable is not allowed in this command

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2095 Illegal line number

The specified line
number must be a
positive non-zero
integer.

925Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2096
Only even numbers from 128 to 1016 are allowed as DPR
address

SPiiPlus does not
contain a dual-port
RAM. If the program
has been imported
from an older non-
NT version and this
error appears,
delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

2097 Illegal SP number
Valid SP numbers
are 0, 1, 2, and 3.

2098 Illegal SP variable specification
Invalid SP variable
was entered.

2099 Undefined SP variable
Non-SP variable
was entered.

2100 User-defined array was expected

2101 Illegal character constant

2102 Illegal tag

2103 Tag can be specified only for global variables

2104 BLOCK cannot be nested See BLOCK...END.

2105 BLOCK without END See BLOCK...END.

2106 Illegal declaration

2107 Axis redefinition

2108 Assignment to constant
Value has to be
assigned to a
variable.

2109 ALL cannot be used in this command

2110 Ambiguous axis specification

926Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2111 Illegal format of real constant

2112
This function cannot be used as argument of CONNECT,
TRIGGER functions, or in Autoroutine condition

See CONNECT,
TRIGGER or ON...RET
(for the autoroutine
structure).

2113 Shared memory variables must be global

2114
Shared memory variables can be declared only in the D-
Buffer

2115 Bit selector must be integer scalar or constant

2116 No shared memory support in this controller

2117 G-code programs execution requires option

2118 CALL,CONNECT,MASTER are not allowed in D-buffer

2119
Static/Constant variables can only be declared in the D-
Buffer

2120 Static variable must be global

2121
Static varaible of a different type/dimension was already
defined. Use #VGV command to deallocate.

2122 A Static variable of the same name is already defined

2123 A Static variable was expected

2124 Dimension mismatch on array initilization.

2125 Array Initialization is possible in D-Buffer only

2126 Axes X,Y,Z cannot be defined as Rotary axes

2127 Closing curly bracket not expected

2128 Curly bracket expected

2129 It is illegal to define a function inside another function

2130 Function parameter definition expected

927Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2131 Wrong function arguments

2132 Action not supported

2133
Function signature does not conform to previous
declaration

2134 A parameter by the same name already exists

2135 A function by that name already exists

2136 A Function was defined but never implemented

2137 A void/Composite type function is not applicable

2138
A Function should not be defined as
Static/Local/Global/Const

2139 Array dimensions mismatch

2140
Array dimensions must be positive and known at
compilation time

2141 A variable by that name already exists

2142 Function call is not allowed in a DISP statement

2143
Only user defined primitive variables can be passed by
reference

2144 Constant Parameters are not allowed

2145 First array dimension should not be specified

2146 A function was defined without a return statement

2147 Functions variable type expected

2148 Structs can only be defined in D-Buffer

2149 Struct name was expected

2150 Structs can only contain fields and functions

2151
Structs can only be defined as global in D_buffer or local
otherwise

928Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2152 Field is not recognised

2153 Field selection expected

2154 Global/Static not allowed

2155 Struct Functions can only accept primitive types

2156 Struct already has a property by that name

2157 Void type cannot be defined

2158 Illegal definition of struct inside struct

2159 All struct fields must be defined before functions

2160 Illegal array type

2161 Name Is Taken

2162 Illegal Field/Function defintion

2163 Illegal variable qualification

2164 A Struct by that name already exists

2165 A return value was expected

2166 The Type selected was not properly defined

2167 Maximum number of structs reached

2168 Function name was expected

2169 The function has already been implemented

2170
Fastcall functions do not allow DISP/TILL/WAIT/Function
Call/G-Code operations

2171 It is illegal for a name to start with {N/n}{0-9}

2172
Only a D-Buffer FASTCALL function can be passed as
parameter, all parameters must be INT/REAL

2173 Trying to assign to read-only field

929Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

2174 Trying to send a read-only field by reference

2175 The function does not conform

2176 Default Value for function parameter missing

2177 Array default parameter must be 0

2178
Default values can only be defined for
INT/REAL/MATRIX/Arrays

2179 Default parameters must be specified in declaration only

2180
The increment operator can only be applied to an Integer
type variable

2181 Dimension mismatch on matrix initialization.

2182 Illegal matrix operation.

2183 The argument matrix must be square.

2184 The second argument matrix must be square.

2185 The matrices are not of the same size.

2186
The first argument matrix columns number does not
match the second argument matrix rows number.

2187 The result matrix size mismatch.

2188 Matrix was expected.

2189 Operators concatenation is not allowed.

2190 Matrix type requires 2 dimensions.

2191 Only ACSPL+ Standard Structs can be defined as static

2192 This Struct type must only define static variables

2193 Struct fields cannot be initialized

2194
Some ACSPL commands cannot be used as function
name i.e. "DISP", "CONNECT" ...

2195 Connect/Trigger expressions do not support user defined

930Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

functions

2196
Some parameters must have a fixed memory - Static
user varaible or standard ACSPL variable

2197 Real time C function library requires option

2198
Real time C function library can only be declared in D-
Buffer

2199
Real time C function library declarations not allowed in a
struct

2200 Failed to load library

2201 Real time C function library must be FASTCALL

2202 Real time C function arguments cannot be structs

2203 Real time C function cannot have ACSPL+ body

2204 Failed to load function

2205 Only FASTCALL functions are applicable in this context

2206 Number of real time C function libraries exceeds the limit

2207 No return value is expected

2208 Illegal SWITCH syntax used

2209 Illegal String syntax used

2210 Illegal String operation

2211 Illegal String definition

2212
Function variables definition inside a syntactical strucutre
is not allowed

931Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

7.3 ACSPL+ Runtime Errors

The ACSPL+ runtime error code values range between 3000 and 3999.

Codes from 3000 to 3019, however, do not indicate an error. For example, code 3001
reports that the program is suspended and code 3002 reports that the user has
terminated the program.
Codes from 3020 to 3999 indicate run-time errors.

If an error occurs in immediate execution of ACSPL+ command, the error is indicated immediately in
the prompt. If an error occurs when an ACSPL+ program is executed in a buffer, no immediate
indication is provided. Instead, the error code and the line number are stored in the corresponding
elements of the PERL and PERL arrays.

Table 6-3. ACSPL+ Runtime Errors

Error
Code

Error Message Remarks

3020 Illegal subcommand

3021 SP command requires axis specification

3022 Illegal command

3023 Read-only variable cannot be assigned
A command specifies an
assignment to a read-only
variable.

3024 Set variable cannot be reported

3025
Time interval between two characters in
command is more than 2 seconds

3026
Serial Number, Part Number, or Software
Options were already specified

3027 Variable requires axis specification

3028
Scalar variable cannot accept axis
specification

A scalar variable cannot be
prefixed with an axis
specification.

3029 Extra characters after the command

3030 Too many parameters

932Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3031 Illegal array in the array command

3032 Illegal data in array

3033 Illegal edit command

3034 Illegal index value
The command specifies an
assignment to a read-only
variable.

3035 Index is out of range

The reason of the error is one
the following:

> The specified index
value is more or equal
to the number of
elements in the array

> The specified index
value is negative

> The specified index
values are
incompatible (first
value in the range
greater than last).

3036 Internal error

3037 Illegal variable name

The command requires
specification of a standard
variable name, but the
specified name is not a name
of an ACSPL+ variable.

3038 Wrong checksum in the command

3039
Only one motion per axis can be planned in
advance

3040 Unable to open file
The command specifies a file in
the flash memory that does
not exist.

933Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3041 Assigned value is out of range

The command attempts to
assign the standard variable
with a value that is out of the
range allowed for this variable.

3042 Operation failed because of exception

3043
Program cannot start because the buffer
was not compiled

The command attempts to
start an ACSPL+ program that
has not been compiled. To
compile a program, in the
SPiiPlus MMI Application
Studio:

> In the Program
Manager, right-click
the buffer and select
Compile Buffer, or

> Use the #nC command
in the Communication
Terminal, where n is
the buffer number.

3044
Command cannot be executed while the
program is running

The command attempts to
affect a running ACSPL+
program. Stop the program
before executing the
command. To stop a program,
in the SPiiPlus MMI Application
Studio:

> In the Program
Manager, right-click
the buffer and select
Stop Buffer, or

> Use the #nS command
in the Communication
Terminal, where n is
the buffer number.

934Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3045 Numerical error in standard function

The command includes an
ACSPL+ function that caused a
numerical error. Check if the
arguments of the function fall
into the allowed range.

3046 Write file error

The command caused a failed
write to flash memory. A re-
occurring error of this type
indicates a serious problem in
the controller hardware or
firmware.

3047 Read file error

The command caused a failed
read from flash memory. A re-
occurring error of this type
points to a serious problem in
the controller hardware or
firmware.

3048 More axes than were defined in the motion

The POINT command specifies
more axes than were specified
in the motion that the
command refers to.

3049 Axis already belongs to a group

3050 Conflict with user-defined axis group

The command is incompatible
with a previously defined user-
defined axis group. The axes
specified in the command may
either belong to one user-
defined axis group, or may not
intersect with a user-defined
axis group.

3051 Line number is out of range
The command specifies a line
number that does not exist in
the specified program buffer.

935Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3052 Buffer number is out of range

The command specifies an
illegal buffer number. The
controller has program buffers
numbered 0 to 15, where 15 is
the D Buffer..

3053 Wrong type

The command addresses a
standard variable of a different
type from the variable
specified in the command.

This error never occurs when
the user communicates with
the controller through a
communication terminal.

The error occurs only when an
application communicates with
the controller using the
SPiiPlus C Library. The error
indicates a communication
problem.

3054
This type of motion is valid for single axis
only

3055
Command requires line number
specification

The command must contain a
line number specification.

3056
Parameter defining Master has illegal value

3057
Previous superimposed motion is in
progress

3058 Slave is not synchronized to master

3059
Command PTP/V must specify velocity
value

3060 Illegal memory command
The memory management
command is improperly
formatted.

3061 ')' wasn't found
The command contains a non-
paired left bracket.

936Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3062 Command is too long

3063 Variable is not defined in the buffer

The command addresses a
variable that is not declared in
the specified buffer, or the
specified buffer is not
compiled.

3064 Undefined global variable

The command addresses a
global variable that is not
declared in any buffer, or the
buffer that contains the
declaration is not compiled.

3065
The command cannot be executed while
the current motion is in progress

The command is in conflict
with one or more of the
currently executed motions. To
kill a motion use KILL/KILLALL.

3066 Attempt to compile or start empty buffer

3067 GO command failed
The controller has no motions
waiting for GO.

3068
Referenced axis does not execute a
motion (motion was terminated?)

The command specifies an
axis, but no motion was
specified for this axis.

3069
This command can only be used with
MPTP, PATH or PVSPLINE motion

The command specifies an
axis, but the motion specified
for the axis is incompatible
with the command.

3070
Attempt to add segment after ENDS
command

The command attempts to add
a segment or a point to the
motion that has already been
closed by ENDS.

3071 File name was expected
The command must specify
the name of an internal file in
the flash memory.

937Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3072 Wrong array size

The command specifies an
array, but the motion that the
command refers to, or other
command arguments require
an array of another size.

3073 Text for search is not specified
The command must specify a
text for search operation.

3074
Only standard or SP variable is allowed in
the command

The command requires an
ACSPL+ or SP variable name to
be specified.

3075 Name is not a standard or user variable

3076 Undefined label

The command requires a label
specification. The program that
contains the label specified in
the command must be
compiled in a buffer.

3077 Protection violation

The command attempts to
assign a protected variable
when the controller is in
protected mode. The controller
must be in configuration mode
before protected variables can
be assigned.

3078
Variable can be changed only while the
motor is disabled

The command attempts to
assign a variable that can be
changed only if the motor is
disabled:

> If the variable is axis-
related, disable the
corresponding motor
before assigning the
variable.

> If the variable is not
axis-related, disable
all motors before
assigning the variable.

938Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3079
Motion cannot start because one or more
motors are disabled

The motion command involves
one or more motors that are
disabled.

3080 Default Connection flag is set for the motor

The command cannot be
executed because the default
connection flag is set for the
motor.

The default connection flag is
bit 17, i.e., #DEFCON, of the
MFLAGS variable (see
MFLAGS).

3081 Incompatible suffixes
The command includes
switches that cannot be used
together.

3082
Commands BEGIN, END, KILL, GO require
axis specification

3083 Array requires axis specification

3084 Illegal array command

3085 Extra number after the command
The command specifies a
superfluous numerical
argument.

3086 Variable name must be specified
The command requires a
variable name specification.

3087
Command cannot be executed while the
axis is moving

The command specifies one or
more axes that are involved in
a motion. The command can
be executed only after the
motion finishes.

3088
Variable can be queried only in compiled
buffer

The command attempts to
query a variable in a buffer
that was not compiled.

3089
Label can be referenced only in compiled
buffer

The command attempts to
reference a label in a buffer
that was not compiled.

939Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3090
This type of motion is not allowed for
grouped axis

The slave or track command
specifies an axis that is
included in a user-defined
group.

Only a single axis can be
specified by SLAVE or TRACK.

3091 Less arguments than required

The motion command specifies
less coordinate values than
required by the axis
specification.

3092 More arguments than required

The motion command specifies
more coordinate values than
required by the axis
specification.

3093
Bit selector value is greater than 31 or less
than 0

The expression specified in the
bit selector yields a value
greater than 31 or less than 0.

3094 Empty line range is specified

3095 No master-slave motion is in progress

3096 '}' was not found
The command includes a non-
paired left curly bracket.

3097 Previous data collection is in progress

The command attempts to
start a data collection while the
previous data collection for the
same axis is still in progress.

3098 Stalled motion requires limits specification

The motion command, which
includes a command option of
stalled motion, requires
specification of the motion
limits.

3099 Extra numbers after the command
The motion command includes
superfluous numerical
arguments.

3100 Received command has no message ID

940Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3101
The program is suspended, the start line
number is not allowed

The command attempts to
start a program from a
specified line when the
program is in suspended state.

A program in suspended state
can be only resumed from the
next line. The line specification
is not allowed.

The only way to start a
suspended program from a
specific line is to stop the
program, and to start it again
from the desired line.

3102 Zero divide

3103 Invalid reference

3104 No ACSPL program is waiting for input

3105 Format error
The command is incorrectly
formatted.

3106 SP function failed

The function that accesses SP
memory cannot be executed.

Check the address specified in
the function call. The address
must fall in the range of 0 to
511.

3107
Current empty space in the dynamic buffer
is not enough for the command

3108 Invalid real number

The command includes
specification of a real number
that cannot be interpreted as a
valid real number.

3109 The command is not allowed in SAFE mode

3110
At least one variable must be specified for
data collection

3111 Too long reply requested

941Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3112 No matches were found
The search command did not
find any matches.

3113 The step in the table is zero or negative

3114
The program finished without a STOP
command

The program that is running in
a buffer executed the last
command, and it was not a
STOP/STOPALL command.

3115 Stack underflow (RET without CALL)

The program that runs in a
buffer caused a stack
underflow.

Program execution requires
CALL.

3116 Stack overflow (too many nested CALLs)

The program that is running in
a buffer caused stack
overflow.

This occurs if the program
executes two many nested
calls. Check that the program
does not specify infinite
recursion (subroutine is in an
infinite loop).

3117 Attempt to enter autoroutine directly

The program that is running in
a buffer comes to the ON
command (see ON...RET).

ON must never be executed in
the normal program flow.

3118 Illegal axis number

The command specifies an axis
by number or expression, and
the resulting value is not a
legal axis number.

Valid axis numbers range
between 0 to the number of
axes in the system minus one.

3119 Integer overflow

942Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3120
The motion must involve the first two axes
from the group

The segmented motion must
always involve two axes. If a
user-defined group contains
more than two axes, the
segmented motion must
involve the first two axes in
the group.

3121 Unknown #-constant
The command specifies an
unknown symbolic constant.

3122 Bit selection is not applicable
Bit selector cannot be applied
to a real value.

3123 Illegal bit selector
Value of bit selector must fall
into the range 0..32.

3124 Attempt to enable motor failed

ENABLE/ENABLE ALL failed.

Additional information can be
obtained from the
corresponding element of the
MERR variable (motor disable
code).

3125 Error in SP program

The command caused
unsuccessful loading of an SP
program. The file with the SP
program contains an error.

3126 Illegal SP number
The command specifies an
illegal SP number. Legal SP
numbers are from 0 to 3.

3127 Editing of this buffer is disabled

The command attempts to
open the buffer for editing or
to change the program in the
buffer.

Editing of a buffer is disabled if
bit 1 of the corresponding
element of PFLAGS = 1.

3128
Configuration changed. Commands SAVE
and HWRES must be executed.

943Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3129
In binary command the name specification
must end with /

The command syntax requires
a name to be followed by the /
(slash) character.

3130
Segment sequence for the previous
motion was not terminated with ENDS
command

MPTP, MSEG, PATH are
followed by a number of the
point or segment commands -
segment definition sequence.
The segment definition
sequence must be closed with
ENDS. See MPTP...ENDS,
MSEG...ENDS, and PATH...ENDS.

3131
SP program is incompatible with one or
more products

3132 The file is not a legal user data file

READ specifies a file in the
flash memory that is not a
legal user data file.

Only files created with WRITE
are legal user data files.

3133
Discrepancy in types of the saved and
restored arrays

The array and the user data file
specified by READ contain data
of different types.

READ must specify an array of
the same type and dimension
as the array that was specified
by the WRITE command that
created the file.

For example, the error occurs if
a real array was saved in the
file by WRITE, but READ tries to
load the file into an integer
array.

944Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3134
Discrepancy in sizes of the saved and
restored arrays

The array and the user data file
specified by READ are different
sizes.

READ must specify an array of
the same type and dimension
as the array that was specified
by the WRITE command that
created the file.

3135
Operation failed because of
communication overload

3136
Wrong relation between first point, last
point and interval

The interval value specified by
or does not correspond to the
start and final points.

For example, the error occurs if
the final point is less than the
start point, but the step is
positive.

3137 Illegal analog output number

The command specifies a
number of analog outputs
which is not available in the
controller.

3138 Incompatible SP and analog output

The command specifies an
analog output number that
cannot be accessed in the
specified SP.

3139 Illegal input

The controller tries to interpret
the string as a response to the
executed input command but
the string does not follow the
required format.

3140 The function is not supported

3141 Timeout

3142 Arguments are inconsistent
Check arguments against the
specifications for the or
commands.

945Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3143 Memory overflow

3144 Simulator does not support this command
The command cannot be
executed by the simulator.

3145
The specified DPR address is less than 128
or exceeds the DPR size

SPiiPlus does not contain a
dual-port RAM. If the program
has been imported from an
older non-NT version and this
error appears, delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

3146 Collision with other variable in DPR

SPiiPlus does not contain a
dual-port RAM. If the program
has been imported from an
older non-NT version and this
error appears, delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

3147
Incomplete command (intrusion of other
process?)

3148
Requested more SINCOS encoder
multipliers than installed

3149 Illegal SP address
The SP address must fall in the
range of from 0 to 512.

3150
Only even numbers are allowed as DPR
address

SPiiPlus does not contain a
dual-port RAM. If the program
has been imported from an
older non-NT version and this
error appears, delete any DPR
command (such as
COPYFROMDPR or
COPYTODPR).

946Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3151
This is a DEMO version of Simulator. 5
minutes of work remains.

The demo version of the
Simulator has a limited session
time. The simulator is going to
stop after five minutes.

3152
The DEMO version of Simulator has
terminated

The demo version of the
Simulator has a limited session
time. The session time has
elapsed.

3153 Illegal query command

3154
The command can be only used with MSEG
motion

Only PROJECTION, LINE, ARC1,
ARC2, and STOPPER
commands apply to
MSEG...ENDS.

3155
Motion cannot start because the previous
motion failed. Use FCLEAR command.

In the Strict mode (S_
FLAGS.#FCLEAR = 1) the motion
cannot start after a fault has
occurred.

Use the command FCLEAR to
clear the result of the fault.

3156
Profile key must be specified as
/SECTION/KEY/

3157
Illegal configuration string. Use only
characters K,D,+,-.

3158
Cannot find matching value. The formula
has no root or the root is not single.

3159 Axis number is specified more than once

3160
The axis cannot be used in a group (see
AFLAGS)

3161 Illegal communication channel

3162 Illegal tag value

3163 Illegal configuration parameters

3164 Illegal password

947Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3165
Attempt to execute optional function
which is not installed

3166
Flash file operation failed (overlapped file
operations?)

3167 Wrong start position is specified

3168 File not opened

3169
D-Buffer cannot be changed while any
other buffer is compiled

3171
The number of axes in coordinated motion
is restricted to 4

3172 Illegal category name

3173 EtherCAT offset is out of range

3174 Can't find EtherCAT network variable

3175 EtherCAT Master is not ready

3176 Data size should be specified

3177 This slave has no mailbox support

3178 Invalid CoE SDO parameter

3179
EtherCAT slave is in invalid state for this
operation

3180 General EtherCAT error

3181 EtherCAT Timeout error

3182 Can't split non-existing axes group

3183
Attempt to split group with active motion
on

3184
Mapped variable must be defined in D-
Buffer

948Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3185
Number of connected EtherCAT devices is
not covered by SW options

3186 Can't initialize SP injection

3187 There is an active injection on this SP

3188
Can't enable motor, DIP switch settings are
incorrect.

3189
The command can only be used with XSEG
motion

3190 PLC option on this device is not enabled

3191 PLC is already running

3192 General PLC error

3193 Wrong array size or type

3194 Not allowed Encoder Type

3195
Requested more absolute encoder
multipliers than installed

3196
Requested absolute encoder is not
supported

3197
The slave is incompatible with current
controller configuration

3198 Invalid encoder type

3199 Invalid absolute encoder parameter type

3200
JIT and Dynamic modes are not allowed for
D-buffer

JIT and Dynamic modes are not
allowed for D-buffer

3201 End-of-Sequence is illegal for this motion
The ends command cannot be
specified for this type of
motion.

3202
JIT and Dynamic modes are not allowed at
the same time

949Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3203
DEBUG mode is not allowed for JIT and
Dynamic buffers

3204
JIT and Dynamic modes require the buffer
to be empty

3205 Illegal zone number

3206 Cannot change a constant variable

3207 One or more arguments are out of range

3208 Function ended without return statement

3209
Entered a function not by calling, STOP
statement might be missing

3210 Incompatible matrix size

3211 Too many segments

3212 ARC arguments are inconsistent

ARC1 or ARC2 specify
inconsistent arguments. The
desired arc cannot be
calculated.

3213
Stopper is prohibited for master-slave
motion

STOPPER cannot be used with
segmented MASTER - SLAVE
motion.

3214 Adjacent stoppers are prohibited
Two adjacent STOPPER
commands are not allowed.

3215
In cyclic path the first and the last points
must coincide

In a cyclic segmented motion,
the first point of the first
segment must coincide with
the last point of the last
segment.

3216
Velocity is specified, but the motion
command had no V command option

Velocity argument can be
specified in POINT, LINE, ARC1
or ARC2 only if the
corresponding motion
command specifies /v.

950Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3217 Segment of zero length
Segments of zero length are
not allowed.

3218 ARC radius is too small

3219 Specified motion delay is out of range

3220 Command is incompatible with connect

3221
20 KHz motion generation incompatible
with CTIME or number of axes

3222 20 KHz motion limitation reached

3223
Time specified is not possible under current
motion safety limitations

3224 Offset doesn't exist

3225 Microblaze monitor is not ready

3226 Address couldn't be found

3227
Maximum number of Registers was
already added

3228 Firmware is not properly installed

3229
SLABITS does not match Single Turn and
Multi Turn number of bits

3230
Non Linear Control Feature is not
supported

3231 Illegal key

The Key argument of the
GETCONF or SETCONF
command specifies a value
that is not supported in this
controller.

3232 Illegal index

The Index argument of the
GETCONF or SETCONF
command specifies a value
that is not supported in this
controller.

951Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3233 Illegal value

The Value argument of the
SETCONF command specifies a
value that is not compatible
with the Key argument.

3234 Value in SETCONF must be 0 or 1
For the specified Key only 0 or
1 are legal in the Value
argument. of SETCONF

3235 SETCONF function is disabled
The specified SETCONF
function is disabled in the
current controller mode.

3236
SETCONF cannot be executed while the
motor is enabled

The specified SETCONF
function cannot be executed
while the motor is enabled.

3238
The operation can be executed only when
the HSSI channel is in command mode

3239

HSSI channel cannot switch to command
mode because it affects one or more
remote drivers. Reset corresponding
MFLAGS.#HSSI bits before.

3240 Operation is temporarily disabled

3241 Operation failed

3242 The feature is not supported

3243
Max number of 20 KHz moving axes
reached

3244 Illegal number of coordinates specified

3245
The specified channel is already being
used. Please use the MBCLOSE function to
close the connection

3251 Operation is temporarily disabled

3252
Motor cannot be enabled while a motion is
in termination process

952Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3253 Unable to work with Dummy motor

The command cannot be
executed for a dummy motor.

The addressed motor is
configured as a dummy, (see
the #DUMMY bit of MFLAGS).

3254
The operation requires the motor to be
enabled

The command can be
executed only while the motor
is enabled.

3255
The operation requires the motor to be
disabled

The command can be
executed only while the motor
is disabled.

3256
The operation is valid only for brushless
motor without Hall sensor

The command cannot be
executed for any motor type
other than brushless, and only
for brushless motors that do
not have a Hall sensor.

3257
The operation failed because the brushless
motor is not commutated

The command cannot be
executed because the defined
brushless motor is not
commutated.

The #BRUSHOK bit of MFLAGS.
reflects the state of the
brushless commutation.

To commutate the motor,
execute COMMUT or a specific
initialization program.

3258
The operation failed because the motor is
in open-loop mode

The command cannot be
executed because the motor is
in open-loop state.

The open-loop mode may be
set using the #OPEN bit of
MFLAGS.

953Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3259
Motion cannot start because the motor is
defined as dummy

The motion command cannot
be executed because one or
more of the motors involved
are dummy.

Motor dummy state is defined
by the #DUMMY bit of MFLAGS..

3260
Motion cannot start because the motor is
disabled

The motion command cannot
be executed because one or
more of the motors involved
are disabled.

3261
Motion cannot start because the brushless
motor is not commutated

The command cannot be
executed because the defined
brushless motor is not
commutated.

The #BRUSHOK bit of MFLAGS.
reflects the state of the
brushless commutation.

To commutate the motor,
execute COMMUT or a specific
initialization program.

3262
Motion cannot start because the motor is
in open-loop mode

The motion command cannot
be executed because one or
more of the motors involved
are in open-loop state.

Open-loop state is defined by
bit MST.#OPEN.

The open-loop mode may be
set using the #OPEN bit of
MFLAGS.

954Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3263
Motion cannot start because the previous
motion failed. Use FCLEAR command.

The motion command cannot
execute because the previous
motion for one or more motors
failed and the controller is set
to the Strict mode.

The Strict mode is defined by
bit S_FLAGS.#FCLEAR.

Use FCLEAR to clear the result
of the fault.

3265
SP program does not support this
operation

The command is not supported
by the current version of the
controller.

Specifically, the SP program
does not support the
operation. Check if the SP
program has been changed.

3266 Invalid PEG pulse width

3267
Maximal number of time-based PEG pulses
is 65,535

3268 Invalid period of time-based PEG pulses

3269
PEG pulse width must be less than time-
based pulse period

3270 PEG is not supported for the specified axis

3271 Step does not agree with start/end points

3272
Incremental PEG step must correspond to
encoder counts within the (-2^31, 2^31-1)
range, zero is excluded

3273
The specified axis does not exist in this
controller model

3274
The specified axis is defined as dummy
only

3275
Only stepper motor is supported for the
specified axis

955Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3276
The brushless motor is not supported for
the specified axis

3277
Dual loop control is not supported for the
specified axis

3278
Remote HSSI driver is not supported for the
specified axis

3279
PEG states are not supported for the
specified axis

3280
The stepper motor is not supported for the
specified axis

3281 No Hall support for 2-Phase motors

3282 Value out of range

3283
Number of points for Random PEG exceeds
the limit

3284 Axis is not connected to PEG engine

3285
NanoMotion Piezoceramic Motor is not
supported for the specified axis

3286
Fast Sin-Cos Encoder is not supported for
the specified axis

3287
Laser Modes are not supported for the
specified axis

3288
Time-based PEG is not supported for the
specified axis

3289
This function is not supported for the
specified axis

3290
SPINJECT/SPRT and Fast GPRT cannot be
used in parallel

3291 P/D interface is required for this function

3292 Secondary Feedback is not supported

956Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3293
SLABITS does not match Single Turn and
Multi Turn number of bits

3294
Motion cannot start because the Gantry
Complementary brushless motor is not
commutated

3300 Non Linear Control License is required

3301 Another EtherCAT port is already closed

3302
Not possible to save network topology
configuration when more than one line
break exists

3303
ERROR SDO: Object does not exist in the
object dictionary.

3304
The value is too high (check E_PAR_D
value)

3305
The network variable is already mapped to
ACSPL+ variable

3306 Invalid axis list

3307 FoE Protocol is not supproted by Slave

3308 The Disk is full or the file is too big

3309 Function supported only by CiA402 Drive

3310
CiA402 Drive is not in OP State. PDO is not
enabled.

3311 Cannot convert REAL type to INT

3312
More than one hold command is not
allowed

3313 Continue command is already in process

3314
Requested Homing Method is not
supported

957Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3316
Homing in Gantry mode requires additional
parameters

3317 FoE Error: Access denied

3318 Matrix is not invertible

3319 PI AME interface is not initialized

3320 PI AME interface is busy

3325 Main FPGA file downloading is in progress

3326 Operation aborted, PEG is in process

3327 FPGA versions do not match

3328
FPGA version is the same. FPGA Upgrade
aborted.

3329
Invalid value, digital input index should
range between 0-99 and bit index should
range between 0-31

3330
Invalid value, digital output index should
range between 0-99 and bit index should
range between 0-31

3331
This output is already mapped as a
mechanical brake to a different axis

3332
Hardware limit swapping
(MFLAGSX.#HLIMSWAP) and limit routing
are mutually exclusive

3333 File name MAX length is 100 chars

3335 Illegal SPATH specification

3336 Nurbs motion was not initiated

3337 Illegal NURBS/SPATH parameter value

3338
Profile has ended or last knots already
added

958Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3339 Invalid number of axes

3340
Dummy point must also specify a Knot
value

3341
Illegal dummy point, two points are
allowed before coordinates and two after

3342

The measurement you are trying to
activate is already active. (see DPM_
Measurement Stop() function for more
details)

3343

An invalid sample type has been specified.
Type can either be 0 or 1. (see DPM_
Measurement sample type for more
details)

3344

The sampling time specified is invalid, the
minimum value is the controller cycle time
(?CTIME) and the maximum value is:
100000000msec

3345
The sample-set size specified is invalid.
Minimum size: 1. Maximum size: 512.

3346
The specified "when_to_measure" flag is
invalid. (see DPM_Measurement
documentation for more details)

3347

The measurement you are trying to
activate is paused. (see DPM_
Measurement Stop()/Resume() functions
for more details)

3348

Cannot change the selected axis while
monitoring is ON. (see DPM_Motion_Status
SelectAxis()/MonitorOff() functions for
more details)

3349
The specified "monitored_variable" is
invalid. (see DPM_Measurement
documentation for more details)

3350 Illegal attempt to copy STRING

959Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3360 LCI unit initialization failed

3361 Unable to start the LCI operation

3362 Trajectory axes are not defined

3363 LCI Safety input is off

3364 LCI laser fault input is on

3365 LCI supported velocity limit exceeded

3366 LCI unit not found

3367
LCI. Unable to allocate channel for specified
operation

3368 LCI function timeout

3375
The specified IP address is invalid. Please
see MBOPEN documentation for more
details.

3376
The specified server ID is invalid (valid
values are between [1 - 247]). Please see
MBOPENdocumentation for more details.

3377

The specified word-order is invalid. (valid
values are 0 for big-endian and 1 for little-
endian) Please see MBOPEN
documentation for more details.

3378
Unable to open more than 3 Modbus
connections at any given time. Please see
MBOPEN documentation for more details.

3379
The specified communication handle is
invalid.

3380
A connection with the specified IP was not
found.

3381 The specified address is invalid

960Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3382

The specified request frequency is invalid.
the minimum value is 5 milliseconds.
Please see the documentation for more
details.

3383

The specified variable length and the
specified number of elements do not
match. Please see the documentation for
more details.

3384
The specified suffix combination is invalid.
Please see the documentation for more
details.

3385 Read-Only variables cannot be written.

3386 The specified request ID is invalid.

3387

The specified variable(or part of it) is
already being written to by another
Modbus request. Use #MBMAPREP for
more details.

3388
The specified server address is already
being written to by another Modbus
request. Use #MBMAPREP for more details.

3389

The specified number of elements is
greater than the specified variable length.
Please see the documentation for more
details.

3390

The maximum number of integer values
that can be "mapped" in a single request is
16. Please see the documentation for more
details.

3391

The maximum number of short values that
can be "mapped" in a single request is 32.
Please see the documentation for more
details.

961Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3392

The maximum number of single-precision
floating-point values that can be "mapped"
in a single request is 16. Please see the
documentation for more details.

3393

The maximum number of double-precision
floating-point values that can be "mapped"
in a single request is 8. Please see the
documentation for more details.

3394

The maximum number of coil values that
can be "mapped" in a single request is 32.
Please see the documentation for more
details.

3395

The maximum number of discrete input
values that can be "mapped" in a single
request is 32. Please see the
documentation for more details.

3396
Failed to establish a connection with the
specified server device.

3397
The maximum number of mapping
requests per server is 32. Please see the
documentation for more details.

3398

A connection with the specified IP is
already open and with different
configuration parameters. To change the
connection parameters, close and open a
new connection.

3399

The specified Modbus channel operates in
sequential mode. This mode does not
support user-defined request frequency.
Each request is sent after a response for
the previous one has arrived, but no less
than 10 milliseconds from the last time it
has been sent. Please see the
documentation for more details.

962Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

3410
The minimum value can not be greater
than the maximum value. Please see the
documentation for more details.

3411

G-code: Run-time errors were detected
during the program execution in simulation
mode. Use the #LOGP <buffer number>
command to present the detected errors.

3412 This motion type is not supported

3413

The supplied correction maps (2-
dimensional arrays) should have the same
dimensions. Please see the documentation
for more details.

3414
The Specified referenced axes/analog
inputs are invalid. Please see the
documentation for more details.

3415 Internal error

3416 Stage model dll is not loaded

3417
Stage model dll's name does not match the
stage model implemented by the dll

3418 This functionality has not implemented yet

3419
TCP and machine axes conflict. Consider to
change either TCP axes by changing
AXISDEF parameter or machine axes

963Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

7.4 Errors

Motion Termination error code values range between 5000 and 5150.

Codes from 5000 to 5008, however, do not indicate an error. They report normal
motion termination.

Codes from 5009 and higher appear when a motion is terminated or a motor is disabled
due to a fault detected by the controller.

When a motion terminates abnormally, or a motor is disabled, the error code is stored in the MERR
variable. If there is an initialization fault during startup, the error code is stored in the S_ERR variable.

Table 6-4. ACSPL+ Motion Termination Errors

Error
Code

Error Message Remarks

5000
Motion has not
finished

Motion was terminated before reaching final point.

5001
Motion generation
finished

The motion came to the final point and was
successfully completed.

5002
Motion was killed by
user

5003
Motion was
terminated by user

The motion was terminated by HALT before the
final point was reached

5004
Motor was disabled by
user

The motion was disabled by DISABLE/DISABLEALL.

5005
Motion was
terminated because a
motor was disabled

The motion was disabled by DISABLE/DISABLEALL.

5006 Motion was killed
The motion was terminated by KILL/KILLALL before
the final point was reached

5007
Motor was disabled
due to another motor
becoming disabled

If a fault occurs in an axis disabling the motor
thereby disabling other motors, code 5007 is stored
in the MERR variable for all affected axes.

964Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5008
Motion was killed due
to another motion
being killed

If a fault occurs in an axis killing the motion of a
motor thereby killing the motion other motors,
code 5008 is stored in the MERR variable for all
affected axes.

5009
Common motion failed

5010 Hardware Right Limit The motion was killed because of a right limit fault.

5011 Hardware Left Limit The motion was killed because of a left limit fault.

5012 Network Error

Check EtherCAT Cables for conituity, check ECERR
variable, make sure no loose connections, Run
System Viewer and Diagnostics and check Error
Registers for possible CRC errors on specific
network nodes to identify failure point.

5014 Motor Overheat
The motor was disabled or the motion failed
because of an overheat fault.

5015 Software Right Limit
The motion is killed because of a software right
limit fault.

5016 Software Left Limit
The motion is killed because of a software left limit
fault..

5017
Encoder 1 Not
Connected

The motor was disabled because of an encoder not
connected fault. Note how error is caught in
hardware. Difference between A,A- or B,B-
differential signal. If A=A- Error is thown. Check
continuity of cable pinouts.

5018
Encoder 2 Not
Connected

The motor was disabled because of an encoder 2
not connected fault. Note how error is caught in
hardware. Difference between A,A- or B,B-
differential signal. If A=A- Error is thown. Check
continuity of cable pinouts.

5019 Drive Fault
The motor was disabled because of a drive alarm
fault.

5020 Encoder 1 Error

The motor was disabled or the motion failed
because of an encoder error fault. For Quadrature
and SinCos encoders the signal monitors the logical

965Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

state transition between A,B signals. For contiuous
motion the transition should be {[1,0],[1,1],[0,1],[0,0]}.
If the transition ever skips states it indicates count
loss. For Absolute encoders check configuration
parameters. Problem could stem from signal
contiuity or induced noise. Ensure head alignment
and tape is clean.

5021 Encoder 2 Error

The motor was disabled or the motion failed
because of an encoder 2 error fault. For Quadrature
and SinCos encoders the signal monitors the logical
state transition between A,B signals. For contiuous
motion the transition should be {[1,0],[1,1],[0,1],[0,0]}.
If the transition ever skips states it indicates count
loss. For Absolute encoders check configuration
parameters. Problem could stem from signal
contiuity or induced noise. Ensure head alignment
and tape is clean.

5022 Non-Critical Pos. Error
The motor was disabled or the motion failed
because of a position error fault.

5023 Critical Position Error
The motor was disabled or the motion failed
because of a critical position error fault.

5024 Velocity Limit
The motor was disabled or the motion failed
because of a velocity limit fault. See ACSPL+
variable XVEL(axis)

5025 Acceleration Limit
The motor was disabled or the motion failed
because of an acceleration limit fault. See ACSPL+
variable XACC(axis)

5026
Drive/Motor
Overcurrent

The motor was disabled or the motion failed
because of an overcurrent fault. Ensure stability of
system. User can monitor servo processor
variables: SP#(dsp#) Current Command axis axis _
number, or SP#(dsp#) Phase q current axis_number
in the scope to establish when current ramps up.
Error is triggered exceeding XCURI, XCURV, XRMSM,
XRMSD values.

966Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5027 Servo Processor Alarm

The motor was disabled or the motion failed
because of a servo processor alarm fault.

Activated when an axes does not have
a physical drive associated to it.

5028 Safe Torque Off
The motor was disabled because STO not
connected.

5030 HSSI Not Connected

5031 Broken Wire

5032
Attempt of motion
while a fault is active

5033
Attempt of motion in
disabled direction

The motion is killed because of an attempt to move
to left direction when the Left Limit or Left
Software Limit fault is On, or move to right direction
when the Right Limit or Right Software Limit fault is
On. User can verify proper encoder count direction
in "Verification" page in the Adjuster Wizard.

5034 MPU Overheat
See GETCONF(76,index) in Command and Variable
Reference Guide

5035 Program Error
The motor was disabled or the motion failed
because of a program error fault.

5036 Memory Overflow
The motor was disabled or the motion failed
because of a memory overuse fault.

5037 MPU Overuse

The motor was disabled or the motion failed
because of a time overuse fault. For case of XSEG
use user should ensure each segment does not
execute in less than minimum time given in the
SpiiPlus Release notes section: "Controller Cycle
Time (CTIME) Support" for the given controller. User
can also monitor Usage related variables given in
the SpiiPlus Command and Variable reference
guide.

5038
Hardware Emergency
Stop

The motor was disabled because of an emergency
stop fault.

967Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5039 Servo Interrupt
The motor was disabled or the motion failed
because of a servo interrupt fault.

5041 Component Failure
The motor was disabled or the motion failed
because of power supply failure or not supplied
bus voltage

5042
Motor was disabled
due to hall error

Motor was disabled due to hall error. User can
monitor ACSPL variable SLSTHALL or use the hall
monitor in "Verification" portion of the Adjuster
Wizard to ensure all hall states are read. Check
continuity of cable.

5043
Motion was killed due
to external profile
error

5044 External Network Error External network error

5045
Motor was disabled
due to SYNC loss

Motor was disabled due to SYNC loss

5046
Motion was disabled
due to GPRT overflow

Motor was disabled due to GPRT overflow

5047
The axis remains in
HOLD state.

5048 Motor Overcurrent

Ensure stability of system. User can monitor servo
processor variables SP#(dsp#) Current Command
axis axis _number, or SP#(dsp#) Phase q current
axis_number in the scope to establish when
current ramps up. Error is triggered exceeding
XCURI, XCURV, XRMSM, XRMSD values.

5049 Drive Overcurrent

User can monitor servo processor variables: SP#
(dsp#) Current Command axis axis _number, or SP#
(dsp#) Phase q current axis_number in the scope to
establish when current ramps up. Error is triggered
exceeding XRMSD value.

5050 Safe Torque Off STO Error

5051
Safe Torque Off: STO_1
24V

STO1 24V source disconnected

968Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5052
Safe Torque Off: STO_2
24V

STO2 24V source disconnected

5053
Safe Torque Off: STO_1
24V and STO_2 24V

STO1 and STO2 24V sources disconnected

5054
Safe Torque Off: SS1_1
5V

SS1-1 5V source disconnected

5055
Safe Torque Off: SS1_2
5V

SS1-2 5V source disconnected

5056
Safe Torque Off: SS1_1
5V and SS1_2 5V

SS1-1 and SS1-2 5V sources disconnected

5057
Safe Torque Off: SS1
Timing Error

See Timing Error section in STO Application Note for
more details.

5060 Driver Alarm Drive alarm: No fault

5061
Driver Alarm: Short
circuit

The motor was disabled or the motion failed
because of a short circuit condition in the drive.
Measure resistance of motor phases to ensure no
physical short in motor or cable. Error is triggered
by rapid increase in SP#(dsp#) Phase q current axis
axis_number

5062
Driver Alarm: External
protection activated

The motor was disabled or the motion failed
because of an external protection condition in the
drive.

5063
Driver Alarm: Power
supply too low

The motor was disabled or the motion failed
because of a power supply too low condition in the
drive.

5064
Driver Alarm: Power
supply too high

The motor was disabled or the motion failed
because of a power supply too high condition in
the drive.

5065
Driver Alarm:
Temperature too high

The motor was disabled or the motion failed
because of a power supply too high condition in
the drive.

5066
Driver Alarm: Power
supply 24VF1

The motor was disabled or the motion failed
because of a power supply 24VF1 condition in the
drive.

969Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5067
Driver Alarm: Power
supply 24VF2

The motor was disabled or the motion failed
because of a power supply 24VF2 condition in the
drive.

5068
Driver Alarm:
Emergency stop

The motor was disabled or the motion failed
because of an emergency stop condition in the
drive.

5069
Driver Alarm: Power
Down

The motor was disabled or the motion failed
because of a power-down condition in the drive.

5070
Driver Alarm: Phase
Loss

5071
Driver Alarm: Drive not
ready

5072
Driver Alarm:
Overcurrent

5073 Driver Alarm: Reserved

5074
Driver Alarm: Dumper
fault

5075
Driver Alarm: Digital
Drive Interface not
connected

The motor was disabled or the motion failed
because of a Digital Drive Interface Not Connected
condition in the drive. Check the cable connections
to the drive.

5076
Driver Alarm: Drive
Saturation

5080 Component Failure

5081
Component Failure:
Power supply 0 fault

5082
Component Failure:
Power supply 1 fault

5083
Component Failure:
Regeneration module
fault

970Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5084
Component Failure:
Power supply too high

The motor was disabled due to excessive high
voltage of the Power Supply. To correct this, either
reduce the motor speed. Or, in the case of PSM3U 8
Kw or 10 Kw being installed, connect an External
Regeneration (see MC4U Hardware Guide).

5085
Component Failure:
Temperature too high

The motor was disabled, the Power Supply
temperature is too high. Check that the unit cooling
fans are working, if not, replace the cooling fans.
Make sure that the air flow around the unit is clear
of any obstructions.

5086
Component Failure:
Unknown error

5087
Component Failure:
Unknown error

5088
Component Failure:
Unknown error

5089
Component Failure:
Power down

Indicates missing 3 phase 230Vac servo supply
voltage. Check that the AC input voltage is
connected correctly.

5090
Component Failure:
Drive supply phase lost

This applies only to 3-phase AC input power. In the
event that one of the AC input supply phases is lost
or one of the AC input fuses is blown all axis drivers
which are supplied by this power supply are
disabled.

Make sure that the JP6 jumper is installed in
thePSM3U-320V-XXkW board if a three- phase
input supply is used.

5091

Component Failure:
Power supply not
ready. Try to enable
axis again within 10
seconds

This is caused by the inrush power protection
detector. It temporarily suspends the power input.
Wait for a few seconds for the power to normalize
before starting.

5092
Component Failure:
Unknown error

971Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5093
Component Failure:
Unknown error

5094
Component Failure:
Power supply damper
not OK

There is a failure in the damper circuit in the Power
Supply. There may be a short in the External
Regeneration, or Internal Regeneration.

5095
Component Failure:
Unknown error

5100
Current bias measured
is out of range

At the beginning of the enable process the
controller measures the current and calculates an
average bias (offset). If the result is greater than
the predefined maximum value (2% of maximum
output), the controller generates the error and axis
remains disabled. 1. The first thing to check is if the
drive has STO. If 24V is not connected to STO inputs,
the drive will always measure offsets of 100% (in
case of our high voltage units). This is because the
bootstrap mechanism needed to charge the
current loop measurement circuits doesn’t work (it
requires transistors to be ON). This is the most
common case of such fault.

2. If that’s not the case - Check if motor was moving
during the enable process

Try to disconnect the motor and see if the results
are different

3. Check the value of SLBIASA, SLBIASB. If non of
the above, and it’s more than 5% it usually
indicates a problem. Usually it’s much less. If you
see very big values (>50%) and surely indicates a
problem with the drive.

If offsets are smaller than 10%, there is still a way to
increase the threshold of the protection.

SETCONF(207, axis, threshold in %) will allow you to
increase the threshold of the “current bias out of
range protection”. Not recommended to use if
offsets are too big,

4. Don’t disable the automatic measurement in this
case. A very big offset indicates that something is
wrong with the drive and better not try to work like
that.

972Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5101
Autocommutation
failure (phase error)

Error occurs if COMMUT fails. The error indicates
wrong phase sequencing, or incorrect
commutation parameters. To avoid this error it is
recommended that the initial commutation be
performed from the Adjuster. The Adjuster
commutation program verifies the phase sequence
and commutation parameters. This must be done
before COMMUT is executed.

5102
Autocommutation
failure (position error)

Error occurs if COMMUT fails. The error indicates bad
or marginal servo tuning, or incorrect commutation
parameters. To prevent this error make sure that
the axis is properly tuned - use the Adjuster Wizard
or FRF Analyzer.

5103
ENABLE is prohibited
while Constant Current
is ON

5104
ENABLE failed because
the motor is moving

ENABLE cannot be executed whenever the motor
is in motion (see ENABLE/ENABLE ALL).

5105
E_TYPE does not
match HSSI-HES DIP
switch settings

Check the HSSI-HES DIP switch settings.

5106 EtherCAT node failure

5107
The axis uses a
licensed servo feature
that is not allowed

5108

Number of axes that
use licensed servo
feature exceeds the
number allowed

5109

Current bias
measurements
process was not
completed

5110
Command failed due
to transaction timeout

973Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

5111
ENABLE failed because
the system need to be
reconfigured

5121
Encoder Error: CRC
Error

5122 Encoder Error: Busy

5123
Encoder Error: Encoder
Not Ready

5124
Encoder Error: Timeout

5125
Encoder Error: FPGA
File not found

5126
Encoder Error: Error
Flag

5127

Encoder Error: An
internal incompatibility
was detected. Full
system upgrade is
required.

5128
Encoder Error:
Watchdog

7.5 Encoder Errors

Table 6-5. Encoder Errors

Error Code Error Message Remarks

5121
Encoder Error: CRC
Error

Result of CRC check of the received
value

5122 Encoder Error: Busy
Indicates that encoder is busy -
specifics depend on encoder brand

974Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error Code Error Message Remarks

5123
Encoder Error:
Encoder Not Ready

Endat: The status register is not
completely updated. Not All checks
have been performed. Data
transmission is not yet completed.

5124
Encoder Error:
Timeout

5125
Encoder Error: FPGA
File not found

FPGA file is missing, therefore, the
Absolute Encoder for the required
axis cannot be operated.

5126
Encoder Error: Error
Flag

Error

5127

Encoder Error: An
internal
incompatibility was
detected. Full system
upgrade is required.

5128
Encoder error:
Watchdog

975Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

7.6 System Errors

System Errors error code values range between 5151 and 5999. They are generally caused by
problems with the firmware of the servo processor (SP) program.

Table 6-6. ACSPL+ System Errors

Error
Code

Error Message

5151 Integrity of the firmware or user application is broken

5152 Initialization problem: Main Interrupt is not detected

5154 Initialization problem: Main Interrupt period is wrong

5156 Initialization problem: Main Interrupt Event cannot be created

5158 Initialization problem: SP initialization failed

5160 Initialization problem: SP program activation failed

5162 Initialization problem: SP and MP are not synchronous

5163 Initialization problem: EthernetIP initialization failed.

5164 Initialization problem: Improper controller card is detected

5165 Initialization problem: Improper configuration file is detected

5166 Initialization problem: SP is not detected by hardware

5167
Initialization problem: Number of drive modules does not meet the
configuration

5168 Initialization problem: Drive Interface is not connected

5169
Initialization problem: One or more parameters are out of range for the current
controller configuration (See #LOG for details). Default values are assigned

5170
Initialization problem: One or more EEPROM parameters are different from the
current controller configuration. Values from EEPROM are assigned

5171 Initialization problem: One axis attached to two drives in configuration file

5172
Initialization problem: Nominal current parameter in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

976Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message

5173
Initialization problem: Peak current parameter in configuration file is different
from the current controller configuration. Value from EEPROM is assigned

5174
Initialization problem: Power parameter in configuration file is different from the
current controller configuration. Value from EEPROM is assigned

5175
Initialization problem: Voltage (min or max) parameter in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5176
Initialization problem: Type parameter in configuration file is different from the
current controller configuration. Value from EEPROM is assigned

5177
Initialization problem: Number of subsystems parameter in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5178
Initialization problem: Component was detected by I2C but was not found in
configuration file

5179
Initialization problem: Slave address parameter in configuration file is different
from the current controller configuration. Value from EEPROM is assigned

5180
Initialization problem: Drive number parameter in configuration file is different
from the current controller configuration. Value from EEPROM is assigned

5181
Initialization problem: RMS protection time constant parameter in configuration
file is different from the current controller configuration. Value from EEPROM is
assigned

5183
Initialization problem: Number of axes parameter in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5184
Initialization problem: One of digital inputs parameters in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5185
Initialization problem: One of digital outputs parameters in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5186
Initialization problem: One of analog inputs parameters in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

977Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message

5187
Initialization problem: One of analog outputs parameters in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5188
Initialization problem: Number of HSSI channels parameter in configuration file is
different from the current controller configuration. Value from EEPROM is
assigned

5189 Initialization problem: Unit ID is wrong. The unit definition is ignored

5190 Initialization problem: Number of nodes does not meet the configuration

5191 Initialization problem: Number of axes does not meet controller options

5192 Initialization problem: Incorrect DIP switch settings

5193 Initialization problem: Firmware is not properly installed

5194
Initialization problem: One or more EtherCAT nodes are incompatible with
current controller configuration

5195
Initialization problem: One or more EtherCAT nodes are incompatible with
current controller cycle time (CTIME)

5196
Initialization problem: One or more EtherCAT nodes are incompatible with Ring
Topology

5197
Initialization problem: Cycle time of one or more EtherCAT nodes is different
from the controller cycle time (CTIME). System should be reconfigured

5198
Initialization problem: One or more EtherCAT nodes are incompatible with ENI.
System should be reconfigured

5201
Initialization problem: Wrong range of input parameters. Servo Processor
program activation failed

5202 Initialization problem: File not found. Servo Processor program activation failed

5203 Initialization problem: Read file error. Servo Processor program activation failed

5204
Initialization problem: Memory allocation error. Servo Processor program
activation failed

5205
Initialization problem: Checksum error. Servo Processor program activation
failed

978Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message

5206 Initialization problem: EtherCAT error. Servo Processor program activation failed

5207
Initialization problem: EtherCAT timeout. Servo Processor program activation
failed

5208
Initialization problem: Servo Processor program is incompatible with one or
more products

7.7 EtherCAT Errors

EtherCAT errors range from 6000 to 6999 and are latched in the ECERR variable.

Table 6-7. ACSPL+ EtherCAT Errors

Error
Code

Error Message Remarks

6000
General EtherCAT Error.
Check #LOG output for
more details.

General EtherCAT Error. Check #LOG output for
more details.

6001
EtherCAT cable not
connected

Check that the EtherCAT connections are firmly
seated.

6002
EtherCAT master is in
incorrect state

On start up all slaves did not succeed to initialize
to full OP state. Can be caused by wrong
configuration or a problem in a Slave

6003
Not all EtherCAT frames
can be processed

The Master has detected that at least one frame
that was sent has not returned. This implies a
hardware problem in the cables or Slaves.

6004 EtherCAT Slave Error
Slave did not behave according to EtherCAT
state machine – internal Slave failure.

6005
EtherCAT initialization
failure

The EtherCAT-related hardware in the Master
could not be initialized. Check the EtherCAT
hardware.

6006
EtherCAT cannot
complete the operation

The bus scan could not be completed. This
implies hardware level problems in the
EtherCAT network.

979Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

6007
EtherCAT work count
error

Every Slave increments the working counter in
the telegram. If this error is triggered, it means
that a Slave has failed. Possible root cause:
cable interruption, Slave reset, Slave hardware
failure,

6008
Not all EtherCAT slaves
are in OP state

One or more of the Slaves has changed its state
to other than OP, or it may be due to a Slave
restart or internal fault that internally forces the
Slave to go to PREOP or SAFEOP.

6009
EtherCAT protocol
timeout

The Master has detected that the Slave does
not behave as expected for too long, and
reports timeout. Implies a Slave hardware
problem. Try power down, and system restart.

6010 Slave initialization failed

The Master cannot initialize a Slave by the
configuration file. It can be caused by either
wrong configuration, or a hardware problem in
the Slave.

6011
Bus configuration
mismatch

The bus topology differs from that in
configuration file.

6012 CoE emergency
A Slave with CoE support has reported an
emergency message.

6013
EtherCAT Master won't
enter INIT state

Hardware fault, for example DHD with broken
(logic) supply.

6014
EtherCAT ring topology
requires network
reconfiguration

System should be reconfigured to use the
NetworkBoost feature.

6015
One or more EtherCAT
cables are not connected

One or more EtherCAT cables are not
connected; can happen only when using the
NetworkBoost feature.

6016

The actual network
configuration doesn't
match the last approved
configuration.

980Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Error
Code

Error Message Remarks

6017

Change in configuration
was detected. Optional
Group was added. It
should be approved.

6018
EtherCAT Master won't
enter PREOP state

EtherCAT Master is in INIT state and won’t enter
the PREOP state.

6019
EtherCAT Master won't
enter SAFEOP state

EtherCAT Master is in PREOP state and won’t
enter the SAFEOP state.

6020
EtherCAT Master won't
enter OP state

EtherCAT Master is in SAFEOP state and won’t
enter the OP state.

6021

Group ID mismatch
between configuration
file and actual
configuration

6022

Change in configuration
was detected. Optional
Group was removed. It
should be approved.

6023

EtherCAT cable(s) are
crossed. Check proper
cables connection from
OUT port to IN port.

6024

One or more EtherCAT
slaves causes frames to
be lost. Check proper
cables connection from
OUT port to IN port.

7.8 EtherCAT Slave Errors

EtherCAT Slave errors range from 7000 to 7999 and are latched in the ECALERR variable.

The error codes are defined according to AL Status Code (ETG 1020).

981Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

Table 6-8. EtherCAT Slave Errors

ACS Error
Code

Error Message Remarks

7001 General Error General Error which is not defined in the following list

7002 Mailbox No Memory
Local Application runs out of memory (e.g. dynamic
memory allocation for emergency messages)

7003 Invalid device setup

7004 Unknown error
If the salve checks if the SII/EEPROM content matches
the firmware, e.g. process data description or revision
number, and detects a mismatch

7006

Firmware and
EEPROM do not
match. Slave needs
BOOT-INIT transition

7007

Firmware update
not successful. Old
firmware still
running

Error occurred during firmware update

7014

License Error
(HW/SW license
invalid or evaluation
period expired)

HW/SW license invalid or evaluation period expired

7017
Invalid requested
state change

Requested state change is invalid

7018
Unknown requested
state

Requested state change is unknown

7019
Bootstrap state is
not supported by
the slave

7020 No valid firmware

7021
Invalid Mailbox
Configuration in
Boot

The mailbox SyncManager configuration is not valid in
Bootstrap state

982Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

ACS Error
Code

Error Message Remarks

7022
Invalid Mailbox
Configuration in
PREOP

The mailbox SyncManager configuration is not valid in
PREOP state

7023
Invalid Sync
Manager
Configuration

Invalid sync manager configuration. Possible reason
can be invalid PDO size configuration

7024
No valid inputs
available

Slave application cannot provide valid inputs

7025
No valid outputs
available

Slave application cannot provide valid outputs

7026
Synchronization
error

Multiple synchronization errors. Device is not
synchronized any more

7027
Sync Manager
Watchdog

No process data received yet or not received within a
specified timeout value

7028
Invalid Sync
Manager Types

7029
Invalid Sync
Manager Output
Configuration

SyncManager configuration for output process data is
invalid (check ENI)

7030
Invalid Sync
Manager Input
Configuration

SyncManager configuration for input process data is
invalid (check ENI)

7031 Invalid Watchdog
Watchdog Settings are invalid (e.g. SyncManger
watchdog trigger is enabled but no watchdog
timeout is defined)

7032
Slave needs cold
start

Slave device requires a power off – power on reset

7033 Slave needs INIT Slave application requests INIT state

7034 Slave needs PREOP Slave application requests PREOP state

7035 Slave needs SAFEOP Slave application requests SAFEOP state

983Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

ACS Error
Code

Error Message Remarks

7036
Invalid Input
Mapping

Input process data mapping do not match to
expected mapping

7037
Invalid Output
Mapping

Output process data mapping do not match to
expected mapping

7038
Inconsistent
Settings

General settings mismatch

7039
Free Run Mode is
Not Supported

Slave doesn’t support Free Run Mode

7040
SyncMode Not
Supported

Slave doesn’t support SYNC mode

7041
Free Run Needs 3-
Buffer Mode

FreeRun Mode, sync manager has to run in 3Buffer
Mode

7042
Background
watchdog

7043
No Valid Inputs and
Outputs

7044 Fatal Sync Error
Fatal Sync Error: Sync0 or Sync1 are not received any
more

7045 No Sync Error

Sync not received: In SAFEOP the slave waits for the
first Sync0/Sync1 events before switching to OP, if
these events were not received during the SAFEOP to
OP-Timeout time the slave should refuse the state
transition to OP with this AL Status Code
(SystemTimeOffset too big, no DC event received)

7046

EtherCAT cycle time
smaller than the
minimum cycle time
supported by the
slave

7048
Invalid DC SYNC
Configuration

Distributed Clocks configuration is invalid due to
application requirements

984Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

ACS Error
Code

Error Message Remarks

7049
Invalid DC Latch
Configuration

DC Latch configuration is invalid due to application
requirements

7050 DC PLL Sync Error
Master not synchronized, at least one DC event
received

7051 Invalid DC IO Error
Multiple synchronization errors. IO is not
synchronized any more

7052
Invalid DC Timeout
Error

Multiple synchronization errors. Too much SM Events
missed

7053
DC Invalid Sync Cycle
Time

7054 DC Sync0 Cycle Time
DC Sync0 Cycle time does not fit to application
requirements

7055 DC Sync1 Cycle Time
DC Sync1 Cycle time does not fit to application
requirements

7066 Mailbox EoE

7067 Mailbox CoE

7068 Mailbox FoE

7080 EEPROM No Access EEPROM not assigned to PDI

7081 EEPROM Error EEPROM access error

7200
FoE Error: Vendor
specific FoE error

7201 FoE Error: Not found

7202
FoE Error: Access
denied

7203 FoE Error: Disk full

7204
FoE Error: Illegal
access

7205
FoE Error: Wrong
packet number

985Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

ACS Error
Code

Error Message Remarks

7206
FoE Error: Already
exists

7207 FoE Error: No user

7208
FoE Error: Bootstrap
state only

7209
FoE Error: Not valid
in Bootstrap state

7210 FoE Error: No rights

7211
FoE Error: Program
error

7212
FoE Error: Wrong
checksum

7213
FoE Error: Firmware
is incompatible with
Hardware

7214
FoE Error: No file to
read

7215
FoE Error: File
header does not
exist

7216
FoE Error: Flash
problem

7217
FoE Error: File
incompatible

7218
FoE Error: slave does
not support FoE in
Bootstrap

7219
FoE Error: File is
bigger than max file
size

986Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

ACS Error
Code

Error Message Remarks

7.9 MODBUS Errors

Table 6-9. Modbus Errors

Error
Code

Error Message Remarks

8001
Function code received in the query is not recognized or
allowed by server.

8002
Data address of some or all the required entities are not
allowed or do not exist in server.

8003
A value contained in the query data field is not an allowable
value for the server.

8004
An unrecoverable error occurred while the server was
attempting to perform the requested action.

8005
Server has accepted request and is processing it, but a long
duration of time is required.

8006
Server is engaged in processing a long-duration command.
Client should retry later.

8012
The received response transaction identifier did not match
the expected value.

8013
The received response length did not match the expected
length.

8014
The received response value is invalid. This may be due to
the value being out of the allowed range, an attempt to
write to a protected variable, etc.

8015
No response has been received from the server device for
the timeout period(5 seconds). The connection with the
server device has been terminated.

8016 The connection with the server device has been closed.

987Version 3.12

ACSPL+ Commands & Variables Reference Guide
7. SPiiPlus Error Codes

8. G-Code Error Codes
This chapter contains explanations of the Error Codes that may appear.

> G-Code Syntax Errors

> G-Code Compilation Errors

> G-Code Runtime Errors

8.1 G-Code Syntax Errors

Code Meaning

1500 G-code: General G-Code runtime error

1501
G-code: Incompatible G commands in one
statement

1502 G-code: The value should be positive

1503
G-code: G2/G3 can be specified in the main
plane only

1504
G-code: An illegal arc with the current radius
compensation parameters

1505
G-code: Segments of radius compensation
should be separated by G0 or G1 segment

1506
G-code: Impossible case in radius
compensation

1507 G-code: Too many S or R addresses

1508
G-code: Wrong digital output specification in
S or R address

1509 G-code: Unsupported G function

1510 G-code: Unsupported M function

1511
G-code: I,J,K, or R specified outside arc
definition -or- R specified outside cylindrical
interpolation definition(G207)

1512
G-code: I,J,K and R cannot be specified
together

1513 G-code: Wrong parameters in arc definition

988Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

Code Meaning

1514 G-code: Internal error

1515
G-code: Wrong index in
gParamAddr/gParamValue

1516
G-code: gParamAddr/gParamValue used out
of subroutine

1517
G-code: XSEG address specified outside XSEG
Motion Parameterization (No G200)

1518
G-code: XSEG address specified outside XSEG
Segment Parameterization (No G01, G02 or
G03)

1519
G-code: XSEG address specified outside XSEG
Motion/Segment Parameterization (No
G200/No G01, G02 or G03)

1520
G-code: XSEG addresses - Cannot use (,Y)
together with addresses (,J), (,A) & (,D)

1521
G-code: XSEG comma-addresses (,g), (,u) and
(,h) cannot be specified together

1522
G-code: Cannot use XSEG motion parameters
command G200 with any of G01, G02 or G03

1523
G-code: XSEG addresses - Cannot use
M61/M62 with addresses (,O1) to (,O4)

1524
G-code: XSEG addresses - At least both (,O1)
and (,O2) addresses must be used on the
same line

1525
G-code: XSEG addresses - Cannot use (,M)
together with (,F) or (F)

1526
G-code: XSEG addresses - Cannot use (,M)
together with (,L)

1527
G-code: Incompatible G with custom G208 in
one statement

989Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

Code Meaning

1528
G-code: G208 should define at least two
primary axes, according to active trajectory
plane (G17/G18/G19)

1529
G-code: G208 should define minimum of 2
XSEG axes and maximum of 6 XSEG axes

1530
G-code: Segment processing time (T) option
should be specified only with in-plane
G01/G02/G03

1531
G-code: Cannot use (T) option - Segment
processing time, together with (,F) or (F)

1532
G-code: The value should be above a
minimum value (see GSP Reference Guide)

1533
G-code: Incompatible G with custom
G207/G205 in one statement

1534
G-code: G207 should define one linear axis
followed by one rotational axis, and cylinder
radius, in one statement

1535
G-code: G54 should define a WCS number
between 1 to 12

1536
G-code: GUFAC is out of range (1e-15, 1e15) or
zero

1537 G-code: Radius should be positive

1538
G-code: Blended motion should not specify
feedrate and segment time together

1539
G-code: Illegal parameter for Blended motion

1540
G-code: Mandatory parameter for BSEG not
specified

1541
G-code: Bseg parameter must be greater
than 0

1542
G-code: G84 only allows rotation angle and
center parameters to be specifed

990Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

Code Meaning

1543 G-code: Wrong M-code comand use

1544 G-code: Unmapped axis name used

1545
G-code: Tool height compensation is not
allowed as second segment of Radius
Compensation

1546
G-code: Incompatible mode to activate Local
Coordinate System (G68)

1547 G-code: Too many G68 parameters

1548
G-code: Incompatible G code when Local
Coordinate System is active

1549
G-code: Illegal case of segment
synchronization

1550
G-code: Illegal NURBS based motion
specification

1551
G-code: An incompatible address with
NURBS/Path_Smoothing was specified

1552
G-code: An Illegal number of NURBS/Path_
Smoothing main axes was specified

1553
G-code: Path Smoothing motion was not
initiated

1554 G-code: Illegal Address for Path Smoothing

1555
G-code: Buffer is in Path Smoothing mode,
please switch mode to use G06 command

1556 G-code: The address must contain a value

1557
G-code: The address must not contain a
value

1558 G-code: SPath arc specification missing

991Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

8.2 G-Code Compilation Errors

Code Meaning

2500 G-code: General G-Code compilation error

2501 G-code: Unknown G-Code command

2502 G-code: Value was expected

2503 G-code: Illegal syntax used

2504 G-code: Illegal value

2505 G-code: Address should not have a value

2506 G-code: Address value should be global or standard variable

2507 G-code: The output range specified is too big

2508 G-code: Wrong digital output specification in S or R address

2509 G-code: Comment lacks right parenthesis

2510 G-code: Illegal G specified

2511 G-code: Illegal M specified

2512 G-code: ']' expected

2513 G-code: '[' is not expected

2514 G-code: Address value should be a global variable

2515 G-code: All comments must start with '!'

2516 G-code: Addresses that are not allowed together were specified

2517 G-code: Illegal Synchronized code specification

8.3 G-Code Runtime Errors

3500 G-code: General G-Code runtime error

3501 G-code: Incompatible G commands in one statement

3502 G-code: The value should be positive

992Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

3503 G-code: G2/G3 can be specified in the main plane only

3504 G-code: An illegal arc with the current radius compensation parameters

3505
G-code: Segments of radius compensation should be separated by G0 or G1
segment

3506 G-code: Impossible case in radius compensation

3507 G-code: Too many S or R addresses

3508 G-code: Wrong digital output specification in S or R address

3509 G-code: Unsupported G function

3510 G-code: Unsupported M function

3511
G-code: I,J,K, or R specified outside arc definition -or- R specified outside
cylindrical interpolation definition(G207)

3512 G-code: I,J,K and R cannot be specified together

3513 G-code: Wrong parameters in arc definition

3514 G-code: Internal error

3515 G-code: Wrong index in gParamAddr/gParamValue

3516 G-code: gParamAddr/gParamValue used out of subroutine

3517
G-code: XSEG address specified outside XSEG Motion Parameterization (No
G200)

3518
G-code: XSEG address specified outside XSEG Segment Parameterization (No
G01, G02 or G03)

3519
G-code: XSEG address specified outside XSEG Motion/Segment
Parameterization (No G200/No G01, G02 or G03)

3520 G-code: XSEG addresses - Cannot use (,Y) together with addresses (,J), (,A) & (,D)

3521 G-code: XSEG comma-addresses (,g), (,u) and (,h) cannot be specified together

3522
G-code: Cannot use XSEG motion parameters command G200 with any of G01,
G02 or G03

993Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

3523 G-code: XSEG addresses - Cannot use M61/M62 with addresses (,O1) to (,O4)

3524
G-code: XSEG addresses - At least both (,O1) and (,O2) addresses must be used
on the same line

3525 G-code: XSEG addresses - Cannot use (,M) together with (,F) or (F)

3526 G-code: XSEG addresses - Cannot use (,M) together with (,L)

3527 G-code: Incompatible G with custom G208 in one statement

3528
G-code: G208 should define at least two primary axes, according to active
trajectory plane (G17/G18/G19)

3529
G-code: G208 should define minimum of 2 XSEG axes and maximum of 6 XSEG
axes

3530
G-code: Segment processing time (T) option should be specified only with in-
plane G01/G02/G03

3531
G-code: Cannot use (T) option - Segment processing time, together with (,F) or
(F)

3532 G-code: The value should be above a minimum value (see GSP Reference Guide)

3533 G-code: Incompatible G with custom G207/G205 in one statement

3534
G-code: G207 should define one linear axis followed by one rotational axis, and
cylinder radius, in one statement

3535 G-code: G54 should define a WCS number between 1 to 12

3536 G-code: GUFAC is out of range (1e-15, 1e15) or zero

3537 G-code: Radius should be positive

3538
G-code: Blended motion should not specify feedrate and segment time
together

3539 G-code: Illegal parameter for Blended motion

3540 G-code: Mandatory parameter for BSEG not specified

3541 G-code: Bseg parameter must be greater than 0

3542 G-code: G84 only allows rotation angle and center parameters to be specifed

994Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

3543 G-code: Wrong M-code comand use

3544 G-code: Unmapped axis name used

3545
G-code: Tool height compensation is not allowed as second segment of Radius
Compensation

3546 G-code: Incompatible mode to activate Local Coordinate System (G68)

3547 G-code: Too many G68 parameters

3548 G-code: Incompatible G code when Local Coordinate System is active

3549 G-code: Illegal case of segment synchronization

3550 G-code: Illegal NURBS based motion specification

3551 G-code: An incompatible address with NURBS/Path_Smoothing was specified

3552 G-code: An Illegal number of NURBS/Path_Smoothing main axes was specified

3553 G-code: Path Smoothing motion was not initiated

3554 G-code: Illegal Address for Path Smoothing

3555
G-code: Buffer is in Path Smoothing mode, please switch mode to use G06
command

3556 G-code: The address must contain a value

3557 G-code: The address must not contain a value

3558 G-code: SPath arc specification missing

995Version 3.12

ACSPL+ Commands & Variables Reference Guide
8. G-Code Error Codes

Appendix A. PEG And MARK Mapping Tables

A.1 ASSIGNPEG Mapping

Mapping PEG engines to encoders

Table A-1. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlusNT/DC-LT/HP/LD

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 PEG1 PEG2 no

001 PEG0 PEG1 no PEG2

010
PEG0

PEG2
PEG1 no no

011 PEG0
PEG1

PEG2
no no

100

PEG0

PEG1

PEG2

no no no

101 no

PEG0

PEG1

PEG2

no no

996Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-2. Mapping PEG Engines to Encoders (Servo Processor 1) for SPiiPlusNT/DC-LT/HP/LD

Bit Code Encoder 4(Z) Encoder 5(T) Encoder 6(C) Encoder 7(D)

000 (default) PEG4 PEG5 PEG6 no

001 PEG4 PEG5 no PEG6

010
PEG4

PEG6
PEG5 no no

011 PEG4
PEG5

PEG6
no no

100

PEG4

PEG5

PEG6

no no no

101 no

PEG4

PEG5

PEG6

no no

997Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-3. Mapping PEG Engines to Encoders (Servo Processor 0) for SPiiPlus
CMnt/CMhv/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/UDMhv/UDMnt/UDMpa/UDMpm/UDMpc/UDMcb

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

000 (default) PEG0 PEG1 PEG22

001 PEG0 PEG1 no PEG21, 2

010
PEG0

PEG22
PEG1 no

011 PEG0
PEG1

PEG22
no

100

PEG0

PEG1

PEG22

no no

101 no

PEG0

PEG1

PEG22

no

110

PEG01, 2

PEG11, 2

PEG21, 2

998Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Bit Code Encoder 0(X) Encoder 1(Y) Encoder 2(A) Encoder 3(B)

111
PEG01, 2

PEG21, 2
PEG11, 2

1 These combinations are not supported by UDMpc-x.
2These combinations are not supported by UDMnt-x.

Table A-4. Mapping PEG Engines to Encoders (Servo Processor 0) for UDMlc/UDIlt/UDIhp/UDMmc/PDIcl

Bit Code Encoder 0 Encoder 1 Encoder 2 Encoder 3

000 (default) PEG0 no no no

001 no PEG0 no no

010 no no PEG0 no

011 no no no PEG01

100 no no no no

101 no no no no

110 no no no no

1 These combinations are not supported by LCM-x.

999Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-5. Mapping PEG Engines to Encoders (Servo Processor 0) for NPMpm/NPMpc-

Bit Code Encoder 0 Encoder 1 Encoder 2 Encoder 3

000 (default) PEG0 PEG1 no no

001 PEG1 PEG0 no no

010
PEG0

PEG1
no no no

011 no
PEG0

PEG1
no no

100 no PEG1 PEG0 no

101 no PEG1 no PEG0

110 PEG0 no PEG1 no

111 PEG0 no no PEG1

Bit Code assignment example

Assume the system includes two Servo Processors:

> Servo Processor (node) 0: CMba with 4 encoders (0,1,2,3) and 3 PEG engines (0,1,2).

> Servo Processor (node) 1: NPMpm with 4 encoders (4,5,6) and 2 PEG engines (4,5).

The bit code 001 for an axis associated with Servo Processor 0 (CMba) performs the following assignment:

> PEG 0 engine is triggered by Encoder 0.

1000Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

> PEG 1 engine is triggered by Encoder 1.

> PEG 2 engine is triggered by Encoder 3.

The bit code 001 for an axis associated with Servo Processor 1 (NPMpm) performs the following assignment:

> PEG 4 engine is triggered by Encoder 5.

> PEG 5 engine is triggered by Encoder 4.

1001Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

1002Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

General purpose outputs assignment to use as PEG pulse outputs

Table A-6. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo Processor 0) for SPiiPlusNT/DC-LT/HP/LD

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0000 (default) GP Out 0 GP Out 1 GP Out 2 GP Out 3

0001 PEG0_PULSE GP Out 1 GP Out 2 GP Out 3

0010 GP Out 0 PEG2_PULSE GP Out 2 GP Out 3

0011 GP Out 0 GP Out 1 PEG1_PULSE GP Out 3

0100 GP Out 0 GP Out 1 GP Out 2 Reserved

0101 GP Out 0 PEG2_PULSE GP Out 2 Reserved

0110 PEG0_PULSE GP Out 1 PEG1_PULSE GP Out 3

0111 PEG0_PULSE PEG2_PULSE PEG1_PULSE Reserved

1000 - 1111 Reserved Reserved Reserved Reserved

Table A-7. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo Processor 1) for SPiiPlusNT/DC-LT/HP/LD

Bit Code GP Out 4 GP Out 5 GP Out 6 GP Out 7

0000 (default) GP Out 4 GP Out 5 GP Out 6 GP Out 7

0001 PEG4_PULSE GP Out 5 GP Out 6 GP Out 7

1003Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Bit Code GP Out 4 GP Out 5 GP Out 6 GP Out 7

0010 GP Out 4 PEG6_PULSE GP Out 6 GP Out 7

0011 GP Out 4 GP Out 5 PEG5_PULSE GP Out 7

0100 GP Out 4 GP Out 5 GP Out 6 Reserved

0101 GP Out 4 PEG6_PULSE GP Out 6 Reserved

0110 PEG4_PULSE GP Out 5 PEG5_PULSE GP Out 7

0111 PEG4_PULSE PEG6_PULSE PEG5_PULSE Reserved

1000 - 1111 Reserved Reserved Reserved Reserved

Table A-8. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo Processor 0) for SPiiPlus CMnt/UDMpm/CMhv/UDMhv-

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0000 (default) GP Out 0 GP Out 1 GP Out 2 GP Out 3

0001 PEG0_PULSE GP Out 1 GP Out 2 GP Out 3

0010 GP Out 0 PEG1_PULSE GP Out 2 GP Out 3

0011 GP Out 0 GP Out 1 PEG2_PULSE GP Out 3

0100 GP Out 0 GP Out 1 GP Out 2 GP Out 3

1004Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Bit Code GP Out 0 GP Out 1 GP Out 2 GP Out 3

0101 GP Out 0 PEG1_PULSE GP Out 2 GP Out 3

0110 PEG0_PULSE GP Out 1 PEG2_PULSE GP Out 3

0111 PEG0_PULSE PEG1_PULSE PEG2_PULSE GP Out 3

1000 - 1111 Reserved Reserved Reserved Reserved

Table A-9. General Purpose Outputs Assignment for Use as PEG Pulse Outputs (Servo Processor 0) for UDMnt/UDMpa/UDMcb

Bit Code GP Out 0 GP Out 1

0000 (default) GP Out 0 GP Out 1

0001 PEG0_PULSE GP Out 1

0010 GP Out 0 PEG1_PULSE

0011 PEG1_PULSE GP Out 1

0100 GP Out 0 PEG0_PULSE

0101 PEG0_PULSE PEG1_PULSE

0110 - 1111 Reserved Reserved

Bit Code assignment example

1005Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

For example, for an axis associated with Servo Processor 0 (SPiiPlusNT / DC-LT / HP / LD), 0110 switches GP Out 0 to PEG0_PULSE and GP Out 2 to PEG1_
PULSE.

The same Bit Code applied to an axis associated with Servo Processor 1 switches GP Out 4 to PEG4_PULSE and GP Out 6 to PEG5_PULSE.

All other GP Out assignments are unchanged.

Table A-10. Engine to Encoder Assignment for IDMxx, ECMxx, and UDMsm/sa/ma

PEG Engine Bits HEX Code Encoder 0 Encoder 1 Encoder 2 Encoder 3

0
0..7

00 (default) PEG0

01 PEG0

02 PEG0

03 PEG0

1
8..15

00 PEG1

01 (default) PEG1

02 PEG1

03 PEG1

1006Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG Engine Bits HEX Code Encoder 0 Encoder 1 Encoder 2 Encoder 3

2
16..23

00 PEG2

01 PEG2

02 (default) PEG2

03 PEG2

3 24..31

00 PEG3

01 PEG3

02 PEG3

03 PEG3

Instructions: the above table is used to build a hexadecimal value for the engines_to_encoders_ code argument. Byte x determines that PEG engine x will
be triggered by a specific encoder.

Example for IDMsm/ECMsm

ASSIGNPEG 0, 0x03020100

This code configures the default mapping:

> PEG engine 0 is triggered by Encoder 0.

> PEG1 engine 1 is triggered by Encoder 1.

> PEG engine 2 is triggered by Encoder 2.

> PEG engine 3 is triggered by Encoder 3.

1007Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

ASSIGNPEG 0x02010203

This code configures the following mapping:

> PEG engine 0 is triggered by Encoder 3.

> PEG engine 1 is triggered by Encoder 2.

> PEG engine 2 is triggered by Encoder 1.

> PEG engine 3 is triggered by Encoder 2.

1008Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

A.2 ASSIGNPOUTS Mapping

Mapping of PEG engine outputs to physical outputs

Table A-11. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for SPiiPlusNT/DC-LT/HP/LD

PEG OUTPUT
PIN NAME

Bit Code

0
X_PEG

1
Y_PEG

2
Z_PEG

3
T_PEG

4
H_DO_1 (HSSI)

000 (default) PEG0_PULSE PEG1_PULSE PEG4_PULSE PEG5_PULSE HSSI1_DO

001 PEG4_STATE0 PEG1_STATE0 PEG2_PULSE PEG0_STATE0 PEG0_STATE1

010 Reserved Reserved PEG1_STATE1 PEG2_STATE0 PEG2_STATE1

011 Reserved Reserved Reserved Reserved Reserved

100 Reserved Reserved Reserved Reserved Reserved

111 FGP_OUT0 FGP_OUT1 FGP_OUT2 FGP_OUT3 Reserved

1009Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-12. SPiiPlusNT/DC-LT/HP/LD Mapping of Engine Outputs to Physical Outputs (Servo Processor 1)

PEG OUTPUT
PIN NAME

Bit Code

5
X_STATE0

6
X_STATE1

7
X_STATE2

8
H_DO_0 (HSSI)

9
H_CON_0 (HSSI)

000 (default) PEG0_STATE0 PEG0_STATE1 PEG0_STATE2 HSSI0_DO HSSI0_CON

001 PEG1_STATE0 PEG1_STATE1 PEG2_STATE0 PEG0_STATE2 PEG0_STATE0

010 PEG4_PULSE PEG5_PULSE PEG6_PULSE PEG5_STATE0 PEG2_STATE1

011 Reserved PEG4_STATE0 PEG4_STATE1 Reserved PEG6_STATE1

100 Reserved Reserved Reserved Reserved Reserved

111 FGP_OUT4 FGP_OUT5 FGP_OUT6 Reserved Reserved

Table A-13. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for CMnt/UDMpm/UDMpc/CMhv/UDMhv

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

5
STATE0

6
STATE1

000 (default) PEG0_PULSE PEG1_PULSE PEG0_OUT0 PEG0_OUT1

001
Encoder X
Phase A

Encoder X Phase B PEG1_OUT0 PEG1_OUT1

1010Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

5
STATE0

6
STATE1

010
Encoder Y
Phase A

Encoder Y Phase B PEG2_OUT0 PEG2_OUT1

011 Reserved Reserved Encoder X Phase A Encoder X Phase B

100 Reserved Reserved Encoder Y Phase A Encoder Y Phase B

111 FGP_OUT0 FGP_OUT1 Encoder X INDEX Encoder X INDEX

Table A-14. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0, OUT 0-4) for CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa

PEG OUTPUT
PIN NAME

Bit Code

0
(0)_PEG_PULSE

1
(1)_PEG_PULSE

2
(1)_STATE0

3
(1)_STATE1

4
(1)_STATE2

000 (default) PEG0_PULSE PEG1_PULSE PEG1_STATE0 PEG1_STATE1 PEG1_STATE2

001
Encoder X
Phase A

Encoder X Phase B PEG0_STATE0 PEG0_STATE1 PEG0_STATE2

010
Encoder Y
Phase A

Encoder Y Phase B PEG2_STATE0 PEG2_STATE1 PEG2_STATE2

1011Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

0
(0)_PEG_PULSE

1
(1)_PEG_PULSE

2
(1)_STATE0

3
(1)_STATE1

4
(1)_STATE2

011
Encoder A
Phase A

Encoder A Phase B
Encoder A
Phase A

Encoder A
Phase B

Encoder A
INDEX

100 Reserved PEG2_PULSE Reserved Reserved Reserved

101 PEG0_PULSE or PEG2_PULSE PEG2_PULSE or PEG1_PULSE Reserved Reserved Reserved

110
PEG0_PULSE or PEG1_PULSE or
PEG2_PULSE

PEG0_PULSE or PEG1_PULSE or
PEG2_PULSE

Reserved Reserved Reserved

111 FGP_OUT0 FGP_OUT1 FGP_OUT2 Reserved Reserved

Table A-15. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0, OUT_5-9) for CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa

PEG OUTPUT
PIN NAME

Bit Code

5
(0)_STATE0

6
(0)_STATE1

7
(0)_STATE2

8
(0)_STATE3

9
(1)_STATE3

000 (default) PEG0_STATE0 PEG0_STATE1 PEG0_STATE2 PEG0_STATE3 PEG1_STATE3

001 PEG1_STATE0 PEG1_STATE1 PEG1_STATE2 PEG1_STATE3 PEG0_STATE3

010 PEG2_STATE0 PEG2_STATE1 PEG2_STATE2 PEG2_STATE3 PEG2_STATE3

1012Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

5
(0)_STATE0

6
(0)_STATE1

7
(0)_STATE2

8
(0)_STATE3

9
(1)_STATE3

011
Encoder X
Phase A

Encoder X Phase B Encoder Y Phase A
Encoder Y
Phase B

PEG2_STATE0

100
Encoder Y
Phase A

EncoderY
Phase B

Reserved Encoder Y INDEX PEG2_STATE1

101 Encoder X INDEX Encoder X INDEX Reserved Reserved Reserved

110 PEG2_PULSE Encoder Y INDEX PEG2_PULSE PEG2_PULSE Reserved

111 Reserved Reserved Reserved Reserved Reserved

Table A-16. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for UDMnt/UDMpa/UDMcb

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

000 (default) PEG0_PULSE PEG1_PULSE

001 Encoder X Phase A Encoder X Phase B

010 Encoder Y Phase A Encoder Y Phase B

1013Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

011 PEG1_ STATE0 PEG0_ STATE0

100 PEG0_ STATE0 PEG1_ STATE0

101 Reserved Reserved

110 Reserved Reserved

111 FGP_OUT0 FGP_OUT1

Table A-17. Mapping of Engine Outputs to Physical Outputs (Servo Processor 0) for UDMlc/UDMmc/UDIlt/UDIhp/PDIcl

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

000 (default) PEG0_PULSE

001 Reserved

010 Reserved

011 Reserved

1014Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

100 Reserved

101 Reserved

110 Reserved

111 FGP_OUT0

Table A-18. NPMpm/NPMpc Mapping of Engine Outputs to Physical Outputs (Servo Processor 0)

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

000 (default) PEG0_PULSE PEG1_PULSE

001 PEG0_STATE0 PEG1_STATE0

010 PEG1_STATE0 PEG0_STATE0

011 PEG0_STATE1 PEG1_STATE1

100 PEG1_STATE1 PEG0_STATE1

1015Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

0
PEG0

1
PEG1

101 Reserved Reserved

110 Reserved Reserved

111 FGP_OUT0 FGP_OUT1

Bit Code: 111

The Bit Code: 111, both for Servo Processor 0 and Servo Processor 1, is used for switching the physical output pins to Fast General Purpose Outputs: FGP_
OUT0 to FGP_OUT6. The state of the Fast General Purpose Outputs can be read or changed using the ACSPL+ OUT(x) variable. The Fast General Purpose
Outputs are mapped as follows:

FGP_OUT0 is mapped to bit 16 of the ACSPL+ OUT(x) variable

FGP_OUT1 is mapped to bit 17 of the ACSPL+ OUT(x) variable

FGP_OUT2 is mapped to bit 18 of the ACSPL+ OUT(x) variable

FGP_OUT3 is mapped to bit 19 of the ACSPL+ OUT(x) variable

FGP_OUT4 is mapped to bit 20 of the ACSPL+ OUT(x) variable

FGP_OUT5 is mapped to bit 21 of the ACSPL+ OUT(x) variable

FGP_OUT6 is mapped to bit 22 of the ACSPL+ OUT(x) variable

1016Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-19. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Mapping of Engine Outputs to Physical Outputs (Servo Processor 0)

PEG OUTPUT
PIN NAME

Bit Code

0
OUT_CNFG_0

1
OUT_CNFG_1

2
OUT_CNFG_2

3
OUT_CNFG_3

000 PEG0_State0 PEG0_State1 PEG0_State2 PEG0_State3

001 PEG1_State0 PEG1_State1 PEG1_State2 PEG1_State3

010 PEG2_State0 PEG2_State1 PEG2_State2 PEG2_State3

011 PEG3_State0 PEG3_State1 PEG3_State2 PEG3_State3

100 Reserved Reserved Reserved Reserved

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

111(Default) GP_OUT0 GP_OUT1 GP_OUT2 GP_OUT3

PEG OUTPUT
PIN NAME

Bit Code

4
OUT_CNFG_4

5
OUT_CNFG_5

6
OUT_CNFG_6

7
OUT_CNFG_7

000 Reserved Reserved Reserved Reserved

001 Reserved Reserved Reserved Reserved

1017Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

4
OUT_CNFG_4

5
OUT_CNFG_5

6
OUT_CNFG_6

7
OUT_CNFG_7

010 Reserved Reserved Reserved Reserved

011 Reserved Reserved Reserved Reserved

100 Reserved Reserved Reserved Reserved

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

111(Default) GP_OUT4 GP_OUT5 GP_OUT6 GP_OUT7

PEG OUTPUT
PIN NAME

Bit Code

8
PEG0

9
PEG1

10
PEG2

11
PEG3

000 (Default) PEG0_Pulse PEG1_Pulse PEG2_Pulse PEG3_Pulse

001 PEG0_State0 PEG0_State1 PEG0_State2 PEG0_State3

010 PEG1_State0 PEG1_State1 PEG1_State2 PEG1_State3

011 PEG2_State0 PEG2_State1 PEG2_State2 PEG2_State3

1018Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

PEG OUTPUT
PIN NAME

Bit Code

8
PEG0

9
PEG1

10
PEG2

11
PEG3

100 PEG3_State0 PEG3_State1 PEG3_State2 PEG3_State3

101 Reserved Reserved Reserved Reserved

110 Reserved Reserved Reserved Reserved

111 GP_OUT8 GP_OUT9 GP_OUT10 GP_OUT11

1019Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

A.3 ASSIGNMARK Mapping

Mark Inputs to Encoders Mapping

Table A-20. Mark-1 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD

Bit code
Latching of
MARK Encoder
0(X)

Latching of
MARK Encoder
1(Y)

Latching of
MARK Encoder
4(Z)

Latching of
MARK Encoder
5(T)

Latching of
MARK Encoder
2(A)

Latching of
MARK Encoder
3(B)

Latching of
MARK Encoder
6(C)

Latching of
MARK Encoder
7(D)

00000
(default)

X_MARK1 Y_MARK1 Z_MARK1 T_MARK1 - - - -

00001 Y_MARK1 Z_MARK1 T_MARK1 X_MARK1 - - - -

00010 Z_MARK1 T_MARK1 X_MARK1 Y_MARK1 - - - -

00011 T_MARK1 X_MARK1 Y_MARK1 Z_MARK1 - - - -

00100 - Y_MARK1 Z_MARK1 T_MARK1 X_MARK1 - - -

00101 X_MARK1 - Z_MARK1 T_MARK1 - Y_MARK1 - -

00110 X_MARK1 Y_MARK1 - T_MARK1 - - Z_MARK1 -

00111 X_MARK1 Y_MARK1 Z_MARK1 - - - - T_MARK1

01000 - - Z_MARK1 T_MARK1 X_MARK1 Y_MARK1 - -

01001 X_MARK1 Y_MARK1 - - - - Z_MARK1 T_MARK1

1020Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Bit code
Latching of
MARK Encoder
0(X)

Latching of
MARK Encoder
1(Y)

Latching of
MARK Encoder
4(Z)

Latching of
MARK Encoder
5(T)

Latching of
MARK Encoder
2(A)

Latching of
MARK Encoder
3(B)

Latching of
MARK Encoder
6(C)

Latching of
MARK Encoder
7(D)

01010 X_MARK1 - - - - Y_MARK1 Z_MARK1 T_MARK1

01011 - Y_MARK1 - - X_MARK1 - Z_MARK1 Z_MARK1

01100 - - Z_MARK1 - X_MARK1 Y_MARK1 - T_MARK1

01101 - - - T_MARK1 X_MARK1 Y_MARK1
Z_MARK1
pin

-

01110 - - - - X_MARK1 Y_MARK1 Z_MARK1 T_MARK1

01111 - - - - Y_MARK1 Z_MARK1 T_MARK1 X_MARK1

10000 - - - - Z_MARK1 T_MARK1 X_MARK1 Y_MARK1

10001 - - - - T_MARK1 X_MARK1 Y_MARK1 Z_MARK1

Example

ASSIGNMARK 1, 1, 0x0b00010

By using SPiiPlusNT as the first node, entering the command performs the following assignments for these inputs:

> Latching of Encoder 0(X) occurs once Z_MARK1 physical pin gets an input.

> Latching of Encoder 1(Y) occurs once T_MARK1 physical pin gets an input.

> Latching of Encoder 4(Z) occurs once X_MARK1 physical pin gets an input.

1021Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

> Latching of Encoder 5(T) occurs once Y_sMARK1 physical pin gets an input.

Table A-21. Mark-2 Inputs to Encoders Mapping for SPiiPlusNT/DC-LT/HP/LD

Bit code
Latching of
M2ARK
Encoder 0(X)

Latching of
M2ARK
Encoder 1(Y)

Latching of
M2ARK
Encoder 4(Z)

Latching of
M2ARKEncoder
5(T)

Latching of
M2ARKEncoder
2(A)

Latching of
M2ARKEncoder
3(B)

Latching of
M2ARKEncoder
6(C)

Latching of
M2ARK
Encoder 7(D)

00000
(default)

GP IN6 GP IN7 GP IN4 GP IN5 - - - -

00001 GP IN7 GP IN4 GP IN5 GP IN6 - - - -

00010 GP IN4 GP IN5 GP IN6 GP IN7 - - - -

00011 GP IN5 GP IN6 GP IN7 GP IN4 - - - -

00100 - GP IN7 GP IN4 GP IN5 GP IN6 - - -

00101 GP IN6 - GP IN4 GP IN5 - GP IN7 - -

00110 GP IN6 GP IN7 - GP IN5 - - GP IN4 -

00111 GP IN6 GP IN7 GP IN4 - - - - GP IN5

01000 - - GP IN4 GP IN5 GP IN6 GP IN7 - -

01001 GP IN6 GP IN7 - - - - GP IN4 GP IN5

01010 GP IN6 - - - - GP IN7 GP IN4 GP IN5

1022Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Bit code
Latching of
M2ARK
Encoder 0(X)

Latching of
M2ARK
Encoder 1(Y)

Latching of
M2ARK
Encoder 4(Z)

Latching of
M2ARKEncoder
5(T)

Latching of
M2ARKEncoder
2(A)

Latching of
M2ARKEncoder
3(B)

Latching of
M2ARKEncoder
6(C)

Latching of
M2ARK
Encoder 7(D)

01011 - GP IN7 - - GP IN6 - GP IN4 GP IN5

01100 - - GP IN4 - GP IN6 GP IN7 - GP IN5

01101 - - - GP IN5 GP IN6 GP IN7 GP IN4 -

01110 - - - - GP IN6 GP IN7 GP IN4 GP IN5

01111 - - - - GP IN7 GP IN4 GP IN5 GP IN6

10000 - - - - GP IN4 GP IN5 GP IN6 GP IN7

10001 - - - - GP IN5 GP IN6 GP IN7 GP IN4

Example

ASSIGNMARK 1, 2, 0x0b00010

By using SPiiPlusNT as the first node, entering the command performs the following assignments for these inputs:

> Latching of M2ARK of Encoder 0(X) occurs once GP IN4 physical pin gets an input.

> Latching of M2ARK of of Encoder 1(Y) occurs once GP IN5 physical pin gets an input.

> Latching of M2ARK of of Encoder 4(Z) occurs once GP IN6 physical pin gets an input.

> Latching of M2ARK of Encoder 5(T) occurs once GP IN7 physical pin gets an input.

1023Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-22. Mark-1 Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm-x/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv

Bit code
Latching of Mark1
Encoder 0(X)

Latching of Mark1
Encoder 1(Y)

Latching of Mark1
Encoder 2(A)

Latching of Mark1
Encoder 3(B)

000 (default) Mark1 of encoder 0(X) pin Mark1 of encoder 1(Y) pin Mark1 of encoder 0(X) pin Mark1 of encoder 1(Y) pin

001 GP IN6 Mark1 of encoder 0(X) pin Mark2 of encoder 0(X) pin Mark1 of encoder 0(X) pin

010 - GP IN4 GP IN6 GP IN6

011 - GP IN6 - -

Example

ASSIGNMARK 1, 1, 0x0b0001

By using CMhp as the first node, entering the command above performs the following assignments for these inputs:

> Latching of Encoder 0 occurs once IN6 pin (pin 5, J9 connector at CMhp) gets an input.

> Latching of Encoder 1 occurs once X(0)_MARK1+ physical pin (pin 12, J9 connector at CMhp) gets an input.

> Latching of Encoder 2 occurs once X(0)_MARK2+ physical pin (pin 13, J9 connector at CMhp) gets an input.

> Latching of Encoder 3 occurs once X(0)_MARK1+ physical pin (pin 12, J9 connector at CMhp) gets an input.

1024Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-23. Mark-2 Inputs to Encoders Mapping for with SPiiPlus CMnt/UDMpm/UDMpc/CMba/CMhp/CMxa/UDMba/UDMhp/UDMxa/CMhv/UDMhv

Bit code Latching of Mark2 Encoder 0(X) Latching of Mark2 Encoder 1(Y) Latching of Mark2 Encoder 2(A) Latching of Mark2 Encoder 3(B)

000 (default) Mark2 of axis 0(X) pin Mark2 of axis 1(Y) pin GP IN6 GP IN7

001 Mark1 of axis 1(Y) pin Mark1 of axis 1(Y) pin Mark1 of axis 1(Y) pin Mark1 of axis 1(Y) pin

010 Mark2 of axis 1(Y) pin GP IN5 Mark2 of axis 1(Y) pin -

011 GP IN7 GP IN7 GP IN7 -

Example

ASSIGNMARK 0x0b010

By using CMhp as the first node, entering the command above performs the following assignments for these inputs:

> Latching of Encoder 0 occurs once Y(1)_MARK2+ physical pin (pin 15, J9 connector at CMhp) gets an input.

> Latching of Encoder 1 occurs once IN5 pin (pin 23, J9 connector at CMhp) gets an input.

> Latching of Encoder 2 occurs once Y(1)_MARK2+ physical pin (pin 15, J9 connector at CMhp) gets an input.

1025Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Table A-24. IDMxx/ECMxx/UDMsm/UDMsa/UDMma Encoder Mapping

Byte 3 2 1 0

Latching of Encoder 3(B) Latching of Encoder 2(A) Latching of Encoder 1(Y) Latching of Encoder 0(Y)

MARK0 input pin 0x00 0x00 0x00 0x00 (default)

MARK1 input pin 0x01 0x01 0x01(default) 0x01

MARK2 input pin 0x02 0x02(default) 0x02 0x02

MARK3 input pin 0x03(default) 0x03 0x03 0x03

The table above allows the user to build a hexadecimal value for the inputs_to_encoder_bit_ code argument:

ASSIGNMARK axis, type, 0XAABBCCDD

Where AA is the code for encoder 3, BB is the code for encoder 2, CC is the code for encoder 1, and DD is the code for encoder 0.

Example 1 (default case)

ASSIGNMARK 1, 1, 0x03020100

By using UDMsm as the first node, entering the command above performs the following assignments for these inputs:

> Latching of Encoder 0 occurs once MARK0 physical pin (pin 16, J11 connector) gets an input.

> Latching of Encoder 1 occurs once MARK1 physical pin (pin 17, J11 connector) gets an input.

> Latching of Encoder 2 occurs once MARK2 physical pin (pin 18, J11 connector) gets an input.

> Latching of Encoder 3 occurs once MARK3 physical pin (pin 19, J11 connector) gets an input.

1026Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Example 2

ASSIGNMARK 1, 1, 0x03010102

By using UDMsm as the first node, entering the command above performs the following assignments for these inputs:

> Latching of Encoder 0 occurs once MARK2 physical pin (pin 18, J11 connector) gets an input.

> Latching of Encoder 1 occurs once MARK1 physical pin (pin 17, J11 connector) gets an input.

> Latching of Encoder 2 occurs once MARK1 physical pin (pin 17, J11 connector) gets an input.

> Latching of Encoder 3 occurs once MARK3 physical pin (pin 19, J11 connector) gets an input.

1027Version 3.12

ACSPL+ Commands & Variables Reference Guide
Appendix A. PEG And MARK Mapping Tables

Contact us: sales@acsmotioncontrol.com | www.acsmotioncontrol.com

5 HaTnufa St.
Yokneam Illit, 2066717
Israel
Tel: (+972) (4) 654 6440 Fax: (+972) (4) 654 6443

	1. Introduction
	2. ACSPL+ Commands
	2.1 Axis Management Commands
	2.1.1 BREAK
	2.1.2 COMMUT
	2.1.3 CONNECT
	2.1.4 CSCREATE
	2.1.5 CSDESTROY
	2.1.6 DEPENDS
	2.1.7 DISABLE/DISABLEALL
	2.1.8 ENABLE/ENABLE ALL
	2.1.9 ENCINIT
	2.1.10 ENCREAD
	2.1.11 FCLEAR
	2.1.12 FOLLOW
	2.1.13 GO
	2.1.14 GROUP
	2.1.15 HALT
	2.1.16 HOME
	2.1.17 IMM
	2.1.18 KILL/KILLALL
	2.1.19 SAFETYCONF
	2.1.20 SAFETYGROUP
	2.1.21 SET
	2.1.22 SPLIT
	2.1.23 UNFOLLOW

	2.2 Predefined Homing Methods
	2.2.1 Homing Method 1: Homing on the negative limit switch and index pulse
	2.2.2 Homing Method 2: Homing on positive limit switch and index pulse
	2.2.3 Homing Method 17: Homing on Negative Limit Switch
	2.2.4 Homing Method 18: Homing on Positive Limit Switch
	2.2.5 Homing Method 33 and 34: Homing on the index pulse
	2.2.6 Homing Method 37: Homing on current position
	2.2.7 Homing Method 50: Negative Hard Stop and index pulse (ACS Specific)
	2.2.8 Homing Method 51: Positive Hard Stop and index pulse (ACS Specific)
	2.2.9 Homing Method 52: Negative Hard Stop (ACS Specific)
	2.2.10 Homing Method 53: Positive Hard Stop (ACS Specific)

	2.3 Interactive Commands
	2.3.1 DISP
	2.3.2 INP
	2.3.3 INTERRUPT
	2.3.4 INTERRUPTEX
	2.3.5 SEND
	2.3.6 TRIGGER
	2.3.7 OUTP

	2.4 PEG and MARK Commands
	2.4.1 ASSIGNMARK
	2.4.2 ASSIGNPEG
	2.4.3 ASSIGNPOUTS
	2.4.4 GETPEGCOUNT
	2.4.5 PEG_I
	2.4.6 PEG_R
	2.4.7 STARTPEG
	2.4.8 STOPPEG

	2.5 Miscellaneous Commands
	2.5.1 AXISDEF
	2.5.2 DC
	2.5.3 STOPDC
	2.5.4 READ
	2.5.5 SPDC
	2.5.6 STOPSPDC
	2.5.7 WRITE
	2.5.8 SPINJECT
	2.5.9 STOPINJECT
	2.5.10 SPICFG
	2.5.10.1 SPIWRITE

	2.5.11 SPIWRITE
	2.5.12 SPRT
	2.5.13 SPRTSTOP

	2.6 Motion Commands
	2.6.1 ARC1
	2.6.2 ARC1
	2.6.3 ARC1
	2.6.4 ARC2
	2.6.5 ARC2
	2.6.6 ARC2
	2.6.7 BPTP
	2.6.8 BPTPCalc
	2.6.9 BSEG...ENDS
	2.6.10 JOG
	2.6.11 LINE
	2.6.12 LINE
	2.6.13 LINE
	2.6.14 MASTER
	2.6.15 MPOINT
	2.6.16 MPTP...ENDS
	2.6.17 MSEG...ENDS
	2.6.18 PATH...ENDS
	2.6.19 POINT
	2.6.20 PROJECTION
	2.6.21 PTP
	2.6.22 PVSPLINE...ENDS
	2.6.23 SLAVE
	2.6.24 STOPPER
	2.6.25 TRACK
	2.6.26 XSEG...ENDS
	2.6.27 NURBS
	2.6.28 NPOINT
	2.6.29 SPATH
	2.6.30 SEGMENT
	2.6.31 SMOVE
	2.6.32 Using ARC1, ARC2 and LINE Switches

	2.7 Program Flow Commands
	2.7.1 Assignment Command
	2.7.2 BLOCK...END
	2.7.3 CALL
	2.7.4 GOTO
	2.7.5 IF, ELSEIF, ELSE...END
	2.7.6 INPUT
	2.7.7 LOOP...END
	2.7.8 ON...RET
	2.7.9 TILL
	2.7.10 WAIT
	2.7.11 WHILE...END

	2.8 Program Management Commands
	2.8.1 DISABLEON
	2.8.2 ENABLEON
	2.8.3 PAUSE
	2.8.4 RESUME
	2.8.5 START
	2.8.6 STOP/STOPALL

	2.9 Ethernet/IP ACSPL+ Support Commands
	2.9.1 EIPGETATTR
	2.9.2 EIPGETIND1
	2.9.3 EIPGETIND2
	2.9.4 EIPGETTAG
	2.9.5 EIPSETASM

	2.10 Laser Control Commands
	2.10.1 LCENABLE
	2.10.2 LCDISABLE

	2.11 Input Shaping Commands
	2.11.1 INSHAPEON
	2.11.2 INSHAPEOFF

	3. ACSPL+ Variables
	3.1 Axis Configuration Variables
	3.1.1 AFLAGS
	3.1.2 ENTIME
	3.1.3 ESTBITS
	3.1.4 E2STBITS
	3.1.5 EMTBITS
	3.1.6 E2MTBITS
	3.1.7 MFF
	3.1.8 MFLAGS
	3.1.9 MFLAGSX
	3.1.10 MODULOMD
	3.1.11 PEGQUE
	3.1.12 SETTLE
	3.1.13 SLPMAX
	3.1.14 SLPMIN
	3.1.15 STEPF
	3.1.16 STEPW
	3.1.17 TARGRAD

	3.2 Brake Variables
	3.2.1 BOFFTIME
	3.2.2 BONTIME
	3.2.3 MBRKROUT
	3.2.4 VELBRK

	3.3 Feedback Variables
	3.3.1 E_AOFFS
	3.3.2 E_FREQ
	3.3.3 E2_AOFFS
	3.3.4 E2_FREQ
	3.3.5 E_FLAGS
	3.3.6 E2_FLAGS
	3.3.7 E_PAR_A
	3.3.8 E2_PAR_A
	3.3.9 E_PAR_B
	3.3.10 E2_PAR_B
	3.3.11 E_PAR_C
	3.3.12 E2_PAR_C
	3.3.13 E_PAR_D
	3.3.14 E2_PAR_D
	3.3.15 E_PAR_E
	3.3.16 E2_PAR_E
	3.3.17 E_SCMUL
	3.3.18 E2_SCMUL
	3.3.19 E_TYPE
	3.3.20 E2_TYPE
	3.3.21 EFAC
	3.3.22 E2FAC
	3.3.23 EOFFS
	3.3.24 E2OFFS
	3.3.25 EPOS
	3.3.26 FVFIL
	3.3.27 F2ACC
	3.3.28 HOMEDEF
	3.3.29 HOMEVELI
	3.3.30 HOMEVELL
	3.3.31 RVFIL
	3.3.32 SCSOFFS
	3.3.33 SCCOFFS
	3.3.34 SC2COFFS
	3.3.35 SC2GAIN
	3.3.36 SC2PHASE
	3.3.37 SC2SOFFS
	3.3.38 SLEBIASA
	3.3.39 SLEBIASB
	3.3.40 SLEBIASC
	3.3.41 SLEBIASD
	3.3.42 SLABITS
	3.3.43 S2LABITS
	3.3.44 SCGAIN
	3.3.45 SCPHASE

	3.4 Axis State Variables
	3.4.1 AST
	3.4.2 IND
	3.4.3 IST
	3.4.4 M2ARK
	3.4.5 MARK
	3.4.6 MST
	3.4.7 RMSM
	3.4.8 RMSD
	3.4.9 NST

	3.5 Safety Limits Variables
	3.5.1 CERRA
	3.5.2 CERRI
	3.5.3 CERRV
	3.5.4 DELV
	3.5.5 DELI
	3.5.6 E_ERR
	3.5.7 ERRA
	3.5.8 ERRI
	3.5.9 ERRV
	3.5.10 SLLIMIT
	3.5.11 SLLROUT
	3.5.12 SRLIMIT
	3.5.13 XACC
	3.5.14 XCURCDB
	3.5.15 XCURI
	3.5.16 XCURK
	3.5.17 XCURV
	3.5.18 XRMS
	3.5.19 XRMSD
	3.5.20 XRMSM
	3.5.21 XRMST
	3.5.22 XRMSTD
	3.5.23 XRMSTM
	3.5.24 XSACC
	3.5.25 XVEL

	3.6 Data Collection Variables
	3.6.1 DCN
	3.6.2 DCP
	3.6.3 S_DCN
	3.6.4 S_DCP
	3.6.5 S_ST

	3.7 Input and Output Variables
	3.7.1 AIN
	3.7.2 AINOFFS
	3.7.3 AINSCALE
	3.7.4 AOUT
	3.7.5 DOUT
	3.7.6 EXTIN
	3.7.7 EXTOUT
	3.7.8 IN
	3.7.9 OUT
	3.7.10 SPIRXN
	3.7.11 SPIST

	3.8 Monitoring Variables
	3.8.1 BCODECFG
	3.8.2 BCODEUSG
	3.8.3 BGLOBCFG
	3.8.4 BGLOBUSG
	3.8.5 BSRCUSG
	3.8.6 BSRCCFG
	3.8.7 BVARUSG
	3.8.8 BVARCFG
	3.8.9 JITTER
	3.8.10 MSSYNC
	3.8.11 USGBUF
	3.8.12 USGTRACE
	3.8.13 SOFTIME
	3.8.14 TIME
	3.8.15 USAGE
	3.8.16 USAGESIM

	3.9 Motion Variables
	3.9.1 ACC
	3.9.2 APOS
	3.9.3 APOSFILT
	3.9.4 CERRK
	3.9.5 DAPOS
	3.9.6 DEC
	3.9.7 DECOMP
	3.9.8 DELK
	3.9.9 FACC
	3.9.10 FPOS
	3.9.11 F2POS
	3.9.12 FVEL
	3.9.13 F2VEL
	3.9.14 FEEDRF
	3.9.15 GACC
	3.9.16 GJERK
	3.9.17 GMOT
	3.9.18 GMQU
	3.9.19 GMTYPE
	3.9.20 GPATH
	3.9.21 GPHASE
	3.9.22 GRTIME
	3.9.23 GSEG
	3.9.24 GSFREE
	3.9.25 GSNAP
	3.9.26 GVEC
	3.9.27 GVEL
	3.9.28 JERK
	3.9.29 KDEC
	3.9.30 LPOS
	3.9.31 MPOS
	3.9.32 MSTIMEA
	3.9.33 MSTIMEB
	3.9.34 MSTIMEC
	3.9.35 NVEL
	3.9.36 PE
	3.9.37 PPOS
	3.9.38 PPOSCOMP
	3.9.39 PRFLTIME
	3.9.40 RACC
	3.9.41 RJERK
	3.9.42 ROFFS
	3.9.43 RPOS
	3.9.44 RPOSCOMP
	3.9.45 RPOSDEL
	3.9.46 RSNAP
	3.9.47 RVEL
	3.9.48 SETTLEA
	3.9.49 SETTLEB
	3.9.50 SLSFF
	3.9.51 SETTLEC
	3.9.52 SNAP
	3.9.53 STLTIMEA
	3.9.54 STLTIMEB
	3.9.55 STLTIMEC
	3.9.56 TARGRADA
	3.9.57 TARGRADB
	3.9.58 TARGRADC
	3.9.59 TPOS
	3.9.60 VEL

	3.10 Program Execution Control Variables
	3.10.1 ONRATE
	3.10.2 PCHARS
	3.10.3 PERL
	3.10.4 PERR
	3.10.5 PEXL
	3.10.6 PFLAGS
	3.10.7 PLINES
	3.10.8 PRATE
	3.10.9 PST

	3.11 Safety Control Variables
	3.11.1 E_ERR
	3.11.2 ECALERR
	3.11.3 ECERR
	3.11.4 ECEXTERR
	3.11.5 ECEXTST
	3.11.6 ECST
	3.11.7 FAULT
	3.11.8 FAULTSIM
	3.11.9 FDEF
	3.11.10 FMASK
	3.11.11 HLLROUT
	3.11.12 HRLROUT
	3.11.13 MERR
	3.11.14 SAFIN
	3.11.15 SAFINI
	3.11.16 S_ERR
	3.11.17 S_FAULT
	3.11.18 S_FDEF
	3.11.19 S_FMASK
	3.11.20 S_SAFIN
	3.11.21 S_SAFINI
	3.11.22 SS11TIME
	3.11.23 SS12TIME
	3.11.24 STODELAY
	3.11.25 SYNC

	3.12 Induction Motor Variables
	3.12.1 SLCFIELD
	3.12.2 SLCSLIP

	3.13 Nanomotion Variables
	3.13.1 SLDZMIN
	3.13.2 SLDZMAX
	3.13.3 SLDZTIME
	3.13.4 SLZFF
	3.13.5 SLFRC
	3.13.6 SLFRCN
	3.13.7 SLHRS
	3.13.8 SLVKPDCF
	3.13.9 SLPKPDCF
	3.13.10 SLVKIDCF

	3.14 Servo-Loop Variables
	3.14.1 DCOM
	3.14.2 Servo-Loop Current Variables
	3.14.2.1 SLBIASA
	3.14.2.2 SLBIASB
	3.14.2.3 SLBIASC
	3.14.2.4 SLIKI
	3.14.2.5 SLIKP
	3.14.2.6 SLIFILT
	3.14.2.7 SLIOFFS
	3.14.2.8 SLILI

	3.14.3 Servo-Loop Velocity Variables
	3.14.3.1 SLCRAT
	3.14.3.2 SLVKI
	3.14.3.3 SLVKIIF
	3.14.3.4 SLVKISF
	3.14.3.5 SLVKITF
	3.14.3.6 SLVKP
	3.14.3.7 SLVKPIF
	3.14.3.8 SLVKPSF
	3.14.3.9 SLVKPTF
	3.14.3.10 SLVLI
	3.14.3.11 SLVRAT

	3.14.4 Servo-Loop Velocity Notch Filter Variables
	3.14.4.1 SLVNFRQ
	3.14.4.2 SLVNWID
	3.14.4.3 SLVNATT

	3.14.5 Servo-Loop Velocity Low Pass Filter Variables
	3.14.5.1 SLVSOF
	3.14.5.2 SLVSOFD

	3.14.6 Servo-Loop Velocity Bi-Quad Filter Variables
	3.14.6.1 SLVB0DD
	3.14.6.2 SLVB0DF
	3.14.6.3 SLVB0ND
	3.14.6.4 SLVB0NF

	3.14.7 Servo-Loop Position Variables
	3.14.7.1 SLDRA
	3.14.7.2 SLDRAIF
	3.14.7.3 SLDRX
	3.14.7.4 SLPKI
	3.14.7.5 SLPKIIF
	3.14.7.6 SLPKISF
	3.14.7.7 SLPKITF
	3.14.7.8 SLPLI
	3.14.7.9 SLPKP
	3.14.7.10 SLPKPIF
	3.14.7.11 SLPKPSF
	3.14.7.12 SLPKPTF

	3.14.8 Servo-Loop Compensations Variables
	3.14.8.1 SLAFF
	3.14.8.2 SLFRCD

	3.14.9 Servo Loop Stepper Variables
	3.14.9.1 MFLAGSX
	3.14.9.2 SLSDZ
	3.14.9.3 SLSKI
	3.14.9.4 SLSKP
	3.14.9.5 SLSMC
	3.14.9.6 SLSOUT
	3.14.9.7 SLSRL

	3.14.10 Servo-Loop Miscellaneous Variables
	3.14.10.1 SLCROUT
	3.14.10.2 SLGCAXN
	3.14.10.3 SLPROUT
	3.14.10.4 SLP2ROUT
	3.14.10.5 SLTFWID
	3.14.10.6 SLVROUT

	3.14.11 Non-Linear Control Variables
	3.14.11.1 SLPAP
	3.14.11.2 SLPDP
	3.14.11.3 SLPAI
	3.14.11.4 SLPDI
	3.14.11.5 SLVAP
	3.14.11.6 SLVDP
	3.14.11.7 SLVAI
	3.14.11.8 SLVDI

	3.15 Commutation Variables
	3.15.1 SLCHALL
	3.15.2 SLCNP
	3.15.3 SLCOFFS
	3.15.4 SLCORG
	3.15.5 SLCPRD
	3.15.6 SLHROUT
	3.15.7 SLSTHALL

	3.16 System Configuration Variables
	3.16.1 CFG
	3.16.2 CTIME
	3.16.3 EXTFAC
	3.16.4 FOLLOWCH
	3.16.5 G_01WCS...G_12WCS
	3.16.6 GPEXL
	3.16.7 GSPEXL
	3.16.8 GUFAC
	3.16.9 IENA
	3.16.10 IMASK
	3.16.11 ISENA
	3.16.12 S_FLAGS
	3.16.13 S_SETUP
	3.16.14 XSEGAMAX
	3.16.15 XSEGAMIN
	3.16.16 XSEGRMAX
	3.16.17 XSEGRMIN

	3.17 Communication Variables
	3.17.1 BAUD
	3.17.2 COMMCH
	3.17.3 COMMFL
	3.17.4 CONID
	3.17.5 ECHO
	3.17.6 DISPCH
	3.17.7 GATEWAY
	3.17.8 SUBNET
	3.17.9 TCPIP
	3.17.10 TCPIP2
	3.17.11 TCPPORT
	3.17.12 UDPPORT

	3.18 Miscellaneous
	3.18.1 FK
	3.18.2 STATIC
	3.18.3 XARRSIZE

	4. ACSPL+ Functions
	4.1 Arithmetical Functions
	4.1.1 ABS
	4.1.2 ACOS
	4.1.3 ASIN
	4.1.4 ATAN
	4.1.5 ATAN2
	4.1.6 CEIL
	4.1.7 COS
	4.1.8 EXP
	4.1.9 FLOOR
	4.1.10 HYPOT
	4.1.11 LDEXP
	4.1.12 LOG
	4.1.13 LOG10
	4.1.14 POW
	4.1.15 SIGN
	4.1.16 SIN
	4.1.17 SQRT
	4.1.18 TAN
	4.1.19 ROUND

	4.2 Matrix Functions
	4.2.1 Matrix Type
	4.2.1.1 Matrix Initialization in Compilation Time

	4.2.2 MATRIXADD
	4.2.3 MATRIXSUB
	4.2.4 MATRIXMUL
	4.2.5 MATRIXMULSCA
	4.2.6 MATRIXMULEW
	4.2.7 MATRIXDIV
	4.2.8 MATRIXIDENT
	4.2.9 MATRIXTRANS
	4.2.10 MATRIXINVERT

	4.3 Miscellaneous Functions
	4.3.1 GETCONF
	4.3.2 SYSINFO
	4.3.3 GETVAR
	4.3.4 SETCONF
	4.3.5 SETVAR
	4.3.6 STR
	4.3.7 STRTONUM
	4.3.8 NUMTOSTR
	4.3.9 BCOPY
	4.3.10 SS1RESET
	4.3.11 MDURATION

	4.4 Array Processing Functions
	4.4.1 AVG
	4.4.2 COPY
	4.4.3 DSHIFT
	4.4.4 FILL
	4.4.5 MAX
	4.4.6 MAXI
	4.4.7 MIN
	4.4.8 MINI
	4.4.9 SIZEOF

	4.5 EtherCAT Functions
	4.5.1 COEGETSIZE
	4.5.2 ECCLOSEPORT
	4.5.3 ECCLRREG
	4.5.4 ECEXTIN
	4.5.5 ECEXTOUT
	4.5.6 ECGETGRPIND
	4.5.7 ECGETPID
	4.5.8 ECGETMAIN
	4.5.9 ECGETOFFSET
	4.5.10 ECGETOPTGRP
	4.5.11 ECGETRED
	4.5.12 ECGETREG
	4.5.13 ECGETSLAVES
	4.5.14 ECGETSTATE
	4.5.15 ECGETVID
	4.5.16 ECGRPINFO
	4.5.17 ECIN
	4.5.18 ECOUT
	4.5.19 ECREPAIR
	4.5.20 ECRESCAN
	4.5.21 ECRESCUE
	4.5.22 ECSAVECFG
	4.5.23 ECSAVEDCNF
	4.5.24 ECUNMAP
	4.5.25 ECUNMAPIN
	4.5.26 ECUNMAPOUT
	4.5.27 FOEDOWNLOAD
	4.5.28 FOEUPLOAD
	4.5.29 PDOEXT

	4.6 CoE Functions
	4.6.1 COEREAD
	4.6.2 COEWRITE

	4.7 Modbus Functions
	4.7.1 MBOPEN
	4.7.2 MBGETHANDLE
	4.7.3 MBCLOSE
	4.7.4 MBREADHREG
	4.7.5 MBREADIREG
	4.7.6 MBWRITEHREG
	4.7.7 MBREADCOIL
	4.7.8 MBWRITECOIL
	4.7.9 MBREADDIN
	4.7.10 MBUNMAP
	4.7.11 MBCLEAR
	4.7.12 MBERR
	4.7.13 #MBMAPREP

	4.8 Servo Processor Functions
	4.8.1 GETSP
	4.8.2 GETSPA
	4.8.3 GETSPV
	4.8.4 SETSP
	4.8.5 SETSPV

	4.9 Signal Processing Functions
	4.9.1 DEADZONE
	4.9.2 DSIGN
	4.9.3 DSTR
	4.9.4 EDGE
	4.9.5 INTGR
	4.9.6 LAG
	4.9.7 Interpolation Functions
	4.9.7.1 Linear interpolation
	4.9.7.2 Spline interpolation
	4.9.7.3 MAP
	4.9.7.4 MAPB
	4.9.7.5 MAPN
	4.9.7.6 MAPNB
	4.9.7.7 MAPNS
	4.9.7.8 MAPS
	4.9.7.9 MAP2
	4.9.7.10 MAP2B
	4.9.7.11 MAP2N
	4.9.7.12 MAP2NB
	4.9.7.13 MAP2NS
	4.9.7.14 MAP2S
	4.9.7.15 MATCH
	4.9.7.16 RAND
	4.9.7.17 ROLL
	4.9.7.18 SAT

	4.10 Laser Control Functions
	4.10.1 LCMODULATION
	4.10.1.1 Duty cycle or frequency update
	4.10.1.2 Duty cycle or Frequency monitoring

	4.10.2 LCFixedDist
	4.10.3 LCFixedInt
	4.10.4 LCRandomDist
	4.10.5 LCTickle
	4.10.6 LCZone
	4.10.6.1 LCZoneSet
	4.10.6.2 LCZoneGet

	4.10.7 LCStop
	4.10.8 LCSignalSet
	4.10.9 LCSignalGet
	4.10.10 LCS conditioning example
	4.10.11 Physical outputs configuration
	4.10.11.1 LCOutputSet
	4.10.11.2 LCOutputGet

	4.10.12 LCDelaySet
	4.10.13 LCDelayGet
	4.10.14 AxListAsMask

	4.11 Dynamic Error Compensation
	4.11.1 ERRORMAP1D
	4.11.2 ERRORMAPN1D
	4.11.3 ERRORMAPA1D
	4.11.4 ERRORMAP2D
	4.11.5 ERRORMAPN2D
	4.11.6 ERRORMAPA2D
	4.11.7 ERRORMAP3DA
	4.11.8 ERRORMAP3D2
	4.11.9 ERRORMAP3D3
	4.11.10 ERRORMAPN3D2
	4.11.11 ERRORMAPN3D3
	4.11.12 ERRORMAP3D5
	4.11.13 ERRORMAPN3D5
	4.11.14 ERRORMAPN3DA
	4.11.15 ERRORMAPOFF
	4.11.16 ERRORMAPON
	4.11.17 #ERRORMAPREP
	4.11.18 ERRORUNMAP

	5. ACSPL+ Standard Structures
	5.1 LCI Standard Structure
	5.1.1 LCI Functions
	5.1.1.1 PowerPWMOut
	5.1.1.2 PowerAnalogOut
	5.1.1.3 PowerDigitalOut
	5.1.1.4 FixedDistPulse
	5.1.1.5 DistanceArrPulse
	5.1.1.6 CoordinateArrPulse
	5.1.1.7 Tickle
	5.1.1.8 LaserEnable
	5.1.1.9 LaserDisable
	5.1.1.10 DistanceArrGate
	5.1.1.11 CoordinateArrGate
	5.1.1.12 AddZone
	5.1.1.13 SetZone
	5.1.1.14 SetCondition
	5.1.1.15 GetCondition
	5.1.1.16 SegmentGate
	5.1.1.17 SegmentPulse
	5.1.1.18 SetExtClockSync
	5.1.1.19 PowerPWMBurst
	5.1.1.20 SetSafetyMasks
	5.1.1.21 Stop
	5.1.1.22 SetMechPlatformAxes
	5.1.1.23 SetMotionAxes
	5.1.1.24 SetSystemDelay
	5.1.1.25 GetSystemDelay
	5.1.1.26 SetConfigOut
	5.1.1.27 AssignChannels
	5.1.1.28 SetCustomPosCalc
	5.1.1.29 SetCustomVelCalc
	5.1.1.30 SetCustomVelVar

	5.1.2 LCI Structure Fields
	5.1.2.1 MotionAxes
	5.1.2.2 PosResolution
	5.1.2.3 InternalPosResolution
	5.1.2.4 PWMDutyCycle
	5.1.2.5 PWMFrequency
	5.1.2.6 PWMPulseWidth
	5.1.2.7 TickleFrequency
	5.1.2.8 TicklePulseWidth
	5.1.2.9 PWMActive
	5.1.2.10 TickleActive
	5.1.2.11 InRange
	5.1.2.12 LaserEnabled
	5.1.2.13 OperationMode
	5.1.2.14 Positions
	5.1.2.15 UserPos
	5.1.2.16 MultiAxWinSize
	5.1.2.17 ExtraPulsesQty
	5.1.2.18 ExtraPulsesPeriod
	5.1.2.19 PiercePulsesNum
	5.1.2.20 PiercePulsesWidth
	5.1.2.21 GateOnDelay
	5.1.2.22 GateOffDelay
	5.1.2.23 PulseDelay
	5.1.2.24 PowerAOutVal
	5.1.2.25 Faults
	5.1.2.26 PWMBurstReady

	5.2 Diagnostics and Preventive Maintenance (DPM)
	5.2.1 DPM_Measurement
	5.2.1.1 DPM_Measurement Fields
	5.2.1.2 DPM_Measurement Functions

	5.2.2 DPM_Motion_Status
	5.2.2.1 DPM_Motion_Status Fields
	5.2.2.2 DPM_Motion_Status Functions

	5.2.3 DPM Example - Adding current measurement during acceleration phase to an existing application

	5.3 Motion Duration
	5.3.1 MotionDuration Struct

	6. Terminal Commands
	6.1 Entering Terminal Commands
	6.2 Query Commands
	6.2.1 Default Query Formats
	6.2.2 Predefined Query Output Formats
	6.2.3 User-Defined Query Output Format

	6.3 Program Management Commands
	6.3.1 Program Management Command Arguments
	6.3.2 Program Buffer Commands
	6.3.2.1 Open/Close Buffer (#)
	6.3.2.2 D
	6.3.2.3 F/IF
	6.3.2.4 L

	6.3.3 RESET
	6.3.4 Listing Program Variables
	6.3.4.1 VGR
	6.3.4.2 VSD
	6.3.4.3 VS/VSG
	6.3.4.4 VSF/VSGF
	6.3.4.5 VG/VGF
	6.3.4.6 VL/VLF
	6.3.4.7 V/VF
	6.3.4.8 VSP
	6.3.4.9 VST/VSGT
	6.3.4.10 VSTF/VSGTF/VSDT
	6.3.4.11 VGV
	6.3.4.12 VGS/VGSF

	6.3.5 Program Handling Commands
	6.3.5.1 C
	6.3.5.2 X
	6.3.5.3 S/SR
	6.3.5.4 P

	6.3.6 Debug Commands
	6.3.6.1 XS
	6.3.6.2 XD
	6.3.6.3 BS
	6.3.6.4 BR

	6.4 System Commands
	6.4.1 SI
	6.4.2 SIR
	6.4.3 MEMORY
	6.4.4 IR
	6.4.5 U
	6.4.6 TD
	6.4.7 SC
	6.4.8 ETHERCAT
	6.4.9 ECMAPREP
	6.4.10 CC
	6.4.11 PLC
	6.4.12 LOG
	6.4.13 LOG HOST_TICKS
	6.4.14 LOGP

	7. SPiiPlus Error Codes
	7.1 ACSPL+ Syntax Errors
	7.2 ACSPL+ Compilation Errors
	7.3 ACSPL+ Runtime Errors
	7.4 Errors
	7.5 Encoder Errors
	7.6 System Errors
	7.7 EtherCAT Errors
	7.8 EtherCAT Slave Errors
	7.9 MODBUS Errors

	8. G-Code Error Codes
	8.1 G-Code Syntax Errors
	8.2 G-Code Compilation Errors
	8.3 G-Code Runtime Errors

	Appendix A. PEG And MARK Mapping Tables
	A.1 ASSIGNPEG Mapping
	A.2 ASSIGNPOUTS Mapping
	A.3 ASSIGNMARK Mapping

